

April 20, 2021

Anthony Chavez Western Region Environmental Cleanup Oregon Department of Environmental Quality 165 E. 7th Avenue, Ste 100 Eugene, Oregon

Regarding: Soil and Groundwater Sampling Report

Mill Pond Crossing 1701 Chapel Drive Philomath, Oregon PBS Project 24159.000

Dear Mr. Chavez:

This letter presents the results of the recent grab groundwater sampling conducted at the Mill Pond Crossing housing development located at 1701 Chapel Drive in Philomath, Oregon (site; Figure 1). Sampling was performed to characterize soil and water near two areas associated with a former onsite lumber mill – a former log chain area (SB-1 and SB-2); and a former truck rack area (Figure 2).

BACKGROUND

The following section describes historical uses and investigation of the site.

The site consists of an approximate 30-acre square-shaped property which was formerly occupied by the Hoban Lumber Company and used as a sawmill and lumber processing facility from the 1950s until approximately 1998. Two large log ponds were historically present – one elongated pond on the western portion of the property and a larger pond on the northeast portion. Milling operation as were in the southeast corner of the property. Documented activities have included lumber milling, wood waste incineration using two 'wigwam' style burners, log loading, and equipment fueling. Reportedly, wood treatment did not occur at the site. The operations were dismantled from 1998 to 2000 and the ponds were reportedly filled with wood waste. Based on topography and local surface hydrology, it is likely that groundwater in the region flows to the south-southeast.

Currently, the site is being re-development as Millpond Crossing, a residential affordable housing development. Based on previous investigations the eastern log pond was filled primarily with silty- and clayey-sand and gravel with wood debris and organic material to depths as great as 15 feet below ground surface (bgs). The western log pond was reportedly filled with silty sand with wood debris and organic material overlying a low plastic clay. In the western pond, the contact between the fill material and clay ranges from 4.5 to 12 feet bgs. The fill in both ponds is often water-bearing, with perched groundwater at various depths depending on fill dynamics. The fill material is assumed to be the source of elevated methane concentrations that have been observed in the subsurface.

In preparation for site development, fill beneath existing residential buildings in the western portion of the site (lots 1 through 64) was excavated to depths ranging from 5 to 7 feet bgs. Additionally, fill within a north-south trending bioswale in the western portion of the site was excavated to approximately 5 feet bgs. Fill was not excavated beneath backyard areas.

OBJECTIVES AND SCOPE OF WORK

In October 2018, the site was enrolled into DEQ's Voluntary Cleanup Program (VCP). DEQ subsequently requested the following work:

- (1) Suspect UST. Conduct a geophysical survey to confirm the absence of USTs;
- (2) **Former incinerators.** Assess shallow soil near former wood waste burners for dioxins, semi-volatile organic compounds (SVOCs), and metals;
- (3) **Log chain area.** Assess soil and groundwater in areas that could have formerly had oil-driven log chain equipment;
- (4) Ditches. Assess shallow soil from ditches along Chapel Drive (TPH-d/o and metals);
- (5) Truck fueling area. Re-asses the truck refueling area to assess deeper soil and groundwater; and
- (6) **Former log ponds.** Assess former log ponds for methane and carbon dioxide in soil vapor to assess risk of future vapor intrusion.

Items (1) through (5) are addressed in this letter report and discussed below. Item (6) is currently being assessed and results will be presented under separate cover.

FIELD ACTIVITIES

To address items (1) through (5), the following activities were conducted from October 23, 2020 to March 25, 2021. Works was conducted consistent with the attached PBS Standard Operating Procedures (SOPs).

Geophysical survey. On October 30, 2020, Pacific Geophysics of Portland, Oregon conducted a geophysical survey of area of the suspect underground tank in the southern portion of the site. Results showed a large anomaly that appeared to be an underground tank. Subsequent excavation of the area on December 17, 2020 discovered that the anomaly was not a tank and instead a buried large, open section of corrugated pipe. The pipe was removed from the excavation and the adjacent soil was field screened using visual/olfactory observation and a photoionization detector (PID); no evidence of soil contamination was observed, and the excavation was backfilled.

ISM soil sampling- Former wood waste burners and log chain area. From October 22 through 23, 2020, PBS collected three soil samples at the site using Incremental Sampling Methodology (ISM). Samples were collected generally consistent with DEQ's *Guidance for Evaluating Residual Pesticides on Lands Formerly Used for Agricultural Production*, dated January 2006 and updated in June 2019.

ISM samples were collected for three decision units (DU-1 through DU-3) at locations shown on Figure 2. Decision unit DU-1 and DU-2 were collected in the vicinity of the two former incinerators located in the north and south, respectively, of the processing area.

Soil and groundwater sampling – Log chain and truck rack area. On March 25, 2021, five soil and groundwater explorations were advanced at the site using a truck-mounted direct push rig (Figure 2) – two were located within the area of the former log chain (SB1 and SB2), and three were located near the former truck rack area (SB3 through SB5). Explorations were advanced to a depth of 27 to 30 feet bgs. Soil from each boring was continuously logged and field screened by visual/olfactory observation and use of a PID - no field evidence of

Mill Pond Crossing Soil and Groundwater Sampling Report April 20, 2021 Page 3 of 5

contamination was observed. Therefore, soil samples were collected from the former truck rack area only (shallow soil near the log chain area was sampled by ISM). Shallow soil samples (2- to 3-feet bgs) and samples near the soil-water interface (approximately 27- feet bgs) in the former truck rack area were collected.

Grab groundwater samples were collected from three of the exploration locations (SB1-GW, SB4-GW, and SB5-GW). Attempts to collect groundwater from locations SB2 and SB3 were unsuccessful due to poor recovery and boring advancement refusal at depths greater than 30 feet. A sample to the south of the truck rack area was not possible due to the presence of a utility corridor along the southern property boundary. Boring are attached.

Ditch sampling. Five discrete soil samples (Ditch-1 through Ditch-5) were collected in the former drainage ditches in the vicinity of the former mill processing area. Samples were collected from the upper 12-inches of soil at locations shown on Figure 2.

ANALYTICAL PROGRAM, RESULTS, AND RISK SCREENING

Soil and groundwater samples were submitted to Apex Laboratories of Tigard, Oregon under chain-of-custody documentation. The sections below describe the analyses, results, and risk screening. Analytical results and relevant screening levels are shown in Tables 1 through 3.

ISM soil sampling- Former wood waste burners and log chain area. ISM samples collected near the former wood waste burners (DU-1 and DU-2) were analyzed for:

- Semi-volatile organic compounds (SVOCs) by EPA Method 8270;
- RCRA 8 metals by EPA Method 6020A; and
- Dioxins/furans by EPA Method 1613B.

ISM sample DU-3, collected in the vicinity of the former log chain area was analyzed for:

Total petroleum hydrocarbons as diesel and oil (TPH-d/o) by Northwest Method NWTPH-Dx.

While several analytes were detected, no concentrations exceeded relevant DEQ risk-based concentrations. A concentration of selenium (1.14 mg/kg) was slightly higher than DEQ background metal concentrations in DU-2. Results are shown in the attached Tables 1 and 2, and laboratory reports are attached.

Soil and groundwater sampling – Log chain and truck rack area. Groundwater sample SB1-GW collected from the log chain area was analyzed for:

- TPH-d/o by Northwest Method NWTPH-Dx; and
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270.

Groundwater samples SB4-GW and SB5-GW collected from the truck rack area were analyzed for:

- TPH-g by Northwest Method NWTPH-Gx; and
- TPH-d/o by Northwest Method NWTPH-Dx.

No analytes were detected above reporting limits with the exception of a TPH-d concentration in groundwater (289 milligrams per liter (mg/l)) detected in SB1-GW. The detection exceeds DEQ's RBC for ingestion and inhalation of groundwater in a residential scenario by approximately 2.9-times. A follow-up analysis for PAHs was

Mill Pond Crossing Soil and Groundwater Sampling Report April 20, 2021 Page 4 of 5

non-detect. Laboratory results are summarized in Tables 1 and 3. Laboratory analytical reports and groundwater field forms with water quality field parameter data are attached.

The future development will be connected to municipal water, therefore, the exceedance is not of significant concern to the site. Because of the exceedance, a review of Oregon Water Resource Departments (OWRDs) online well log database was conducted to identify nearby water wells. Based on the review, the following wells were identified:

- <u>BENT 54885</u>. The nearest domestic groundwater well is located approximately 650 feet to the east of the log chain area. The well is installed to a depth of 120 feet bgs, however the only log discovered BENT 54885 is for an alteration of the existing well (wellhead extension) and the specific construction of the well is not known. A search for the OWRD well label (L113640) and other identifications was unsuccessful.
- <u>BENT 5763.</u> This well is located approximately 1,000 feet to the northeast of the former log chain area. The well is used for irrigation and installed to a depth of 169 feet bgs, with screened interval from 84 to 150 feet bgs. Due to the distance from the log chain area, and well construction, it is not expected that the former log chain area will affect the well water.
- <u>BENT 1416.</u> This well is located at 2018 Chapel Drive, approximately 1,700 feet to the southeast of the log chain area. The well is constructed with a 10-inch diameter sealed surface casing from 0 to 43.5 feet bgs, and a 6-inch diameter inner casing with screened interval from 75 to 115 feet bgs. Based on the distance to the well, depth, and sealed surface casing, it is not expected that the former log chain area will affect the well water.

Well logs are attached.

Ditch sampling. Five ditch samples were analyzed for TPH-d/o and RCRA 8 metals. TPH-o was detected in four of the samples (Ditch-1 through Ditch-5), but at concentrations below relevant screening levels. Additionally, several analytes were detected, however non exceeded regional background metals with the exception of chromium in Ditch-4 (115 mg/kg) and in Ditch-5 (124 mg/kg). The exceedances were not significant (15% and 24%, respectively) and the results are considered to be generally consistent with regional background levels. Results are shown in Table 1, and laboratory reports are attached.

QUALITY ASSURANCE/QUALITY CONTROL

A laboratory-provided trip blank was analyzed for VOCs. No VOCs were detected in the trip blank provided by the lab during the soil and groundwater sampling event.

SUMMARY AND CONCLUSIONS

From October 2020 through March 2021, PBS completed several investigation and sampling efforts at the site. The suspect UST was determined not to be present. ISM sampling of three decision units showed no unacceptable soil concentrations near the former wood waste burners and log chain area. Additional soil sampling from ditches and soil borings in the former log chain and truck rack area showed no unacceptable concentrations.

No unacceptable concentrations were found in groundwater near the truck rack area. However, a groundwater sample near the log chain area showed a concentration of TPH-d above the residential ingestion/inhalation RBC. A review of OWRD's online database shows a water well (BENT 54885) located approximately 650 feet east of the

Mill Pond Crossing Soil and Groundwater Sampling Report April 20, 2021 Page 5 of 5

log chain area. The well is installed to 120 feet bgs. Based on topography and local surface hydrology, it is likely that groundwater in the region flows to the south-southeast (cross-gradient relative to BENT 54885. Therefore, given the distance and depth of the well, and likely groundwater flow direction, it is not likely that groundwater from the site affects the water well.

Please feel free to contact me at 503.417.7627 or chris.sheridan@pbsusa.com with any questions or comments.

