Estimating HEMP Damage for Power Utilities

Doug Bors, 7x24 Exchange, Northwest Chapter

Outline

- PSE Report with Conclusions
- Geomagnetic Storms, 1859
- Ongoing Review of HEMP Science
- Electrical Description of HEMP
- Threat Potential
- Damage Potential
- References

Figure 1. Areas of Probable Power System Collapse

National Academy of Sciences, 2008: 1 in 100 year geomagnetic storm

FIGURE 1. Minimum HEMP shielding effectiveness requirements (measured IAW procedures of Appendix A).

Extreme Case

Figure 1. Estimated Area Affected by High-Altitude EMP

Source: Heritage Foundation, Jack Spencer, America's Vulnerability to a Different Nuclear Threat: An Electromagnetic Pulse, Backgrounder #1372, May 26, 2000, [http://www.heritage.org/Research/ MissileDefense/bg1372.cfm].

(d) $\sigma = 10^3$ S/m

Fig.3 Coupling currents at the port vary with cable length under the HEMP

Fig.4 Coupling currents at the port vary with cable height under the HEMP

Fig. 1: A braided screen of a cable – "French braid".

The specifications of these two kinds of screens are different, Fig. 2.

Fig. 2: Shielding effectiveness of two kinds of screens.

Absorption

Fig. 3. Typical variations of peak electric fields on the Earth's surface for a high altitude nuclear burst.

TABLE I THE ELECTRIC FIELD PEAK VALUE DISTRIBUTED ON THE GROUND FROM A 100 km HOB, 1 MT YIELD BURST

Location on the Ground	Peak Electric Field
(Projection Point on the	$E_{\psi}(V/m)$
Ground from the Explosion	
Center)	
50 km to the north	2866
26 km to the north	11447
Ground zero	20777
57.7 km to the south	35494
100 km to the south	40042
173 km to the south	40227
247 km to the south	37071
290 km to the south	34802
514 km to the south	30796

Cui Meng, Member, IEEE 1 Mt, 100 km

EPRI

Table 1-2 Results of voltage stability analysis

EPRI

Target Location	Interconnection	Generation Tripped (MW)	Load Tripped (MW)	Simulation Time (Sec)	Simulation Converged (Yes/No)	Voltage Collapse (Yes/No)	
L01	A	12,001	5,440	112	Yes	No*	
L02	A	11,066	5,598	112	Yes	No*	
L03	A	27,543	13,654	112	Yes	Localized Possible**	
L04	A	11,767	22,083	61.05	No	Yes	
L05	A	50,729	60,303	60.87	No	Yes	
L06	A	25,864	13,000	112	Yes	Localized Possible**	
L07	A	15,320	8,309	112	Yes	No*	
L07	В	81,149	25,715	8.33	No	Yes	
L08	В	81,149	25,709	8.33	No	Yes	
L09	С	5,789	4,852	112	Yes	No*	
L10	С	8,162	5,317	112	Yes	No*	
L11	С	10,482	9,749	56.5	No	Yes	
Automatic generation control (AGC) and/or operation of under-frequency load shedding schemes would be							

* Automatic generation control (AGC) and/or operation of under-frequency load shedding schemes would be necessary to maintain system frequency beyond the 112-second simulation period, and the inability to perform these functions could result in instability.
** Simulation results indicate bus voltages would eventually recover, but a large area (the size of a state or more) experienced significant voltage depression (0.5 per-unit or less) at the peak of the E3B. Localized voltage collapse is

nossible

- Nominal elevation 200 km to 400 km (zero at 40 km)
- Blast size ranging from 125 k Ton to 1,000 k Ton
 - 1,200 k Ton device weighs 2,400 lbs
 - WW2 test blast was about 20 k Ton
 - "Suitcase" bomb might be 3 to 5 k Ton

- Generating Facilities
- Transmission Lines
- Distribution
- Sub-stations
- Data Centers and Control Facilities
- Communications Networks

References (page 1)

- CRS Report for Congress, High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (WPM) Devices: Threat Assessments, Updated March 26, 2008, Clay Wilson
- EPRI, Press Release, Dec 20, 2017: EPRI Report Suggests Regional Grid Disruptions Resulting From a High-Altitude Electromagnetic Pulse
- EPRI, Technical Update, December 2017: Magnetohydrodynamic Electromagnetic Pulse Assessment of the Continental U.S. Electric Grid (Voltage Stability Analysis)
- EPRI Journal, May/June 2017, EPRI Research to Inform Smart Decisions on High-Altitude Electromagnetic Pulses, by Chris Warren
- EPRI, Technical Update, February 2017: Magnetohydrodynamic Electromagnetic Pulse Assessment of the Continental U.S. Electric Grid (Geomagnetically Induced Current and Transformer Thermal Analysis)

References (page 2)

- FERC, Written Testimony, Randy Horton, P.E., The Potential for Long-Term and Large-Scale Disruptions to the Bulk Power System, June 22, 2017
- FERC Testimony, Michael Rivera, Los Alamos National Laboratory, June 22, 2017
- Global Journal of Researches in Engineering: The Issue of Control Cables Selection for HEMP-Protected Electric Facilities, 2018, Vladimir Gurevich
- IEEE, Study on Electrical Performance o Reliability Assessment of HEMP Protection Filters applied in Communication Facilities, Hyo-Sik Choi, Tae-heon Jang, Won-seo Cho
- IEEE, Coupling Effect of Transmission Lines by HEMP Based on CST, 2014, Zhang Jianguo, Zhang Xin
- IEEE, Numerical Simulation of the HEMP Environment, 2013, Chi Meng, Member, IEEE
- IEEE, Developments in Early-Time (E1) High-Altitude Electromagnetic Pulse (HEMP) Test Methods, 2013, Anthony Wraight, William D. Prather, Senior Member, IEEE, and Frank Sabath, Senior Member IEEE

References (page 3)

- ITU-T, Series K: Protection Against Interference, Guide for the application of electromagnetic security requirements – Overview, Recommendation ITU-T K.87 (06/2016)
- Sensor and Simulation Notes, Note 573, 25 December 2015: Risetime Evolution in HEMP (High-Altitude Electromagnetic Pulse) E1 Waveforms – Technology and Standards
- U.S. Department of Homeland Security, Electromagnetic Pulse (EMP) Protection and Restoration Guidelines for Equipment and Facilities, December 22, 2016, Version 1.0.
- Applications and the Evolution of EMP/HEMP Filter Technologies Designed to Mitigate Naturally Occurring EMI and Intentional EMI Threats, api technologies corp., after 2015