Lithium-ion Batteries and Systems

TOSHIBA INTERNATIONAL CORPORATION Power Electronics Division Toshiba International Corporation 2019.06.13

Course Overview

Contents

01 Course Overview

- **O2** Battery Basics
- 03 LTO Chemistry
- 04 Chemistry Comparison

05 LTO Cells

Contents

06 LTO Modules and Systems

07 Applications

08 Q&A

09 Assessment and Evaluation

02

Battery Basics

What do they have in common?

- Aluminum
- Zinc
- Lithium
- Carbon
- Nickel
- Lead

What is a lithium-ion battery?

As defined by UL:

A lithium-ion battery is an energy storage device in which lithium ions move through an electrolyte from the negative electrode (the "anode") to the positive electrode (the "cathode") during battery discharge, and from the positive electrode to the negative electrode during charging. The electrochemically active materials in lithium-ion batteries are typically a lithium metal oxide for the cathode, and a lithiated carbon for the anode. The electrolytes are typically a non-aqueous liquid, but can also be gel or polymer. A thin (on the order of microns) micro-porous film separator provides electrical isolation between the cathode and anode, while still allowing for ionic conductivity.

-"Safety Issues for Lithium Ion Batteries", Underwriters Laboratories, 2013

Lithium-ion Battery Basics

Common Lithium Chemistries

- LCO Lithium Cobalt Oxide
 - High specific energy: mobile phones, laptops, etc. Slow charging, limited life (~1000cycles)
- NMC/NCM/MCN (Lithium) Nickel Manganese Cobalt
 - Taylor for high energy or medium power: EV, power tools, e-bikes. Slow charging, good life (~4000 cycles).
- NCA (Lithium) Nickel Cobalt Aluminum
 - High specific energy: Medical devices, industrial, fast charge possible, limited life (~1500 cycles)
- LiPol/LiPoly Lithium Polymer
 - Low energy density, the electrolyte is porous-gel-like (v 'liquid'): mobile phones, laptops, toys. Have great form factor (can have several shapes), expensive and limited life (~1000)

Common Lithium Chemistries

- LFP/LiFePO4 Lithium Iron Phosphate
 - High specific energy: EV. Fast charging, long life (~5000 cycles)
- LMO/LMNO Lithium Manganese Nickel Oxide
 - High specific power but can be adjusted for high specific energy or longevity: power tools, medical instruments, HEV. High charge, limited life (~1000).
- LTO Lithium Titanate/Titanium Oxide
 - High specific power, ESS-PV farms, grid stabilization, EV, heavy vehicles. Fast charge/discharge, very long life (20,000 cycles).

SCiB[™] is within the family of lithium-ion batteries (LIB); However, SCiB[™] exhibits greater benefits compared to the rest of LIBs

What is LTO?

Positive Electrode SCiB[™] is lithium-ion rechargeable battery that uses lithium titanium oxide (LTO) in its negative electrode. Many advantages are realized by using LTO.

Electrolyte

14

LTO (Lithium Titanate) Structure

- Octahedral lithiated structure
- Rigid lattice spinel not layered nor olivine
- Special emergent properties owing to morphology

Non-lithiated LTO

Lithiated LTO

Safety

- Concerns about lithium battery fires
- Several high profile incidents
- Causes a difficult to extinguish metal/ chemical fire
- Standards put in place by NFPA, UN, UL, IEEE, etc.

Recent Instances of Battery Fires

Frequent fires raising concerns about safety of ESS

Past fire issues at stationed battery

There were 16 different

What is SCiB[™]

SCiB[™] or lithium titanium oxide or lithium titanate (LTO).

Safety:

Uses highly safe lithium titanium oxide (LTO)

Long life:

Over 20,000 cycles*

Low-temperature operation:

Can be used at temperatures as low as -30°C

Rapid charging:

Rechargeable in 6 minutes*

High input/output:

Chargeable at large current and provides large current output

Wide effective SOC range**:

Provides a large available capacity

* Measured with a particular single cell under specific conditions

** SOC: State of Charge

18

Safety

Causes of fires in lithium batteries

- Internal Shorts
 - Degradation
 - Contamination
- External Shorts

Safety

No Lithium metal deposition, even in cold conditions with high input power, and over a long cycle

Advantages of LTO Negative Electrode (1)

Since the lithium metal does not deposit electrochemically, there is low risk of internal short circuit.

Product Quality

More than 30,000,000 cells have been delivered to automotive and industrial customers and no cell defects or failures have occurred in the field to date.