Sincerely,

Chris Sheridan, RG Senior Geologist

Attachments

Figures

Figure 1. Site Vicinity

Figure 2. Site Plan with Sample Locations

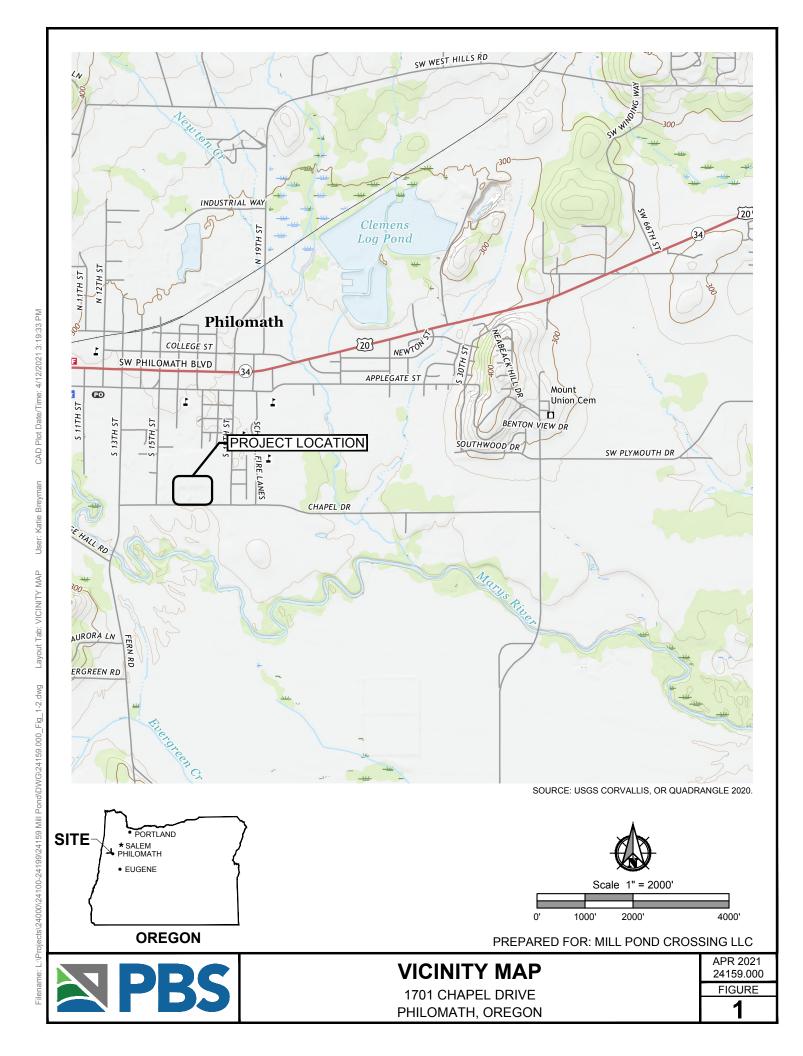
Tables

Table 1. Soil Analytical Results – TPH, SVOCs, and Metals

Table 2. Soil Analytical Results – Dioxins/Furans

Table 3. Groundwater Analytical Results

Attachments

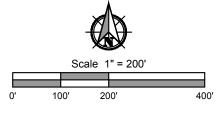

Attachment A: PBS Standard Operating Procedures

Attachment B: Boring logs

Attachment C: Laboratory Reports and Chain-of-Custody Documentation

Attachment D: OWRD Well Logs

CS



LEGEND

SB1 SOIL BORING SAMPLES

ISM DECISION UNIT

♣ DITCH-1 DISCRETE SAMPLES

PREPARED FOR: MILL POND CROSSING LLC

SITE PLAN WITH SAMPLE LOCATIONS

1701 CHAPEL DRIVE PHILOMATH, OREGON APR 2021 24159.000

FIGURE

Table 1. Soil Analytical Results - TPH, SVOCs, and Metals

Mill Pond Crossing 1701 Chapel Drive Philomath, Oregon

			TPH	SV	OCs			Me	tals		
Sample ID	Sample Date	Depth Collected (feet bgs)	Heavy Oil	2-Methylnaphthalene	Naphthalene	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium
							ng/kg				
Ditch-1	10/22/2020	1.5	61.8			3.03	290	<2.86	56.6	5.43	<1.43
Ditch-2	10/22/2020	1.5	375			4.49	83.2	0.369	38.3	26.7	<1.26
Ditch-3	10/22/2020	1.5	58.1			4.64	219	< 3.09	45.1	14.3	< 0.309
Ditch-4	10/22/2020	1.5	63.4			4.33	242	<0.296	115	8.52	<1.48
Ditch-5	10/22/2020	1.5	< 54.1			3.24	262	<0.284	124	7.86	<1.42
DU-1After Processing	10/23/2020	1 to 5		< 0.543	< 0.543	9.16	450	ND	90.2	16.3	ND
DU-2After Processing	10/23/2020	1 to 5		0.0269	0.0269	4.06	318	ND	86.1	9.01	1.14
DU-3After Processing	10/22/2020	1 to 5	343								
SB3-2	3/25/2021	2	<53.3								
SB3-27	3/25/2021	27	<55.6								
SB4-2	3/25/2021	2	<53.1		-						
SB4-27	3/25/2021	27	<50		-						
SB5-2	3/25/2021	2	< 54.4								
SB5-27	3/25/2021	27	< 50.8								
			Screenii	ng Levels							
Oregon DEQ RBC ¹ - Soil Ingestion,	Residential		1,200	NS	5.3	0.43	15,000	78	120,000	400	NS
Dermal Contact, and Inhalation	Construction Wo	orker	9,700	NS	580	15	69,000	350	530,000	800	NS
Oregon DEQ RBC ¹ - Leaching to Groundwater	Residential		9,500	NS	0.077	*	*	*	*	30	NS
Oregon DEQ RBC ¹ -Volatilization to Outdoor Air	Residential		>Max	NS	6.4	NV	NV	NV	NV	NV	NS
Oregon DEQ RBC ¹ -Vapor Intrustion into Buildings	Residential	Residential		NS	6.4	NV	NV	NV	NV	NV	NS
DEQ Regional Default Background Cor Willamette)	ncentrations for M	letals (South	NS	NS	NS	18	730	1.6	100	28	0.68

Notes:

See laboratory report for full list of analytes and method reporting limits.

Bold: Indicates an excedance of the regional background concentrations and/or Method A Soil Cleanup Levels for Unrestricted Land Use.

Metal concentrations are initally screened against regional background levels, then RBCs.

--: analyte not tested

bgs: below ground surface

mg/kg: milligrams per kilogram

DEQ: Department of Enviornmental Quality

ND: compound not detectable above method reporting limits

NS: screening level not set for this compound.

NV: This chemical is considered "nonvolatile" for purposes of the exposure calculations.

RBCs: risk-based concentration

TPH: total petroleum hydrocarbons

>Max: calculated v alue is greater then 1,000,000 mg/kg, substance does not pose a risk

¹Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018

^{*}Leaching-to-Groundwater RBCs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must be performed.

Table 2: Soil Analytical Results - Dioxins/Furans

Mill Pond Crossing 1701 Chapel Drive Philomath, Oregon

COMPOUND	TEF	DU-1-After Processing	DU-2-After Processing	Calulation Sample 1	Calculation Sample 2
				pg/g	
Dioxins		Result	Result	Result	Result
2,3,7,8-TCDD	1	< 0.166	< 0.194	< 0.166	< 0.194
1,2,3,7,8-PeCDD	1	0.582	< 0.168	0.582	< 0.168
1,2,3,4,7,8-HxCDD	0.1	1.47	< 0.211	0.147	< 0.211
1,2,3,6,7,8-HxCDD	0.1	3.43	< 0.201	0.343	< 0.201
1,2,3,7,8,9-HxCDD	0.1	2.36	< 0.209	0.236	< 0.209
1,2,3,4,6,7,8-HpCDD	0.01	97.4	2.46	0.974	0.0246
1,2,3,4,6,7,8,9-OCDD	0.0003	1120	22.2	0.336	0.00666
Total PeCDD		3.76	0.171	3.76	0.171
Total HxCDD		23.9	0.711	0	0.711
Total HpCDD		176	4.4	176	4.40
Furans					
2,3,7,8-TCDF	0.1	0.347	< 0.268	0.0347	<0.268
1,2,3,7,8-PeCDF	0.03	0.364	0.176	0.01092	0.00528
2,3,4,7,8-PeCDF	0.3	0.490	< 0.163	0.147	< 0.163
1,2,3,4,7,8-HxCDF	0.1	0.939	0.243	0.0939	0.0243
1,2,3,6,7,8-HxCDF	0.1	0.631	< 0.179	0.0631	< 0.179
2,3,4,6,7,8-HxCDF	0.1	0.809	< 0.179	0.0809	< 0.179
1,2,3,7,8,9-HxCDF	0.1	0.489	< 0.279	0.0489	< 0.279
1,2,3,4,6,7,8-HpCDF	0.01	14.8	0.880	0.148	0.0088
1,2,3,4,7,8,9-HpCDF	0.01	0.766	< 0.389	0.00766	< 0.389
1,2,3,4,6,7,8,9-OCDF	0.0003	25.6	< 0.544	0.00768	< 0.544
Total TCDF		1.78	< 0.268	1.78	<0.268
Total PeCDF		8.23	0.909	8.23	0.909
Total HxCDF		21.8	1.49	21.8	1.49
Total HpCDF		42.2	1.89	42.2	1.89
TEQ WHO2005 ND=0 wit	h EMPCs			3.26	0.0696
TEQ WHO2005 ND=0.5 w	rith EMPCs			3.35	0.35
Oregon DEQ RBC ¹ - Soil	2,3,7,8-TCDD	Residential	47		
Ingestions, Dermal	(dioxin)	Occupational	16		
Contact, and Inhalation	equivalents**	Construction Worker	170		

Notes:

¹Calculation of the Total 2378-TCDD TEF was calculated by the laboratory using ITE Factors.

Italicized values represent results where individual compounds were not detected above detection limits.

Laboratory results using EPA Method 1613. Values in nanograms per liter (ng/L).

TEF - Toxic Equivalency Factor. One-half the detection limit used for non detected compounds in TEQ calculation (non-detects indicated by italics).

Dioxins

 ${\tt 2378\text{-}TCDD-2,3,7,8-tetrachlorodibenzo-p-dioxin}$

12378-PeCDD - 1,2,3,7,8 -pentachlorodibenzo-p-dioxin

123789-HxCDD - 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin 123478-HxCDD - 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin

123678-HxCDD - 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin

1234678-HpCDD - 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin

OCDD - 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin

Furans

 ${\tt 2378\text{-}TCDF-2,3,7,8-tetrachlorodibenzofuran}$

12378-PeCDF - 1,2,3,7,8-pentachlorodibenzofuran

23478-PeCDF-2, 3, 4, 7, 8-pentachlorodibenzo furan

123678-HxCDF - 1,2,3,6,7,8-hexachlorodibenzofuran

123789-HxCDF - 1,2,3,7,8,9-hexachlorodibenzofuran 123478-HxCDF - 1,2,3,4,7,8-hexachlorodibenzofuran

234678-HxCDF - 2,3,4,6,7,8-hexachlorodibenzofuran

1234678-HpCDF - 1,2,3,4,6,7,8-heptachlorodibenzofuran

1234789-HpCDF - 1,2,3,4,7,8,9-heptachlorodibenzofuran

OCDF - 1,2,3,4,6,7,8,9-octachlorodibenzofuran

¹Oregon Risk-Based Concentrations for Individual Chemicals, Oregon DEQ Sept. 2003, Revised RBCs May 2018

^{**}Compounds in this category are considered in aggregate as a chemical class and should be evaluated as single substances.

Table 3. Groundwater Analytical Results

Mill Pond Crossing 1701 Chapel Drive Philomath, Oregon

		TF	РН		
Sample ID	Sample Date	TPH-g	P-H4T	ТРН-о	PAHs
			ug	g/l	
SB1-GW	3/25/2021		289	<440	ND
SB4-GW	3/25/2021	<100	<204	<408	
SB5-GW	3/25/2021	<100	<202	<404	
	Screening Levels				
Oregon DEQ RBC ¹ - Ingestion and Inhalation from Tapwater	Residential	110	100	100	
Oregon DEQ RBC ¹ - Groundwater in Excavations	Construction Worker	14,000	>S	>S	-
Oregon DEQ RBC ¹ -Volatilization to Outdoor Air	Residential	>\$	>\$	>\$	
Oregon DEQ RBC ¹ -Vapor Intrustion into Buildings	Residential	22,000	>S	>S	

Notes:

See laboratory report for full list of analytes and method reporting limits.

Bold: Indicates an exeedance of the regional background concentrations and/or Method A Soil Cleanup Levels for Unrestricted Land Use. Metal concentrations are initially screened against regional background levels, then RBCs.

--: not available

ug/l: micograms per liter.

DEQ: Department of Enviornmental Quality

ND: compounds not detectable above method reporting limits

RBCs: risk-based concentration

TPH: total petroleum hydrocarbons

>S: This groundwater RBC exceeds the solubility limit. Refer to Appendix D for the corresponding value of S. Groundwater concentrations in excess of S indicate that free product may be present. See Section B.2.1.4 for additional information ¹Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018

STANDARD OPERATING PROCEDURE Drilling and Soil Sampling Procedures

1 PURPOSE

This Standard Operating Procedure (SOP) provides an overview of mobile drilling methods typically used during environmental investigations along with associated health and safety issues. This document outlines procedures to be followed by PBS personnel during drilling and soil sampling activities. Groundwater and soil gas sample collection through the use of drill rigs are covered under separate SOPs.

2 TYPES OF DRILL RIGS

There are three types of drilling methods that are typically used for environmental investigations: direct push, auger, and sonic. Each type of drilling method is described below. A fourth option, discussed in Section 2.4, is a hand auger tool.

