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Figure 1. Areas of Probable Power System Collapse
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Figure 3 — Pulse characteristics




Extreme Case

Figure 1. Estimated Area Affected by High-Altitude EMP
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Area Effected by an Electromagnetic Pulse, by Helght of Burst

Seurme: fary S "Flertrome goetic Pulse Thoeats™ Sestimiony before the House Matianal Senorty
Committee, by 18 1957

Source: Heritage Foundation, Jack Spencer, America’s Vidnerabiliny to a Different Nuelear Threat:
An Electromagneric Pulse, Backgrounder #1372, May 26, 2000, [http: /Mo heritage org/Research
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Fig.4 Coupling currents at the port vary with cable height under the HEMP



Fig. 1. A braided screen of a cable — “French braid”.

The specifications of these two kinds of screens
are different, Fig. 2.
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Fig. 2: Shielding effectiveness of two kinds of screens.
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Fig. 3. Typical variations of peak electric fields on the Earth’s surface for a
high altitude nuclear burst.

TABLE 1
THE ELECTRIC FIELD PEAK VALUE DISTRIBUTED ON THE GROUND FROM A
100 km HOB, 1 MT YIELD BURST

Location on the Ground Peak Electric Field

(Projection Point on the E, (V/m)

Ground from the Explosion

Center)
50 km to the north 2866
26 km to the north 11447
Ground zero 20777
57.7 km to the south 35494
100 km to the south 40042
173 km to the south 40227
247 km to the south 37071
290 km to the south 34802
514 km to the south 30796

Cui Meng, Member, |EEE
1 Mt, 100 km
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Example time-series hotspot temperature calculation results using all five thermal models



Table 1-2
Results of voltage stability analysis

Target Interconnection | Generation il i Simulation Voltage
Location Tripped i i Converged | Collapse

(Yes/No) (Yes/No)

k¥

- : : | Example Voltage Deviation Plot
I

11,767 — =
. _ t = 60 seconds

* Automatic generation control (AGC) and/or operahon of under—frequency Ioad shedding schemes would be
necessary to maintain system frequency beyond the 112-second simulation period, and the inability to perform these
functions could result in instability.

** Simulation results indicate bus voltages would eventually recover, but a large area (the size of a state or more)
experienced significant voltage depression (0.5 per-unit or less) at the peak of the E3B. Localized voltage collapse is
possible.

Figure 1-13
Example area of bus voltage deviation in per-unit from the initial value at t = 60 seconds




* Nominal elevation 200 km to 400 km (zero at 40 km)

* Blast size ranging from 125 k Ton to 1,000 k Ton
* 1,200 k Ton device weighs 2,400 Ibs
« WW?2 test blast was about 20 k Ton
e “Suitcase” bomb might be 3to 5 k Ton
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