Production Site : Kashiwazaki Operations

- applied same design concept as Toshiba's state-of-art semiconductor plant
- ultra-dry environment to prevent moisture
- ultra-clean environment to prevent contamination
- Start of Production : February 2011
- 3 floors, total area: 21,000m²
- IATF16949 / ISO9001 certified

Confidential

22

Cell Manufacturing Process Flow and Equipment

²³

Quality Process Certifications

ISO/TS 16949: 2009

ISO 9001:2008

CERTIFICATE OF APPROVAL

This is to certify that the Quality Management System of:

Toshiba Corporation Kashiwazaki Operations 931-21, Oaza-Karuigawa, Kashiwazaki-shi, Niigata-ken, 945-1396 Japan

has been approved by Lloyd's Register Quality Assurance to the following Quality Management System Standards:

ISO 9001:2008, JIS Q 9001:2008

The Quality Management System is applicable to:

Design, development and manufacture of Lithium-ion rechargeable batteries and pack-batteries.

This certificate is valid only in association with the certificate schedule bearing the same number on which the locations applicable to this approval are listed.

Approval Certificate No: YKA 4004306 Original Approval: 22 March 2009

Current Certificate: 22 March 2015

Certificate Expiry: 21 March 2018

Issued by: Lloyd's Register Quality Assurance Limited

Oueen 5 Tower A, 10th Floor, 2-3-1, Minatomical, Richi-ku, Yokohama 220-6018, Japan For and on behalf of Humrford, Middlemarch Office Village, Sickin Drive, Coventry, CV3 4FI, United Kingdom

Unit's Register the a tension of a fillation and addition is to change light Angular Gaulag Ansainang Destination (Baul) and than engineed on other sense that a set on the states of a set of a state of a set of a state of a set of a state of a set of a se

Production Quality Performance

Cpk of 2.0 = 6.0 Sigma = 0.002 PPM out of tolerance (2 parts per billion)

Common Terms used in the lithium battery market

Internal Resistance (IR or DCIR) – The difference in energy supplied versus energy received during charge/discharge which is lost as heat.

- SCiB offers 2-4 times less IR over competitive lithium ion batteries.
- Less self-heating enables SCiB to:
 - Be used in higher ambient conditions
 - Supply higher charge/discharge rates
 - Yield longer life (calendar & cycle)

Advantages of LTO Negative Electrode (3)

Original self healing mechanism against internal short circuit

Safety

Phase transformation in the LTO anode provides protection against internal short circuiting.

Safety

Safety

No Carbon = No Fire

Cell/Battery Related Definitions

C-rates: Inverse proportion of nominal capacity of a battery with regards to charge time.

Power Density: Total usable power stored in a given volume.

Energy Density: Total usable energy (power over time) stored in a given volume.

SOC: State of charge or the percentage of power stored in a battery as it relates to

the nominal capacity.

BOL: Beginning of life.

EOL: End of life.

Cycle Life Performance

More than 70% capacity remains even after 20,000 charge/discharge cycles.

Cycle characteristics (20Ah cell)

Confidential

Thickness Stability Enables Long Cycle Life

SCiB[™] is stable after repeated charge/discharge

Advantages of LTO Negative Electrode (2)

Long life realized by little volume change during charge/discharge

Swelling during charge/discharge affects battery life

Wide Operating Temperature

Usable in ambient temperature of minus 30°C.

(Discharge capacity recovery rates by temperature)

Chemistry Comparison

At the conclusion of this section, participants will be able to:

- List the common lithium-ion chemistries found in the market and evaluate the benefits of each.
- Justify the pros and cons of LTO batteries compared to other lithium-ion chemistries.

Learning Objectives

Chemistry Comparison

Li-ion Chemistry Comparison

Why LTO Anode? : Benefit to Application & End User

Three characteristics of LTO give SCiB[™] with valuable properties

Chemistry Comparison

Cell Level Li-ion Chemistry Comparison

Manufacturer	Vendor 1	Vendor 2	Toshiba
Chemistry	NMC	LiFePO4	SCiB LTO
Voltage	3.6V	3.3V	2.3V
Specific Energy	150Wh/kg	110Wh/kg	90Wh/kg
Charge Rate	0.7-1C	1C	8C
Discharge Rate	3C	3C	8C
Usable SOC	70%	80%	100%
Cycle Life	2000 - 4000	4000 - 5000	17000
Induced Thermal Runaway			
Results (Cell)	Fire	Fire	Venting, No fire.

Battery Understanding

Common Terms used in the lithium battery market

C-Rate – A battery's charge/discharge capability as a factor of its energy (Amps or Watts).