2.1 Direct-Push Drilling

Direct-push drilling methods are a common drilling technology used in environmental investigations due to the small diameter borehole (two and one-quarter inch (2.25")) that generates significantly less investigation-derived waste (IDW). The rigs are hydraulically powered, and use static and percussion force to advance the drill rods. Limited access rigs are available for interior locations while track-mounted rigs allow for sampling in locations with unimproved roads.

The rods are equipped with disposable plastic liners that contain the soil retrieved for observation and sampling. The entire column of rods is removed from the ground each time to retrieve soil for sampling. The rod lengths can be 3, 4, or 5 feet. Because of this, if caving or excessive slough is a concern, the borehole may be temporarily cased to keep it clear and open during soil sample retrieval.

2.2 Hollow Stem Auger Drilling (HSA)

Hollow stem auger drilling methods use hollow corkscrew drilling flights to advance into the subsurface. The borehole is typically 11 inches in diameter, with the flights having a 6-inch inner diameter space in which to retrieve samples or construct wells. The hollow stem auger drill rigs have better capability to penetrate higher density deposits that the direct push probe method. Some direct-push rigs have the capacity to drill with hollow stem auger flights, but these rigs typically do not have the mechanical power to drill through challenging soil. The use of auger drill rigs for environmental investigations is typically for the installation and decommissioning of monitoring wells.

Soil sampling with an auger drill rig is conducted through the use of split spoon samplers or Shelby tubes deployed through the inner hollow space. Split spoon samplers are typically 2.5 feet in length and advanced by hammer weight blow into the undisturbed soil. Shelby tubes are typically used in soft deposits such as clays. Soil brought to the surface on the exterior of drilling flights is considered drill or soil cuttings. Soil samples should not be collected and analyzed from the cuttings because that soil may have come in contact with other soil or contamination from varying depths.

2.3 Rotosonic Drilling

Rotosonic drilling methods (hereafter referenced as sonic method) advance drill rod flights into the ground through the use of vibration, and full-size sonic rigs can advance rods through very challenging unconsolidated geologic formations including large cobbles. The borehole size varies but typically is 4 to 6 inches in diameter.

Due to the nature of the drilling technology, the soil can be disturbed by the vibrations, so consistency and compaction are unreliable. Soil is vibrated out of the lead flight into plastic bags for observation and sampling. The entire column of rods is removed from the ground each time to retrieve soil for sampling; if caving or excessive slough is a concern, the borehole may be temporarily cased to keep it clear during soil sample retrieval.

2.4 Hand Auger Tool

A fourth drilling option is the use of a hand auger tool, sometimes called a handheld auger. This tool, made of steel, is used to bore a hole in soil or sediments. It is intended for use only by hand and is powered by human force by twisting or screwing the tool into the soil. The soil is retrieved through a short barrel that attaches to the base of the auger rods. This tool is used for sites where the soil is relatively easy to penetrate, and when sampling is limited to the upper 5 to 10 feet of the shallow surface. Different barrels are available for coarse-grained or fine-grained material.

3 HEALTH AND SAFETY PLAN

A Health and Safety Plan (HASP) must be developed prior to fieldwork commencing. Typically, a site-specific HASP is prepared from a PBS template for drilling investigations. In all cases, pertinent safety information must be relayed to field personnel, including subcontractors, to communicate mandatory elements from the federal code for hazardous waste operations and emergency response (29 CFR 1910.120(b)(4)).

4 UTILITY LOCATES

Utility locates will be completed on all drilling projects including hand-augered sampling. The property owner or site manager should be interviewed regarding the potential location of buried utilities or other subsurface obstructions on the property. The call-in numbers are provided below. Alternately, PBS personnel can obtain logins to file locate requests on-line (Internet Ticket Processing, http://www.callbeforeyoudig.org/index.asp).

Oregon Utility Notification Center: 1-800-332-2344 Washington Utility Notification Center: 1-800-424-5555

The Utility Notification Center needs to be contacted at least 48 hours (two business days) in advance to locate utility-owned lines up to the meter (e.g., water, gas, electric), and public utilities within the public right-of-way (e.g., sewer). In addition, a private utility locating company is typically contracted to survey for private utilities such as utility lines from meters to buildings, drain lines, buried electric cables, or irrigation and sprinkler lines.

When filing utility notification requests, PBS personnel should be as specific as possible about where to locate. Washington law requires that the proposed excavation/drilling work areas are field-marked with white paint prior to the locating event.

When beginning a project, PBS personnel must carefully think through where boreholes can be safely drilled, considering both subsurface and overhead obstructions. A site walk may be prudent once the utilities have been marked and prior to the drilling fieldwork. If safe drilling conditions cannot be confirmed, the PBS Project Manager should determine if engineering controls should be implemented, such as shielding or shutting down utility and/or power lines.

SAFETY NOTE: Drill rig masts must be a safe distance from overhead power lines to prevent mast lines and power lines being moved together by wind. Occupational Safety and Health Administration (OSHA) rules for drillers require a minimum distance of 10 feet, with additional spacing required depending on the voltage carried by the power line. The drill rig subcontractor is responsible for ensuring sufficient clearance. However, PBS personnel should verify that potentially unsafe conditions do not exist.

Rev. 07/31/2013 Page 2 of 6

5 SAFETY EQUIPMENT REQUIREMENTS

The following safety equipment is required for all drilling investigations:

- Hard hat
- Hearing protection (ear muffs or plugs, must be worn when drill rig is in operation)
- Safety-toe work boots
- Safety vest
- Gloves (typically disposable)
- Safety goggles or glasses
- Life vests (only when working over water)

6 FIELD EQUIPMENT AND SUPPLIES REQUIREMENTS

The following equipment is typically required for drilling projects when soil sampling will occur. Groundwater or soil gas sampling is discussed in separate SOPs. PBS personnel should confirm that the drilling contractor will provide decontamination water, soap, brushes, and buckets.

General field supplies/equipment includes:

- 5-gallon buckets
- Bags (garbage)
- Bags (plastic zipper-type)
- Camera
- Cellular telephone and phone numbers of client, project laboratory, subcontractors, etc.
- Field notebook or daily log
- Measuring tape
- Paper towels
- Pens
- Spray paint (optional)

Soil sampling supplies/equipment includes:

- Project proposal/scope of work
- Alconox/Liquinox or similar decontamination detergent
- Distilled water (for decontamination)
- Environmental borehole log forms
- Hand auger (if required by scope)
- Ice chest with blue ice or party ice
- Nitrile or other chemically compatible gloves
- Photoionization detector (PID)
- Sample chain-of-custody forms
- Sample containers (ask lab about sample volume, preservatives, etc.)
- Sampling spade or spoons (if required by scope)

7 PRE-DRILLING ACTIVITIES

The following tasks must be performed before beginning work:

- Conduct tailgate safety meeting with all field personnel, including visitors such as the client or regulator;
 review Health and Safety Plan.
- Install traffic cones/barrier tape or other barrier to control pedestrian and vehicle access to work area as necessary.

The drilling subcontractor is responsible to ensure that the area on which the rig is to be positioned is cleared of removable obstacles and the rig should be leveled if parked on a sloped surface. The cleared/leveled area should be large enough to accommodate the rig and supplies. PBS personnel must confirm that the work area is cleared and safe for work prior to initiating drilling activities.

8 SOIL SAMPLING PROCEDURES

8.1 Logging and Field Screening Soil

Upon retrieval of the soil, describe as per the Geo-Environmental Field Classification chart for soil (included as an attachment). Record observations on an environmental borehole log.

If conducting head-space screening with a PID, remove one-quarter to one-half cup of soil and place in a sealable plastic bag. Seal the bag, break up the soil, and let sit for a minimum of five minutes (in colder weather, either wait for 15 to 30 minutes or put into a warm car or room). The purpose of the headspace screening is to measure what is off-gassing from the sample, and sufficient time must be allowed for that to occur. After the appropriate interval, place the end of the PID probe into the bag (through a small opening in the "zipper") and record the peak value.

If performing sheen testing, place a small sample volume (preferably darker or stained material) in a bowl partially filled with water and observe sheen indicative of petroleum contamination.

8.2 Collecting Soil Samples for Laboratory Analysis

Prior to collecting a sample for laboratory analysis, the sampler should don new gloves. If there are multiple samples to be collected from a single borehole, the gloves should be replaced to avoid cross-contamination.

Collect soil samples using a gloved hand or a clean sampling tool and place directly into the sample jar(s). For volatile organic compounds (VOCs), pack the soil to minimize jar headspace, or field preserve for VOCs using EPA Method 5035 (the field kit is obtained from the laboratory). Label samples as described under Section 8.3 Sample Numbering. Place labeled sample container(s) in the cooler with ice.

8.3 Sample Identification

Sample labels will be completed and attached to the jars in the field to prevent misidentification. All sample labels will include the following information:

- Project name or number
- Sample identification
- Sample collection date and time

The sample identification is unique to a particular sample and the format must be consistently used for all samples collected at the site. The sample identification typically includes the sample location and the collection depth. The sample location is the soil boring number or otherwise designated sample location. Standard abbreviations for sample location types are:

- DP = Direct push
- SO = Surface soil
- MW = Monitoring well
- SS = Soil sample
- SB = Soil boring
- TP = Test pit
- SE = Sediment
- WP = Well point

Examples of sample identifications are: DP-5 (4'), SS-22 (1'), and MW-3 (15')

Other naming conventions may be used, as long as the labeling is consistent and each location is clearly identifiable.

9 BOREHOLE ABANDONMENT

The licensed driller is responsible for abandoning boreholes in compliance with state regulations. PBS personnel should ensure that this occurs, and that the sealing material (typically bentonite chips) is sufficiently hydrated for a proper seal. State regulations governing this are:

- Oregon Administration Rule (OAR) 690-240
- Washington Administrative Code (WAC) 173-160

10 DECONTAMINATION PROCEDURES

Minimizing the possibility of cross-contamination between samples is a critical component of a successful soil sampling project. This is achieved by consistent and thorough decontamination of sampling equipment, such as drill rods, sampling devices (split spoons, trowels, etc.), and other tools that may come in contact with soil to be sampled.

For drilling equipment, the drilling contractor is responsible for the decontamination procedures. Typically, a pressure washer with hot water or water with added detergent is used to clean drill rods and other equipment. The use of a steam cleaner is not appropriate because of the risk of burns, and steam cleaners do a poor job of removing soil particles from equipment.

For equipment and supplies used by PBS personnel, water with added detergent is typically used for decontamination. Alternately, disposable supplies, such as gloves and sampling scoops, can be used to avoid having to decontaminate them.

PBS field personnel should work with the PBS Project Manager to confirm the appropriate decontamination procedure for each project. For example, it may be important to know the source of the driller's water used for decontamination, and distilled or deionized water may need to be used to clean hand tools.

All water and sludge generated during decontamination will be captured for later disposal. Release of water directly onto the ground or into drains or catch basins is not allowed.

11 INVESTIGATION-DERIVED WASTE

Investigation-derived waste consists of soil cuttings, decontamination water, purge water (if groundwater is encountered), and personal protective equipment (e.g., nitrile gloves, rags, paper towels, Tyvex suits, disposable bailers, and tubing). All disposable personal protective equipment may be disposed of as general refuse unless otherwise instructed by the PBS Project Manager.

Soil cuttings are typically placed in 5-gallon buckets or other appropriate containers during the execution of the fieldwork, and transferred to 55-gallon drums as the project progresses. If appropriate, the cuttings may remain in buckets as long as tight-fitting lids are placed on each bucket. For some projects, the PBS Project Manager may request that decontamination/purge water be placed into the same drums as the soil, instead of keeping the two media separate. Depending on the type of contamination, this may result in cost savings for the client during disposal. Field personnel should confirm how to contain soil and water prior to each field event.

Rev. 07/31/2013 Page 5 of 6

11.1 Drum Labeling

The storage containers must be labeled as hazardous, non-hazardous, or unknown pending laboratory results. The labels must be completed using an indelible marker and include:

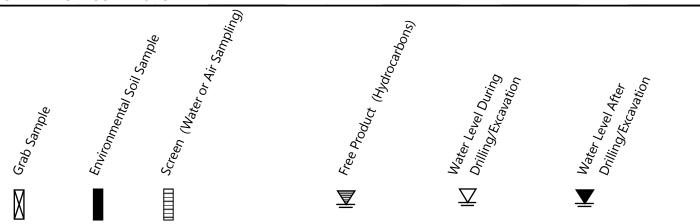
- Date that the contents were generated
- Nature of the contents for example:
 - o Drill cuttings
 - o Purged groundwater
 - o Decontamination water and/or sludge
- Contact phone number in the event emergency response personnel need to identify the contents of the container.