- Examples:
 - 1C on a 10Ah battery is 10A
 - 2C on a 10Ah battery is 20A
 - ½C on a 10Ah battery is 5A
- SCiB C-Rate is 3-4 times higher than most competitors giving it superior discharge capabilities.
- A higher C-Rate battery can offer the same power with less energy. Do More With Less!
 - Less energy equals:
 - Less cost
 - Smaller size
 - Lighter weight

Chemistry Comparison

Pertinent Safety Standards and Code Regulations

- UL 1642 Cell level certification
- UL 1973 Module and system level certification
- UL 9540 System level certification
- NFPA 855 Fire protection code
- UN DOT 38.3 Lithium battery transportation standard

Chemistry Comparison

Pertinent Safety Standards and Code Regulations

Test Criteria/Standard	UL 1642	UL 1973	1
External short circuit	•	•	L
Abnormal charge/Overcharge	•	•	•
Forced discharge/Overdischarge	•	•	•
Crush	•	•	•
Impact (cell)	•		
Shock	•	•	•
Vibration	•	•	N
Heating (cell)	•		ľ
Temperature cycling	•	•	•
Low pressure (altitude) (cell)	•		
Projectile/External fire	٠	•	•
Drop		•	
Continuous low rate charging			
Molded casing heating test		•	
Insulation or isolation resistance			
Internal short circuit test or		•	•

JL 9540:

- Fluid equipment
- Hazardous spill containment
- Combustible concentrations
- Fire detection and suppression

NFPA 855 (as per Version 2020):

- Requires compliance with UL 9540A and 1778
- Maximum string capacity of 50kWh and maximum ESS capacity of 600kWh (group separation of 3 ft for 250kWh sizes, not-dedicated use building)
- Only applies to ESS larger than 20kWh

At the conclusion of this section, participants will be able to:

- Describe the problems innate to li-ion cells, and how LTO overcomes them.
- Describe how the LTO cell is constructed.

Learning Objectives

LTO Cells

Cell Design Considerations

- Outgassing: The problem of cells swelling up over time or because of improper cycling.
- Terminal limitation: The terminal contacts limiting the flow of power and latency.
- Loose contacts: The connection between the terminals getting disturbed over time causing dropping of the load or sparks.
- Weight: The physical mass causing a limitation in terms of where the cells can be used.

LTO Cells

LTO is within the family of lithium-ion batteries (LIB), But LTO offers excellent performance compared to other LIBs

SCiB Modules – 2P12S

06

LTO Modules and Systems

At the conclusion of this section, participants will be able to:

- Describe how a LTO module is constructed.
- Define CANbus 2.0, BMS, CMU, and BMU.
- Explain the multi-layered communication protocol and how this affects system safety and expandability.

Learning Objectives

LTO Modules and Systems

Uses lithium titanate.	Monitors the voltage and temperature.	
20/23Ah cell (7 in parallel 12 in series)	CMU* board	
		Transports each type of data.
		CAN* communication connector (*Controller Asso Network)
		Output terminal (+)
SCiB	SCiB	
	SCiB	
Exterior case, etc.		
Made of flame-retardant resin.		
* Thin as image Buitation.		

	- Voltage: 18.0V - 32.4V
	- Nominal capacity: 40Ah
Туре 3 - 23	- Nominal energy: 1242 Wh
(23Ah cell)	- Dimension: 359(W)x187(D)x123(H)
	- Mass: approx 14.6kg
	- Functions: cell voltage/temp monitoring,
	cell balancing, CAN communication

LTO Modules and Systems

Battery Module, BMU, Contactor, and Service Disconnector are available to build up battery system by customers.

- 3 Tiered Battery Management System
- Multiple Fail-safes
- Expandable, Multilevel Architecture
- CANbus 2.0

SCiB Modules – Systems

of these cells.

Battery unit #22 at the maximum

Applications

At the conclusion of this section, participants will be able to:

- List two main areas where batteries are used.
- Explain how batteries are applied in different fields and industries.

Learning Objectives

Automotive

3 major Japanese OEMs adopted SCiB[™] for EV and Start-Stop applications. Several other automotive programs are progressing towards production launch.

SCiB[™] is used in more than 3 million vehicles on the road.

Applications

Transit Bus

HEV

EV

Commercial Vehicles

Applications

SCiB Product Systems

DC Power Systems

UPS Energy Storage System

Energy Storage Racks and Containers

G9000 SCiB ESS Overview

LTO Application Benefits - UPS

- Safe Very low risk of generating fire even if mechanically abused.
- High Discharge Power A smaller energy battery can provide the same power.
- High Charge Power Batteries can be charged quickly to minimize downtime.
- Efficient Low self-generated heat allows for use in higher ambient conditions.
- **High Temperature** Superior aging effects compared other chemistries at elevated temperatures.
- Long Life Over 5 times the cycle life and much less calendar aging than other chemistries.
- **Predictive** SCiB's voltage profile provides for accurate SOC and SOH forecasting.
- **High Quality** Toshiba's manufacturing yields very closely matched allowing for longer life and more uniform aging.
- Class Leading Toshiba's proven solutions are assembled in the USA.
- 12 Year Warranty!
- **Do more with less!** SCiB's numerous capabilities allow for a smaller battery to provide the same productivity, with longer life, and with less downtime offering the best cost of ownership.

UPS Applications

The problems typical for the UPS market. Most are seeking to...

- Make the most of physical space and power capacity.
- Avoid unexpected shutdowns and expecting high power factor and good power quality.
- Manage assets and their connections across deployment, possibly remotely.
- Manage energy usage & costs.
- Reducing operating expenses.