Drums or other storage containers should be placed in as secure a location as possible, which may be a building if the exterior area is not secure from vandalism.

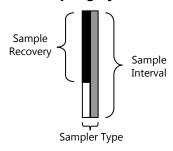
12 POST-DRILLING ACTIVITIES

Upon return to the office, PBS personnel should:

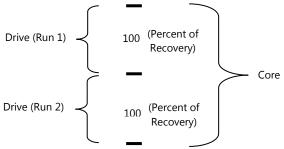
- Clean and calibrate equipment prior to placing back into storage. If there were any operational issues noted, they should be reported immediately to the equipment manager.
- Submit field borehole logs for electronic formatting for future reports.
- Submit the daily field notes to the PBS Project Manager for placement into the project file. If a field
 notebook was used, and that notebook is not dedicated to that project, a copy of those notebook pages
 should be submitted.



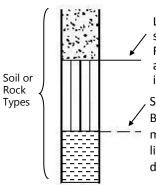
Rev. 07/31/2013 Page 6 of 6


Key To Test Pit and Boring Log Symbols

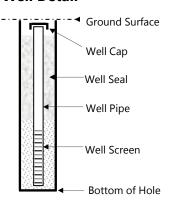
SAMPLING DESCRIPTIONS



LOG GRAPHICS


Sampling Symbols

Direct Push, Sonic, Vibracore Drilling


Soil and Rock Divisions

Lithology Boundary: separates distinct units (i.e., Fill, Alluvium, Bedrock) at approximate depths indicated

Soil-type or Material-type Change Boundary: separates soil and material changes within the same lithographic unit at approximate depth indicated

Well Detail

ENVIRONMENTAL TESTING EXPLANATIONS

ATD	At Time of Drilling	PPM	Parts PerMillion
BGS	Below Ground Surface	ND	Not Detected
MSL	Mean Sea Level	NS	No Sheen
MW	Monitoring Well (Water Sampling)	SS	Slight Sheen
OD	Outside Diameter	MS	Moderate Sheen
PID	Photoionization Detector Headspace Analysis	HS	High Sheen

Observations presented on the logs are based on limited field data and are not intended to be used for site engineering or construction decision purposes.

	i	DDC			D CRC TH, OF				BORING SB-1
		PBS	PBS		ECT NU 59.000		R:		BORING SB-1 LOCATION: (See Site Plan)
DEPTH FEET	FOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Medium dense, dark brown SILT gravel; non-plastic; fine, rounded moist	(ML) with I gravel;	-				_	No odor or sheen throughout
		Loose, poorly graded GRAVEL (sand; fine to coarse sand; fine, r gravel; wet	GP) with ounded	- -	0.0			50	
5.0	C	Stiff, light brown-gray lean CLAY high plasticity; damp	(CL);	- -				_	
-		becomes very stiff, brown		-	0.0			90	
10.0				 - -				_	
-		becomes tan with mottles		-	0.0			100	
15.0		becomes medium stiff; moist		- -				_	
		becomes greenish gray		-	0.0			100	
20.0 —		becomes hard; damp		- -				100	
25.0		with mottles		-	0.0			100	
		gravel encountered Final depth 27.0 feet bgs due to	refusal in	-				100	
30.0		gravel; boring backfilled with ber	itonite.	-					
-				- - -					
		DD: Push Probe acific Soil & Water, LLC		LOGGI	ED BY: S	S. Eckes			

		DDC	MIL PH	L PON	D CRC	SSIN(REGON	€ N		BORING SB-2
		PBS	PBS		ECT NI 159.000		R:		BORING SB-2 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Loose, brown, poorly graded GR (GP) with sand; fine to coarse sa to coarse, rounded to angular gradamp	and; fine	-				_	No odor or sheen throughout
_		Stiff, gray, lean CLAY (CL); high damp	plasticity;	- -	0.0			100	
5.0 —		becomes brown becomes reddish brown; mois	t	<u> </u>				-	
-		becomes medium stiff		_ _ _	0.0			100	
10.0 —		becomes hard, dark brown		_				-	
-				- -	0.0			100	
15.0 —		becomes stiff, with mottles		_				_	
_		becomes tan with mottles		- -	0.0			100	
20.0 —				_				_	
_		becomes hard, greenish gray;	damp	- - -	0.0			100	
- 25.0 —				-				_	
- -		Dark greenish gray, lean CLAY (CI) with	_ _	0.0			50	
30.0 —		gravel; high plasticity; coarse grands ndamp Brown with mottles CLAYSTON	avel; 	-					
- -		Final depth 30.0 feet bgs due to claystone; boring backfilled with Groundwater not encountered at exploration.	bentonite.	- -					
35.0 —				_					
BORING N DRILLED	BY: Pa	OD: Push Probe acific Soil & Water, LLC AMETER: 21⁄4-inch			ED BY: S LETED: 3				

PBS PROJECT NUMBER: 24 159 000 PBS PROJECT NUMBER: 24 159 000 BORING SB-3 LOCATION: (See Site Plan) Comment of the provided of any or state of the provided		DDC	PH	L PON ILOMA	D CRC TH, OF	SSINO REGON	3		BORING SB-3
Loose, poorly graded GRAVEL (GP) with sand, fine to coarse sand; fine to coarse, rounded to angular gravet, etc. Final depth 30.0 feet bgs; boring briad depth 40.0 feet bgs; boring briad depth 30.0 feet bgs; boring briad depth 30.0 feet bgs; boring briad depth 30.0 feet bgs; boring briad depth 40.0 feet bgs; boring 40.0 feet bgs; boring briad depth 40.0 feet bgs; boring briad depth 40.0 feet bgs; boring 4		LD3	PBS				₹:		
Loose, poorly graded GRAVEL (GP) with sand, fine to coarse sand, fine to coarse, rounded to angular gravel; dry FILL Stiff, brown, lean CLAY (CL); high plasticity; damp becomes very stiff becomes stiff to very stiff becomes light brown with mottles becomes tan Dark greenish gray, lean CLAY (CL) with gravel; high plasticity; fine, rounded to subtrounded gravel; damp ran to brown CLAYSTONE Final depth 30.0 feet bgs; boring	GRAPHIC GRAPHIC	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	
becomes stiff to very stiff becomes light brown with mottles 15.0 becomes tan 15.0 becomes stiff to very stiff, greenish gray becomes stiff to very stiff, greenish gray 100 100 100 100 100 100 100 1	0.0	sand; fine to coarse sand; fine to rounded to angular gravel; dry FILL Stiff, brown, lean CLAY (CL); hig plasticity; damp	o coarse,	- -	0.0	SB3-2		85	No odor or sheen throughout
becomes stiff to very stiff becomes light brown with mottles 15.0 becomes tan 20.0 becomes stiff to very stiff, greenish gray becomes stiff to very stiff, greenish gray Dark greenish gray, lean CLAY (CL) with gravel, high plasticity; fine, rounded to subrounded gravel; damp Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	5.0	,						_	
becomes light brown with mottles 15.0	10.0			- -	0.0			100	
becomes stiff to very stiff, greenish gray becomes stiff to very stiff, greenish gray Dark greenish gray, lean CLAY (CL) with gravel; high plasticity; fine, rounded to subrounded gravel; damp Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	10.0	•	les	- -	0.0			100	
becomes stiff to very stiff, greenish gray 0.0 100 Dark greenish gray, lean CLAY (CL) with gravel; high plasticity; fine, rounded to subrounded gravel; damp Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	15.0 —	becomes tan		- 				-	
Dark greenish gray, lean CLAY (CL) with gravel; high plasticity; fine, rounded to subrounded gravel; damp Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	-			- - -	0.0			100	
Dark greenish gray, lean CLAY (CL) with gravel; high plasticity; fine, rounded to subrounded gravel; damp Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	20.0	becomes stiff to very stiff, gree	enish gray	 - -				_	
gravel; high plasticity; fine, rounded to subrounded gravel; damp Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	25.0			_	0.0			100	
Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Groundwater not	-	gravel; high plasticity; fine, round	CL) with	- -	0.0	SB3-27		100	
	30.0	Tan to brown CLAYSTONE Final depth 30.0 feet bgs; boring backfilled with bentonite. Ground	lwater not	-					

	1	DDC	MIL PH	L PON	D CRC TH, OF	SSING REGON	}		BORING SB-4
		PBS	PBS		ECT NU 59.000		! :		BORING SB-4 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		Loose, poorly graded GRAVEL (sand; fine to coarse sand; fine to rounded to angular gravel; dry FILL Very stiff, gray, lean CLAY (CL); plasticity; damp	o coarse,	-	0.0	SB4-2		100	No odor or sheen throughout
5.0		becomes brownish gray		- -				_	
		becomes light brown		-	0.0	0		100	
10.0		becomes stiff, brown with mott	les	 -		SB4-10		100	
15.0 —				-	0.0			100	
		becomes light brown to tan		- - -	0.0			100	
20.0		Stiff, greenish gray, lean CLAY (sand; high plasticity; fine sand; d	CL) with lamp					-	
-		becomes dark greenish gray		-	0.0			100	
25.0		Greenish brown, poorly graded S (SP) with gravel; fine to coarse s subrounded to subangular grave becomes wet	and; fine,	- -	0.0	SB4-27		100	
30.0	。 () Ø	becomes moist to damp Final depth 30.0 feet bgs; boring		-		. ⊠	_		
- - -		backfilled with bentonite.		- - -					
RILLED B	Y: Pa	DD: Push Probe acific Soil & Water, LLC AMETER: 2½-inch			LED BY: S ETED: 3				

	DDC	MIL PH	L PON	D CRC TH, OF	SSINC REGON	3		BORING SB-5
7	PBS	PBS		ECT NU 159.000		₹:		BORING SB-5 LOCATION: (See Site Plan)
DEPTH CRAP	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0	Loose, poorly graded GRAVEL (sand; fine to coarse sand; fine to rounded to angular gravel; dry FILL Stiff, dark gray, lean CLAY (CL); plasticity; damp	coarse,	-	0.0	SB5-2		50	No odor or sheen throughout
5.0	becomes gray		_				_	
-	becomes gray-brown		- -	0.0			100	
10.0	becomes tan to brown		<u>-</u>				_	
-	becomes tan with mottles		<u>-</u> -	0.0			100	
15.0			_ 				_	
	becomes greenish gray		_ _ _	0.0			100	
20.0			- -				_	
-			- -	0.0			70	
25.0			- -				_	
	Soft, greenish gray, lean CLAY (gravel; high plasticity; coarse, rosubrounded gravel; wet	CL) with unded to	_ _ _ _	0.0	SB5-27		90	
30.0	Final depth 30.0 feet bgs; boring backfilled with bentonite.		-					
35.0	HOD: Push Probe		_	ED BY: S				

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, November 5, 2020 Chris Sheridan PBS Engineering and Environmental 4412 SW Corbett Ave Portland, OR 97239

RE: A0J0826 - Millpond Crossing-RSM - 24159.000

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0J0826, which was received by the laboratory on 10/23/2020 at 5:06:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 1.9 degC

Cooler #2

4.0 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DU-3As Received	A0J0826-01	Soil	10/22/20 11:50	10/23/20 17:06
DU-3After Processing	A0J0826-02	Soil	10/22/20 11:50	10/23/20 17:06
Ditch-1	A0J0826-03	Soil	10/22/20 15:30	10/23/20 17:06
Ditch-2	A0J0826-04	Soil	10/22/20 15:40	10/23/20 17:06
Ditch-3	A0J0826-05	Soil	10/22/20 15:50	10/23/20 17:06
Ditch-4	A0J0826-06	Soil	10/22/20 16:00	10/23/20 17:06
Ditch-5	A0J0826-07	Soil	10/22/20 16:10	10/23/20 17:06
DU-1As Received	A0J0826-08	Soil	10/23/20 11:00	10/23/20 17:06
DU-1After Processing	A0J0826-09	Soil	10/23/20 11:00	10/23/20 17:06
DU-2As Received	A0J0826-10	Soil	10/23/20 13:15	10/23/20 17:06
DU-2After Processing	A0J0826-11	Soil	10/23/20 13:15	10/23/20 17:06

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

ANALYTICAL CASE NARRATIVE

Work Order: A0J0826

Subcontract

This report is not complete without the attached subcontract laboratory report for Dioxin/Furans from Cape

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239

Project: Millpond Crossing-RSM

Project Number: 24159.000 Project Manager: Chris Sheridan

Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocarl	bons by NWTPI	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU-3After Processing (A0J0826-02)				Matrix: Soil		Batch:	0101024	
Diesel	ND		25.0	mg/kg dry	1	10/29/20 22:29	NWTPH-Dx	
Oil	343		50.0	mg/kg dry	1	10/29/20 22:29	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	1	10/29/20 22:29	NWTPH-Dx	
Ditch-1 (A0J0826-03)				Matrix: Soil		Batch:	0100935	
Diesel	ND		27.0	mg/kg dry	1	10/28/20 00:32	NWTPH-Dx	
Oil	61.8		54.0	mg/kg dry	1	10/28/20 00:32	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	1	10/28/20 00:32	NWTPH-Dx	
Ditch-2 (A0J0826-04)				Matrix: Soil		Batch:	0100935	
Diesel	ND		125	mg/kg dry	5	10/28/20 00:54	NWTPH-Dx	
Oil	375		250	mg/kg dry	5	10/28/20 00:54	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	5	10/28/20 00:54	NWTPH-Dx	S-05
Ditch-3 (A0J0826-05)				Matrix: Soil		Batch:	0100935	
Diesel	ND		29.0	mg/kg dry	1	10/28/20 01:39	NWTPH-Dx	
Oil	ND		58.1	mg/kg dry	1	10/28/20 01:39	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 %	1	10/28/20 01:39	NWTPH-Dx	
Ditch-4 (A0J0826-06)				Matrix: Soil		Batch:	0100935	
Diesel	ND		27.7	mg/kg dry	1	10/28/20 02:02	NWTPH-Dx	
Oil	63.4		55.4	mg/kg dry	1	10/28/20 02:02	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	1	10/28/20 02:02	NWTPH-Dx	
Ditch-5 (A0J0826-07)				Matrix: Soil		Batch:	0100935	
Diesel	ND		27.1	mg/kg dry	1	10/28/20 02:25	NWTPH-Dx	
Oil	ND		54.1	mg/kg dry	1	10/28/20 02:25	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 66 %	Limits: 50-150 %	1	10/28/20 02:25	NWTPH-Dx	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	unds by EPA	8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU-1After Processing (A0J0826-09)				Matrix: Soi	I	Batch:	0100929	R-04
Acenaphthene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	_ -
Acenaphthylene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Anthracene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benz(a)anthracene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benzo(a)pyrene	ND		0.408	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benzo(b)fluoranthene	ND		0.408	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benzo(k)fluoranthene	ND		0.408	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benzo(g,h,i)perylene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Chrysene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Dibenz(a,h)anthracene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Fluoranthene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Fluorene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1-Methylnaphthalene	ND		0.543	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2-Methylnaphthalene	ND		0.543	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Naphthalene	ND		0.543	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Phenanthrene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Pyrene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Carbazole	ND		0.408	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Dibenzofuran	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2-Chlorophenol	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4-Chloro-3-methylphenol	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,4-Dichlorophenol	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,4-Dimethylphenol	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,4-Dinitrophenol	ND		6.80	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND		6.80	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2-Methylphenol	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
3+4-Methylphenol(s)	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2-Nitrophenol	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4-Nitrophenol	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Pentachlorophenol (PCP)	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Phenol	ND ND		0.543	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND ND		1.36	mg/kg dry mg/kg dry	40	10/27/20 18:14	EPA 8270E EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND ND		1.36	mg/kg dry mg/kg dry	40	10/27/20 18:14	EPA 8270E EPA 8270E	
* * * *						10/27/20 18:14	EPA 8270E EPA 8270E	
2,4,5-Trichlorophenol	ND		1.36	mg/kg dry	40			
Nitrobenzene	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,4,6-Trichlorophenol	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND		4.08	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Butyl benzyl phthalate	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Zmenghini

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	janic Compo	unds by EPA	8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU-1After Processing (A0J0826-09)				Matrix: Soi	I	Batch: 0100929		R-04
Diethylphthalate	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Dimethylphthalate	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Di-n-butylphthalate	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Di-n-octyl phthalate	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
N-Nitrosodimethylamine	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
N-Nitroso-di-n-propylamine	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
N-Nitrosodiphenylamine	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Bis(2-Chloroethyl) ether	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Hexachlorobenzene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Hexachlorobutadiene	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Hexachlorocyclopentadiene	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Hexachloroethane	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2-Chloronaphthalene	ND		0.272	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1,2,4-Trichlorobenzene	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4-Bromophenyl phenyl ether	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4-Chlorophenyl phenyl ether	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Aniline	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4-Chloroaniline	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2-Nitroaniline	ND		5.43	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
3-Nitroaniline	ND		5.43	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
4-Nitroaniline	ND		5.43	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,4-Dinitrotoluene	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
2,6-Dinitrotoluene	ND		2.72	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benzoic acid	ND		33.9	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Benzyl alcohol	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Isophorone	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Azobenzene (1,2-DPH)	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND		6.80	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
3,3'-Dichlorobenzidine	ND		5.43	mg/kg dry	40	10/27/20 18:14	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND		6.80	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1,3-Dinitrobenzene	ND		6.80	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1,4-Dinitrobenzene	ND		6.80	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
Pyridine	ND		1.36	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1,2-Dichlorobenzene	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1,3-Dichlorobenzene	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	
1,4-Dichlorobenzene	ND		0.680	mg/kg dry	40	10/27/20 18:14	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Josa & Jamenyhini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Comp	ounds by EPA 8	270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU-1After Processing (A0J0826-09)				Matrix: Soil		Batch: 0100929		R-04
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 32 %	Limits: 37-122 %	40	10/27/20 18:14	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			49 %	44-120 %	40	10/27/20 18:14	EPA 8270E	S-05
Phenol-d6 (Surr)			21 %	33-122 %	40	10/27/20 18:14	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			55 %	54-127 %	40	10/27/20 18:14	EPA 8270E	S-05
2-Fluorophenol (Surr)			18 %	35-120 %	40	10/27/20 18:14	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			153 %	39-132 %	40	10/27/20 18:14	EPA 8270E	S-05
DU-2After Processing (A0J0826-11RE2)				Matrix: Soil		Batch:	0100994	
Acenaphthene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Acenaphthylene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Anthracene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Benz(a)anthracene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Benzo(a)pyrene	ND		0.0163	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Benzo(b)fluoranthene	ND		0.0163	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Benzo(k)fluoranthene	ND		0.0163	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Benzo(g,h,i)perylene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Chrysene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Dibenz(a,h)anthracene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Fluoranthene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Fluorene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
1-Methylnaphthalene	ND		0.0217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2-Methylnaphthalene	0.0269		0.0217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Naphthalene	0.0269		0.0217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Phenanthrene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Pyrene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Carbazole	ND		0.0163	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Dibenzofuran	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2-Chlorophenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
4-Chloro-3-methylphenol	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,4-Dichlorophenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,4-Dimethylphenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,4-Dinitrophenol	ND		0.272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
4,6-Dinitro-2-methylphenol	ND		0.272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
2-Methylphenol	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
3+4-Methylphenol(s)	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2-Nitrophenol	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
4-Nitrophenol	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa A Zmenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	unds by EPA	8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU-2After Processing (A0J0826-11RE2)				Matrix: Soil		Batch: 0100994		
Pentachlorophenol (PCP)	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
Phenol	ND		0.0217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
2,3,5,6-Tetrachlorophenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
2,4,5-Trichlorophenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
Nitrobenzene	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,4,6-Trichlorophenol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND		0.163	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Butyl benzyl phthalate	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Diethylphthalate	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Dimethylphthalate	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Di-n-butylphthalate	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Di-n-octyl phthalate	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
N-Nitrosodimethylamine	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
N-Nitroso-di-n-propylamine	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
N-Nitrosodiphenylamine	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Bis(2-Chloroethyl) ether	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Hexachlorobenzene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Hexachlorobutadiene	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Hexachlorocyclopentadiene	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Hexachloroethane	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2-Chloronaphthalene	ND		0.0109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
1,2,4-Trichlorobenzene	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
4-Bromophenyl phenyl ether	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
4-Chlorophenyl phenyl ether	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Aniline	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
4-Chloroaniline	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
2-Nitroaniline	ND		0.217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
3-Nitroaniline	ND		0.217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
4-Nitroaniline	ND		0.217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
2,4-Dinitrotoluene	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
2,6-Dinitrotoluene	ND		0.109	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Benzoic acid	ND		1.36	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42
Benzyl alcohol	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	`
Isophorone	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Azobenzene (1,2-DPH)	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwas Zmenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental Project:

4412 SW Corbett AveProject Number: 24159.000Portland, OR 97239Project Manager: Chris Sheridan

Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

Millpond Crossing-RSM

Semivolatile Organic Compounds by EPA 8270E											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
DU-2After Processing (A0J0826-11RE2)				Matrix: Soil		Batch:	0100994				
3,3'-Dichlorobenzidine	ND		0.217	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42, Q-52			
1,2-Dinitrobenzene	ND		0.272	mg/kg dry	4	10/29/20 14:21	EPA 8270E				
1,3-Dinitrobenzene	ND		0.272	mg/kg dry	4	10/29/20 14:21	EPA 8270E				
1,4-Dinitrobenzene	ND		0.272	mg/kg dry	4	10/29/20 14:21	EPA 8270E				
Pyridine	ND		0.0542	mg/kg dry	4	10/29/20 14:21	EPA 8270E	Q-42			
1,2-Dichlorobenzene	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E				
1,3-Dichlorobenzene	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E				
1,4-Dichlorobenzene	ND		0.0272	mg/kg dry	4	10/29/20 14:21	EPA 8270E				
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 64 %	Limits: 37-122 %	4	10/29/20 14:21	EPA 8270E				
2-Fluorobiphenyl (Surr)			82 %	44-120 %	4	10/29/20 14:21	EPA 8270E				
Phenol-d6 (Surr)			45 %	33-122 %	4	10/29/20 14:21	EPA 8270E				
p-Terphenyl-d14 (Surr)			88 %	54-127 %	4	10/29/20 14:21	EPA 8270E				
2-Fluorophenol (Surr)			36 %	35-120 %	4	10/29/20 14:21	EPA 8270E				
2,4,6-Tribromophenol (Surr)			38 %	39-132 %	4	10/29/20 14:21	EPA 8270E	Q-41, S-03			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave

Portland, OR 97239

Project:

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Millpond Crossing-RSM

Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

		Total Meta	Total Metals by EPA 6020A (ICPMS)											
	Sample	Detection	Reporting			Date								
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes						
Ditch-1 (A0J0826-03)	Matrix: Soil													
Batch: 0100878														
Arsenic	3.03		1.43	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Barium	290		1.43	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Cadmium	ND		0.286	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Chromium	56.6		1.43	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Lead	5.43		0.286	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Mercury	ND		0.114	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Selenium	ND		1.43	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Silver	ND		0.286	mg/kg dry	10	10/27/20 17:30	EPA 6020A							
Ditch-2 (A0J0826-04)				Matrix: Soi	I									
Batch: 0100878														
Arsenic	4.49		1.26	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Barium	83.2		1.26	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Cadmium	0.369		0.253	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Chromium	38.3		1.26	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Lead	26.7		0.253	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Mercury	ND		0.101	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Selenium	ND		1.26	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Silver	ND		0.253	mg/kg dry	10	10/27/20 17:33	EPA 6020A							
Ditch-3 (A0J0826-05)				Matrix: Soi	I									
Batch: 0100878														
Arsenic	4.64		1.55	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Barium	219		1.55	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Cadmium	ND		0.309	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Chromium	45.1		1.55	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Lead	14.3		0.309	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Mercury	ND		0.124	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Selenium	ND		1.55	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Silver	ND		0.309	mg/kg dry	10	10/27/20 17:45	EPA 6020A							
Ditch-4 (A0J0826-06)				Matrix: Soi	I									
Batch: 0100878														
Arsenic	4.33		1.48	mg/kg dry	10	10/27/20 17:49	EPA 6020A							
Barium	242		1.48	mg/kg dry	10	10/27/20 17:49	EPA 6020A							
Cadmium	ND		0.296	mg/kg dry	10	10/27/20 17:49	EPA 6020A							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

ORELAP ID: OR100062

PBS Engineering and Environmental

Project:

Millpond Crossing-RSM

4412 SW Corbett Ave Portland, OR 97239 Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20A (ICPMS)							
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
Ditch-4 (A0J0826-06)				Matrix: Soi	I						
Chromium	115		1.48	mg/kg dry	10	10/27/20 17:49	EPA 6020A				
Lead	8.52		0.296	mg/kg dry	10	10/27/20 17:49	EPA 6020A				
Mercury	ND		0.118	mg/kg dry	10	10/27/20 17:49	EPA 6020A				
Selenium	ND		1.48	mg/kg dry	10	10/27/20 17:49	EPA 6020A				
Silver	ND		0.296	mg/kg dry	10	10/27/20 17:49	EPA 6020A				
Ditch-5 (A0J0826-07)	Matrix: Soil										
Batch: 0100878											
Arsenic	3.24		1.42	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Barium	262		1.42	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Cadmium	ND		0.284	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Chromium	124		1.42	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Lead	7.86		0.284	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Mercury	ND		0.113	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Selenium	ND		1.42	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
Silver	ND		0.284	mg/kg dry	10	10/27/20 17:56	EPA 6020A				
DU-1After Processing (A0J0826-09)				Matrix: Soi	I						
Batch: 0101027											
Arsenic	9.16		1.07	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Barium	450		1.07	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Cadmium	ND		0.214	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Chromium	90.2		1.07	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Lead	16.3		0.214	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Mercury	ND		0.0855	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Selenium	ND		1.07	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
Silver	ND		0.214	mg/kg dry	10	10/29/20 18:33	EPA 6020A				
DU-2After Processing (A0J0826-11)				Matrix: Soi	I						
Batch: 0101027											
Arsenic	4.06		1.05	mg/kg dry	10	10/29/20 18:37	EPA 6020A				
Barium	318		1.05	mg/kg dry	10	10/29/20 18:37	EPA 6020A				
Cadmium	ND		0.211	mg/kg dry	10	10/29/20 18:37	EPA 6020A				
Chromium	86.1		1.05	mg/kg dry	10	10/29/20 18:37	EPA 6020A				
Lead	9.01		0.211	mg/kg dry	10	10/29/20 18:37	EPA 6020A				
Mercury	ND		0.0843	mg/kg dry	10	10/29/20 18:37	EPA 6020A				
Selenium	1.14		1.05	mg/kg dry	10	10/29/20 18:37	EPA 6020A				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020A (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
DU-2After Processing (A0J0826-11)		Matrix: Soil										
Silver	ND		0.211	mg/kg dry	10	10/29/20 18:37	EPA 6020A					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

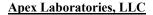
Goas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**


Report ID: A0J0826 - 11 05 20 1258

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU-3After Processing (A0J0826-02)				Matrix: So	oil	Batch:	0100953	
% Solids	96.4		1.00	%	1	10/29/20 08:26	EPA 8000D	
Ditch-1 (A0J0826-03)				Matrix: So	oil	Batch:	0100916	
% Solids	71.1		1.00	%	1	10/28/20 08:26	EPA 8000D	
Ditch-2 (A0J0826-04)				Matrix: Soil Batch: 0100916				
% Solids	79.9		1.00	%	1	10/28/20 08:26	EPA 8000D	
Ditch-3 (A0J0826-05)				Matrix: Soil Batch: 0100916				
% Solids	67.7		1.00	%	1	10/28/20 08:26	EPA 8000D	
Ditch-4 (A0J0826-06)				Matrix: Soil Batch: 0100916			0100916	
% Solids	67.0		1.00	%	1	10/28/20 08:26	EPA 8000D	
Ditch-5 (A0J0826-07)				Matrix: So	oil	Batch:		
% Solids	71.6		1.00	%	1	10/28/20 08:26	EPA 8000D	
DU-1After Processing (A0J0826-09)				Matrix: So	oil	Batch:		
% Solids	97.8		1.00	%	1	10/29/20 08:26	EPA 8000D	
DU-2After Processing (A0J0826-11)				Matrix: So	oil	Batch:	0100953	
% Solids	96.9		1.00	%	1	10/29/20 08:26	EPA 8000D	

Apex Laboratories

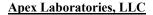
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**


Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hydro	carbor	s by NWT	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100935 - EPA 3546 (Fuels)						Soil					
Blank (0100935-BLK1)		Prepared	10/27/20 12:	40 Analyzed	: 10/27/2	0 23:46						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	mg/kg wet	1							
Mineral Oil	ND		36.4	mg/kg wet	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 93 %	Limits: 50-1.	50 %	Dilı	ution: 1x					
LCS (0100935-BS1)		Prepared	10/27/20 12:	40 Analyzed	: 10/28/2	0 00:09						
NWTPH-Dx												
Diesel	111		20.0	mg/kg wet	1	125		89	73 - 115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 96 %	Limits: 50-1.	50 %	Dilı	ution: 1x					
Batch 0101024 - EPA 3546 (I Blank (0101024-BLK1)	Fuels)	Prepared	: 10/29/20 12:	42 Analyzed	: 10/29/2	0 21:45	Soil					
NWTPH-Dx		•										
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	mg/kg wet	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 93 %	Limits: 50-1.	50 %	Dilı	ution: 1x					
LCS (0101024-BS1)		Prepared	10/29/20 12:	42 Analyzed	: 10/29/2	0 22:07						
NWTPH-Dx				-								
Diesel	118		25.0	mg/kg wet	1	125		95	73 - 115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 95 %	Limits: 50-1.	50 %	Dilı	ution: 1x					
Duplicate (0101024-DUP1)		Prepared	10/29/20 12:	42 Analyzed	: 10/29/2	0 22:51						
	r Processing (A	A0J0826-02)										
QC Source Sample: DU-3After NWTPH-Dx												
	ND		25.0	mg/kg drv	1		ND				30%	
NWTPH-Dx	ND 333		25.0 50.0	mg/kg dry mg/kg dry	1 1		ND 343			3	30% 30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

Soil			Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E			
Prepared: 10/27/20 11:37 Analyzed: 10/27/20 15:51	Analyte	Result			Units	Dilution			% REC	RPD	Notes
No. No.	Batch 0100929 - EPA 3546							Soil			
No	Blank (0100929-BLK1)		Prepared	: 10/27/20 11:3	37 Analyze	ed: 10/27/20	0 15:51				
Accemaphthylene	EPA 8270E										
Anthracene ND	Acenaphthene	ND		0.00250	mg/kg we	et 1				 	 B-02
Semze(a)anthracene ND	Acenaphthylene	ND		0.00250	mg/kg we	et 1				 	
Benzo(a)pyrene ND	Anthracene	ND		0.00250	mg/kg we	et 1				 	
Benzo(h)fluoranthene ND	Benz(a)anthracene	ND		0.00250	mg/kg we	et 1				 	
Benzo(k)fluoranthene ND	Benzo(a)pyrene	ND		0.00375	mg/kg we	et 1				 	 B-02
Senzo(g,h,i)perylene	Benzo(b)fluoranthene	ND		0.00375	mg/kg we	et 1				 	
Chrysene ND 0.00250 mg/kg wet 1	Benzo(k)fluoranthene	ND		0.00375	mg/kg we	et 1				 	
Dibenz(a,h)anthracene ND	Benzo(g,h,i)perylene	ND		0.00250	mg/kg we	et 1				 	
Fluoranthene ND	Chrysene	ND		0.00250	mg/kg we	et 1				 	
Process ND	Dibenz(a,h)anthracene	ND		0.00250	mg/kg we	et 1				 	
Anderhoriting ND 0.00250 mg/kg wet 1	Fluoranthene	ND		0.00250	mg/kg we	et 1				 	
ND	Fluorene	ND		0.00250	mg/kg we	et 1				 	
Permethylnaphthalene	Indeno(1,2,3-cd)pyrene	ND		0.00250	mg/kg we	et 1				 	
Naphthalene	1-Methylnaphthalene	ND		0.00500	mg/kg we	et 1				 	
Phenanthrene 0.00291 0.00250 mg/kg wet 1 <td>2-Methylnaphthalene</td> <td>ND</td> <td></td> <td>0.00500</td> <td>mg/kg we</td> <td>et 1</td> <td></td> <td></td> <td></td> <td> </td> <td> B-02</td>	2-Methylnaphthalene	ND		0.00500	mg/kg we	et 1				 	 B-02
ND ND ND ND ND ND ND ND	Naphthalene	0.0143		0.00500	mg/kg we	et 1				 	 В
Carbazole ND 0.00375 mg/kg wet 1	Phenanthrene	0.00291		0.00250	mg/kg we	et 1				 	 В
ND ND ND ND ND ND ND ND	Pyrene	ND		0.00250	mg/kg we	et 1				 	
2-Chlorophenol ND 0.0125 mg/kg wet 1	Carbazole	ND		0.00375	mg/kg we	et 1				 	
2-Chlorophenol ND 0.0125 mg/kg wet 1	Dibenzofuran	ND		0.00250	mg/kg we	et 1				 	
A-Chloro-3-methylphenol ND 0.0250 mg/kg wet 1	2-Chlorophenol	ND		0.0125						 	
2,4-Dichlorophenol ND 0.0125 mg/kg wet 1 2,4-Dimethylphenol ND 0.0125 mg/kg wet 1	4-Chloro-3-methylphenol	ND		0.0250						 	
2,4-Dimethylphenol ND 0.0125 mg/kg wet 1	2,4-Dichlorophenol	ND		0.0125						 	
4,6-Dinitro-2-methylphenol ND 0.0625 mg/kg wet 1	2,4-Dimethylphenol	ND		0.0125						 	
2-Methylphenol ND 0.00625 mg/kg wet 1	2,4-Dinitrophenol	ND		0.0625	mg/kg we	et 1				 	
2-Methylphenol ND 0.00625 mg/kg wet 1	4,6-Dinitro-2-methylphenol	ND		0.0625	mg/kg we	et 1				 	
8+4-Methylphenol(s) ND 0.00625 mg/kg wet 1	2-Methylphenol	ND		0.00625						 	
2-Nitrophenol ND 0.0250 mg/kg wet 1	3+4-Methylphenol(s)	ND		0.00625						 	
ND 0.0250 mg/kg wet 1 Pentachlorophenol (PCP) ND 0.0250 mg/kg wet 1 Phenol ND 0.00500 mg/kg wet 1	2-Nitrophenol	ND		0.0250						 	
Pentachlorophenol (PCP) ND 0.0250 mg/kg wet 1 Phenol ND 0.00500 mg/kg wet 1	4-Nitrophenol	ND		0.0250						 	
Phenol ND 0.00500 mg/kg wet 1	Pentachlorophenol (PCP)			0.0250						 	
	Phenol									 	
	2,3,4,6-Tetrachlorophenol	ND		0.0125						 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100929 - EPA 3546							Soil					
Blank (0100929-BLK1)		Prepared	: 10/27/20 11:3	37 Analyzo	ed: 10/27/20	15:51						
2,3,5,6-Tetrachlorophenol	ND		0.0125	mg/kg we	et 1							
2,4,5-Trichlorophenol	ND		0.0125	mg/kg we	et 1							
Nitrobenzene	ND		0.0250	mg/kg we	et 1							
2,4,6-Trichlorophenol	ND		0.0125	mg/kg we	et 1							
Bis(2-ethylhexyl)phthalate	ND		0.0375	mg/kg we	et 1							
Butyl benzyl phthalate	ND		0.0250	mg/kg we	et 1							
Diethylphthalate	ND		0.0250	mg/kg we	et 1							
Dimethylphthalate	ND		0.0250	mg/kg we	et 1							
Di-n-butylphthalate	ND		0.0250	mg/kg we	et 1							
Di-n-octyl phthalate	ND		0.0250	mg/kg we	et 1							
N-Nitrosodimethylamine	ND		0.00625	mg/kg we	et 1							
N-Nitroso-di-n-propylamine	ND		0.00625	mg/kg we	et 1							
N-Nitrosodiphenylamine	ND		0.00625	mg/kg we	et 1							
Bis(2-Chloroethoxy) methane	ND		0.00625	mg/kg we	et 1							
Bis(2-Chloroethyl) ether	ND		0.00625	mg/kg we	et 1							
2,2'-Oxybis(1-Chloropropane)	ND		0.00625	mg/kg we	et 1							
Hexachlorobenzene	ND		0.00250	mg/kg we	et 1							
Hexachlorobutadiene	ND		0.00625	mg/kg we	et 1							
Hexachlorocyclopentadiene	ND		0.0125	mg/kg we	et 1							
Hexachloroethane	ND		0.00625	mg/kg we	et 1							
2-Chloronaphthalene	ND		0.00250	mg/kg w	et 1							
1,2,4-Trichlorobenzene	ND		0.00625	mg/kg w	et 1							
4-Bromophenyl phenyl ether	ND		0.00625	mg/kg we	et 1							
4-Chlorophenyl phenyl ether	ND		0.00625	mg/kg w	et 1							
Aniline	ND		0.0125	mg/kg we	et 1							
4-Chloroaniline	ND		0.00625	mg/kg w	et 1							
2-Nitroaniline	ND		0.0500	mg/kg w	et 1							
3-Nitroaniline	ND		0.0500	mg/kg we	et 1							
1-Nitroaniline	ND		0.0500	mg/kg w								
2,4-Dinitrotoluene	ND		0.0250	mg/kg we	et 1							
2,6-Dinitrotoluene	ND		0.0250	mg/kg w	et 1							
Benzoic acid	ND		0.312	mg/kg w								
Benzyl alcohol	ND		0.0125	mg/kg w								
sophorone	ND		0.00625	mg/kg w								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zomenighini

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100929 - EPA 3546							Soil					
Blank (0100929-BLK1)		Prepared	: 10/27/20 11:3	37 Analyze	ed: 10/27/20	15:51						
Azobenzene (1,2-DPH)	ND		0.00625	mg/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND		0.0625	mg/kg we	et 1							
3,3'-Dichlorobenzidine	ND		0.0500	mg/kg we	et 1							Q-52
1,2-Dinitrobenzene	ND		0.0625	mg/kg we	et 1							
1,3-Dinitrobenzene	ND		0.0625	mg/kg we	t 1							
1,4-Dinitrobenzene	ND		0.0625	mg/kg we	t 1							
Pyridine	ND		0.0125	mg/kg we	t 1							
1,2-Dichlorobenzene	ND		0.00625	mg/kg we	t 1							
1,3-Dichlorobenzene	ND		0.00625	mg/kg we	et 1							
1,4-Dichlorobenzene	ND		0.00625	mg/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Rece	overy: 72 %	Limits: 37-	122 %	Dil	ution: 1x					
2-Fluorobiphenyl (Surr)			79 %	44-	120 %		"					
Phenol-d6 (Surr)			73 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			91 %	54-	127 %		"					
2-Fluorophenol (Surr)			70 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			79 %	39-	132 %		"					Q-41
LCS (0100929-BS1)		Prepared	: 10/27/20 11:3	37 Analyze	ed: 10/27/20) 16:26						(
EPA 8270E		1										
Acenaphthene	0.444		0.00534	mg/kg we	et 2	0.533		83	10 - 123%			B-02
Acenaphthylene	0.482		0.00534	mg/kg we		0.533		90 3	32 - 132%			
Anthracene	0.464		0.00534	mg/kg we		0.533		87 4	17 - 123%			
Benz(a)anthracene	0.472		0.00534	mg/kg we		0.533		88 4	19 - 126%			
Benzo(a)pyrene	0.488		0.00800	mg/kg we	et 2	0.533		92	15 - 129%			B-02
Benzo(b)fluoranthene	0.487		0.00800	mg/kg we		0.533		91 4	15 - 132%			
Benzo(k)fluoranthene	0.456		0.00800	mg/kg we		0.533			17 - 132%			
Benzo(g,h,i)perylene	0.505		0.00534	mg/kg we		0.533		95	13 - 134%			
Chrysene	0.468		0.00534	mg/kg we		0.533			50 - 124%			
Dibenz(a,h)anthracene	0.491		0.00534	mg/kg we		0.533			15 - 134%			
Fluoranthene	0.505		0.00534	mg/kg we		0.533			50 - 127%			
Fluorene	0.458		0.00534	mg/kg we		0.533			13 - 125%			
Indeno(1,2,3-cd)pyrene	0.458		0.00534	mg/kg we		0.533			15 - 133%			
1-Methylnaphthalene	0.469		0.0107	mg/kg we		0.533			10 - 120%			
2-Methylnaphthalene	0.479		0.0107	mg/kg we		0.533			88 - 122%			B-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100929 - EPA 3546							Soil					
LCS (0100929-BS1)		Prepared	: 10/27/20 11:3	37 Analyze	ed: 10/27/20	0 16:26						Q-18
Naphthalene	0.435		0.0107	mg/kg we	et 2	0.533		81	35 - 123%			В
Phenanthrene	0.440		0.00534	mg/kg we	et 2	0.533		83	50 - 121%			В
Pyrene	0.488		0.00534	mg/kg we	et 2	0.533		92	47 - 127%			
Carbazole	0.479		0.00800	mg/kg we	et 2	0.533		90	50 - 123%			
Dibenzofuran	0.450		0.00534	mg/kg we	et 2	0.533		84	44 - 120%			
2-Chlorophenol	0.453		0.0266	mg/kg we	et 2	0.533		85	34 - 121%			
4-Chloro-3-methylphenol	0.482		0.0534	mg/kg we	et 2	0.533		90	45 - 122%			
2,4-Dichlorophenol	0.539		0.0266	mg/kg we	et 2	0.533		101	40 - 122%			
2,4-Dimethylphenol	0.490		0.0266	mg/kg we	et 2	0.533		92	30 - 127%			
2,4-Dinitrophenol	0.676		0.133	mg/kg we	et 2	0.533		127	10 - 137%			
4,6-Dinitro-2-methylphenol	0.684		0.133	mg/kg we	et 2	0.533		128	29 - 132%			Q-41
2-Methylphenol	0.458		0.0133	mg/kg we	et 2	0.533		86	32 - 122%			
3+4-Methylphenol(s)	0.477		0.0133	mg/kg we	et 2	0.533		89	34 - 120%			
2-Nitrophenol	0.493		0.0534	mg/kg we		0.533		93	36 - 123%			
4-Nitrophenol	0.513		0.0534	mg/kg we	et 2	0.533		96	30 - 132%			
Pentachlorophenol (PCP)	0.555		0.0534	mg/kg we	et 2	0.533		104	25 - 133%			
Phenol	0.440		0.0107	mg/kg we		0.533		83	34 - 121%			
2,3,4,6-Tetrachlorophenol	0.572		0.0266	mg/kg we		0.533		107	44 - 125%			
2,3,5,6-Tetrachlorophenol	0.606		0.0266	mg/kg we		0.533		114	40 - 120%			Q-41
2,4,5-Trichlorophenol	0.550		0.0266	mg/kg we		0.533		103	41 - 124%			
Nitrobenzene	0.400		0.0534	mg/kg we		0.533		75	34 - 122%			
2,4,6-Trichlorophenol	0.511		0.0266	mg/kg we		0.533		96	39 - 126%			
Bis(2-ethylhexyl)phthalate	0.441		0.0800	mg/kg we		0.533		83	51 - 133%			
Butyl benzyl phthalate	0.450		0.0534	mg/kg we		0.533		84	48 - 132%			
Diethylphthalate	0.470		0.0534	mg/kg we		0.533		88	50 - 124%			
Dimethylphthalate	0.489		0.0534	mg/kg we		0.533		92	48 - 124%			
Di-n-butylphthalate	0.468		0.0534	mg/kg we		0.533		88	51 - 128%			
Di-n-octyl phthalate	0.444		0.0534	mg/kg we		0.533		83	45 - 140%			
N-Nitrosodimethylamine	0.278		0.0133	mg/kg we		0.533		52	23 - 120%			Q-31
N-Nitroso-di-n-propylamine	0.391		0.0133	mg/kg we		0.533		73	36 - 120%			Q-31
N-Nitrosodiphenylamine	0.454		0.0133	mg/kg we		0.533		85	38 - 127%			-
Bis(2-Chloroethoxy) methane	0.372		0.0133	mg/kg we		0.533		70	36 - 121%			
Bis(2-Chloroethyl) ether	0.361		0.0133	mg/kg we		0.533		68	31 - 120%			
2,2'-Oxybis(1-Chloropropane)	0.288		0.0133	mg/kg we		0.533		54	33 - 131%			Q-31

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave

Portland, OR 97239

Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 0100929 - EPA 3546							Soil					
LCS (0100929-BS1)		Prepared	: 10/27/20 11:	37 Analyze	ed: 10/27/20	0 16:26						Q-1
Hexachlorobenzene	0.510		0.00534	mg/kg we	et 2	0.533		96	45 - 122%			
Hexachlorobutadiene	0.514		0.0133	mg/kg we	et 2	0.533		96	32 - 123%			
Hexachlorocyclopentadiene	0.585		0.0266	mg/kg we	et 2	0.533		110	10 - 140%			Q-41
Hexachloroethane	0.395		0.0133	mg/kg we	et 2	0.533		74	28 - 120%			
2-Chloronaphthalene	0.433		0.00534	mg/kg we	et 2	0.533		81	41 - 120%			
1,2,4-Trichlorobenzene	0.468		0.0133	mg/kg we	et 2	0.533		88	34 - 120%			
4-Bromophenyl phenyl ether	0.498		0.0133	mg/kg we	et 2	0.533		93	46 - 124%			
4-Chlorophenyl phenyl ether	0.485		0.0133	mg/kg we	et 2	0.533		91	45 - 121%			
Aniline	0.335		0.0266	mg/kg we	et 2	0.533		63	10 - 120%			
4-Chloroaniline	0.383		0.0133	mg/kg we	et 2	0.533		72	17 - 120%			
2-Nitroaniline	0.477		0.107	mg/kg we	et 2	0.533		89	44 - 127%			
3-Nitroaniline	0.450		0.107	mg/kg we		0.533		84	33 - 120%			
4-Nitroaniline	0.460		0.107	mg/kg we	et 2	0.533		86	70 - 138%			
2,4-Dinitrotoluene	0.515		0.0534	mg/kg we		0.533		97	48 - 126%			
2,6-Dinitrotoluene	0.490		0.0534	mg/kg we		0.533		92	46 - 124%			
Benzoic acid	0.699		0.666	mg/kg we	et 2	1.07		65	10 - 140%			Q-31
Benzyl alcohol	0.490		0.0266	mg/kg we		0.533		92	29 - 122%			
Isophorone	0.399		0.0133	mg/kg we		0.533		75	30 - 122%			
Azobenzene (1,2-DPH)	0.341		0.0133	mg/kg we		0.533		64	39 - 125%			Q-31
Bis(2-Ethylhexyl) adipate	0.417		0.133	mg/kg we		0.533		78	61 - 121%			Q-31
3,3'-Dichlorobenzidine	1.30		0.107	mg/kg we		1.07		121	22 - 121%			
1,2-Dinitrobenzene	0.519		0.133	mg/kg we	et 2	0.533		97	44 - 120%			
1,3-Dinitrobenzene	0.527		0.133	mg/kg we		0.533		99	43 - 127%			
1,4-Dinitrobenzene	0.550		0.133	mg/kg we		0.533		103	37 - 132%			
Pyridine	0.168		0.0266	mg/kg we		0.533		32	10 - 120%			Q-31
1,2-Dichlorobenzene	0.419		0.0133	mg/kg we		0.533		79	33 - 120%			
1,3-Dichlorobenzene	0.404		0.0133	mg/kg we		0.533		76	30 - 120%			
1,4-Dichlorobenzene	0.408		0.0133	mg/kg we		0.533		76	31 - 120%			
Surr: Nitrobenzene-d5 (Surr)		Rec	overv: 76 %	Limits: 37-			ution: 2x	-				
2-Fluorobiphenyl (Surr)		1100	79 %		120 %	211	"					
Phenol-d6 (Surr)			75 %		122 %		"					
p-Terphenyl-d14 (Surr)			90 %		127 %		"					
2-Fluorophenol (Surr)			71 %		120 %		"					
2,4,6-Tribromophenol (Surr)			107 %		132 %		"					O-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Apex Laboratories, LLC

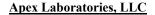
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**


Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic	Compoun	ds by EP	A 8270E				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits RPD	RPD Limit	Notes
Batch 0100929 - EPA 3546							Soil				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

Actach 0100994 - EPA 3546			Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E			
Prepared: 10/29/20 06:55 Analyzed: 10/29/20 13:09	Analyte	Result			Units	Dilution			% REC	RPD	Notes
ND	Batch 0100994 - EPA 3546							Soil			
Compatible ND	Blank (0100994-BLK1)		Prepared	: 10/29/20 06:5	55 Analyze	ed: 10/29/2	0 13:09				
Compatibly Com	EPA 8270E										
anthracene ND	Acenaphthene	ND		0.00250	mg/kg we	et 1				 	
Renza Senza Senz	Acenaphthylene	ND		0.00250	mg/kg we	et 1				 	
Renzo(a)pyrene ND	Anthracene	ND		0.00250	mg/kg we	et 1				 	
Renzo(b)fluoranthene ND	Benz(a)anthracene	ND		0.00250	mg/kg we	et 1				 	
Renzo(k)fluoranthene	Benzo(a)pyrene	ND		0.00375	mg/kg we	et 1				 	
Renzo(g,h,i)perylene ND	Benzo(b)fluoranthene	ND		0.00375	mg/kg we	et 1				 	
Chrysene ND	Benzo(k)fluoranthene	ND		0.00375	mg/kg we	et 1				 	
Dibenz(a,h)anthracene ND	Benzo(g,h,i)perylene	ND		0.00250	mg/kg we	et 1				 	
Huoranthene ND	Chrysene	ND		0.00250	mg/kg we	et 1				 	
ND	Dibenz(a,h)anthracene	ND		0.00250	mg/kg we	et 1				 	
Adeno(1,2,3-cd)pyrene	Fluoranthene	ND		0.00250	mg/kg we	et 1				 	
-Methylnaphthalene ND 0.00500 mg/kg wet 1	Fluorene	ND		0.00250	mg/kg we	et 1				 	
-Methylnaphthalene ND 0.00500 mg/kg wet 1	Indeno(1,2,3-cd)pyrene	ND		0.00250	mg/kg we	et 1				 	
Alaphthalene ND 0.00500 mg/kg wet 1	l-Methylnaphthalene	ND		0.00500	mg/kg we	et 1				 	
ND	2-Methylnaphthalene	ND		0.00500	mg/kg we	et 1				 	
ND	Naphthalene	ND		0.00500	mg/kg we	et 1				 	
ND	Phenanthrene	ND		0.00250	mg/kg we	et 1				 	
ND	Pyrene	ND		0.00250	mg/kg we	et 1				 	
-Chlorophenol ND 0.0125 mg/kg wet 1	Carbazole	ND		0.00375	mg/kg we	et 1				 	
-Chlorophenol ND 0.0125 mg/kg wet 1	Dibenzofuran	ND		0.00250						 	
-Chloro-3-methylphenol ND 0.0250 mg/kg wet 1	2-Chlorophenol	ND		0.0125						 	
,4-Dichlorophenol ND 0.0125 mg/kg wet 1	4-Chloro-3-methylphenol	ND		0.0250						 	
,4-Dimethylphenol ND 0.0125 mg/kg wet 1	2,4-Dichlorophenol	ND		0.0125						 	
,4-Dinitrophenol ND 0.0625 mg/kg wet 1 -	2,4-Dimethylphenol	ND		0.0125						 	
-Methylphenol ND 0.00625 mg/kg wet 1	2,4-Dinitrophenol	ND		0.0625						 	
-Methylphenol ND 0.00625 mg/kg wet 1	4,6-Dinitro-2-methylphenol	ND		0.0625	mg/kg we	et 1				 	
+4-Methylphenol(s) ND 0.00625 mg/kg wet 1	2-Methylphenol	ND		0.00625						 	
-Nitrophenol ND 0.0250 mg/kg wet 1	3+4-Methylphenol(s)	ND		0.00625						 	
-Nitrophenol ND 0.0250 mg/kg wet 1	2-Nitrophenol	ND		0.0250						 	
rentachlorophenol (PCP) ND 0.0250 mg/kg wet 1	4-Nitrophenol	ND		0.0250						 	
henol ND 0.00500 mg/kg wet 1	•									 	
	Phenol									 	
	2,3,4,6-Tetrachlorophenol	ND		0.0125						 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwas Zmenghini

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Satch 0100994 - EPA 3546							Soil					
Blank (0100994-BLK1)		Prepared	: 10/29/20 06:	55 Analyze	ed: 10/29/20	13:09						
,3,5,6-Tetrachlorophenol	ND		0.0125	mg/kg we	et 1							
,4,5-Trichlorophenol	ND		0.0125	mg/kg we	et 1							
Vitrobenzene	ND		0.0250	mg/kg we	et 1							
,4,6-Trichlorophenol	ND		0.0125	mg/kg we	et 1							
Bis(2-ethylhexyl)phthalate	ND		0.0375	mg/kg we	et 1							
Butyl benzyl phthalate	ND		0.0250	mg/kg we	et 1							
Diethylphthalate	ND		0.0250	mg/kg we	et 1							
Dimethylphthalate	ND		0.0250	mg/kg we	et 1							
Di-n-butylphthalate	ND		0.0250	mg/kg we	et 1							
Di-n-octyl phthalate	ND		0.0250	mg/kg we	et 1							
I-Nitrosodimethylamine	ND		0.00625	mg/kg we	et 1							
I-Nitroso-di-n-propylamine	ND		0.00625	mg/kg we	et 1							
I-Nitrosodiphenylamine	ND		0.00625	mg/kg we	et 1							
is(2-Chloroethoxy) methane	ND		0.00625	mg/kg we	et 1							
is(2-Chloroethyl) ether	ND		0.00625	mg/kg we	et 1							
,2'-Oxybis(1-Chloropropane)	ND		0.00625	mg/kg we	et 1							
Iexachlorobenzene	ND		0.00250	mg/kg we	et 1							
Iexachlorobutadiene	ND		0.00625	mg/kg we	et 1							
Iexachlorocyclopentadiene	ND		0.0125	mg/kg we	et 1							
Iexachloroethane	ND		0.00625	mg/kg we	et 1							
-Chloronaphthalene	ND		0.00250	mg/kg we								
,2,4-Trichlorobenzene	ND		0.00625	mg/kg we								
-Bromophenyl phenyl ether	ND		0.00625	mg/kg we								
-Chlorophenyl phenyl ether	ND		0.00625	mg/kg we								
Aniline	ND		0.0125	mg/kg we								
-Chloroaniline	ND		0.00625	mg/kg we								
-Nitroaniline	ND		0.0500	mg/kg we								
-Nitroaniline	ND		0.0500	mg/kg we								
-Nitroaniline	ND		0.0500	mg/kg we								
,4-Dinitrotoluene	ND		0.0250	mg/kg we								
,6-Dinitrotoluene	ND		0.0250	mg/kg we								
Benzoic acid	ND		0.312	mg/kg we								
Benzyl alcohol	ND		0.0125	mg/kg we								
sophorone	ND		0.00625	mg/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

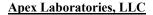
Lisa Domenighini, Client Services Manager

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**


Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

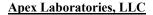
		Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Blank (0100994-BLK1)		Prepared	: 10/29/20 06:5	55 Analyze	d: 10/29/20	13:09						
Azobenzene (1,2-DPH)	ND		0.00625	mg/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND		0.0625	mg/kg we	t 1							
3,3'-Dichlorobenzidine	ND		0.0500	mg/kg we	t 1							Q-52
1,2-Dinitrobenzene	ND		0.0625	mg/kg we	t 1							
1,3-Dinitrobenzene	ND		0.0625	mg/kg we	t 1							
1,4-Dinitrobenzene	ND		0.0625	mg/kg we	t 1							
Pyridine	ND		0.0125	mg/kg we	t 1							
1,2-Dichlorobenzene	ND		0.00625	mg/kg we								
1,3-Dichlorobenzene	ND		0.00625	mg/kg we								
1,4-Dichlorobenzene	ND		0.00625	mg/kg we								
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 83 %	Limits: 37-	122 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			83 %	44-	120 %		"					
Phenol-d6 (Surr)			84 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			104 %	54-	127 %		"					
2-Fluorophenol (Surr)			77 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			96 %	39-	132 %		"					Q-41
LCS (0100994-BS1)		Prepared	: 10/29/20 06:5	55 Analyze	d: 10/29/20) 13:45						
EPA 8270E		11										
Acenaphthene	0.473		0.00534	mg/kg we	t 2	0.533		89 4	10 - 123%			
Acenaphthylene	0.511		0.00534	mg/kg we		0.533		96	32 - 132%			
Anthracene	0.482		0.00534	mg/kg we		0.533		90 4	17 - 123%			
Benz(a)anthracene	0.486		0.00534	mg/kg we		0.533		91 4	19 - 126%			
Benzo(a)pyrene	0.499		0.00800	mg/kg we	t 2	0.533		94 4	15 - 129%			
Benzo(b)fluoranthene	0.502		0.00800	mg/kg we		0.533		94 4	15 - 132%			
Benzo(k)fluoranthene	0.476		0.00800	mg/kg we		0.533		89 4	17 - 132%			
Benzo(g,h,i)perylene	0.532		0.00534	mg/kg we		0.533		100	13 - 134%			
Chrysene	0.481		0.00534	mg/kg we		0.533			50 - 124%			
Dibenz(a,h)anthracene	0.508		0.00534	mg/kg we		0.533			15 - 134%			
Fluoranthene	0.526		0.00534	mg/kg we		0.533			50 - 127%			
Fluorene	0.491		0.00534	mg/kg we		0.533			13 - 125%			
Indeno(1,2,3-cd)pyrene	0.476		0.00534	mg/kg we		0.533			15 - 133%			
1-Methylnaphthalene	0.518		0.0107	mg/kg we		0.533			10 - 120%			
	5.510		0.0107	mg/kg we		0.555			88 - 122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM


4412 SW Corbett Ave Project Number: 24159.000 Report ID: Portland, OR 97239 Project Manager: Chris Sheridan A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
LCS (0100994-BS1)		Prepared	: 10/29/20 06:5	55 Analyze	ed: 10/29/2	0 13:45						
Naphthalene	0.450		0.0107	mg/kg we	et 2	0.533		84	35 - 123%			
Phenanthrene	0.461		0.00534	mg/kg we	et 2	0.533		86	50 - 121%			
Pyrene	0.512		0.00534	mg/kg we	et 2	0.533		96	47 - 127%			
Carbazole	0.468		0.00800	mg/kg we	et 2	0.533		88	50 - 123%			
Dibenzofuran	0.477		0.00534	mg/kg we	et 2	0.533		89	44 - 120%			
2-Chlorophenol	0.485		0.0266	mg/kg we	et 2	0.533		91	34 - 121%			
4-Chloro-3-methylphenol	0.548		0.0534	mg/kg we	et 2	0.533		103	45 - 122%			
2,4-Dichlorophenol	0.593		0.0266	mg/kg we	et 2	0.533		111 4	40 - 122%			Q-41
2,4-Dimethylphenol	0.537		0.0266	mg/kg we	et 2	0.533		101	30 - 127%			
2,4-Dinitrophenol	0.738		0.133	mg/kg we	et 2	0.533		138	10 - 137%			Q-29, Q-41
4,6-Dinitro-2-methylphenol	0.716		0.133	mg/kg we	et 2	0.533		134	29 - 132%			Q-29, Q-41
2-Methylphenol	0.507		0.0133	mg/kg we	et 2	0.533		95	32 - 122%			
3+4-Methylphenol(s)	0.539		0.0133	mg/kg we	et 2	0.533		101	34 - 120%			
2-Nitrophenol	0.515		0.0534	mg/kg we	et 2	0.533		97	36 - 123%			
4-Nitrophenol	0.543		0.0534	mg/kg we	et 2	0.533		102	30 - 132%			
Pentachlorophenol (PCP)	0.583		0.0534	mg/kg we	et 2	0.533		109	25 - 133%			
Phenol	0.482		0.0107	mg/kg we	et 2	0.533		90	34 - 121%			
2,3,4,6-Tetrachlorophenol	0.606		0.0266	mg/kg we	et 2	0.533		114	44 - 125%			
2,3,5,6-Tetrachlorophenol	0.642		0.0266	mg/kg we	et 2	0.533		120	40 - 120%			Q-41
2,4,5-Trichlorophenol	0.594		0.0266	mg/kg we	et 2	0.533		111 4	41 - 124%			
Nitrobenzene	0.445		0.0534	mg/kg we		0.533		83	34 - 122%			
2,4,6-Trichlorophenol	0.556		0.0266	mg/kg we	et 2	0.533		104	39 - 126%			
Bis(2-ethylhexyl)phthalate	0.459		0.0800	mg/kg we	et 2	0.533		86	51 - 133%			
Butyl benzyl phthalate	0.469		0.0534	mg/kg we	et 2	0.533		88	48 - 132%			
Diethylphthalate	0.498		0.0534	mg/kg we		0.533		93	50 - 124%			
Dimethylphthalate	0.524		0.0534	mg/kg we	et 2	0.533		98	48 - 124%			
Di-n-butylphthalate	0.488		0.0534	mg/kg we	et 2	0.533		92	51 - 128%			
Di-n-octyl phthalate	0.450		0.0534	mg/kg we		0.533		84	45 - 140%			
N-Nitrosodimethylamine	0.298		0.0133	mg/kg we		0.533		56	23 - 120%			Q-31
N-Nitroso-di-n-propylamine	0.436		0.0133	mg/kg we		0.533		82	36 - 120%			Q-31
N-Nitrosodiphenylamine	0.473		0.0133	mg/kg we		0.533			38 - 127%			-
Bis(2-Chloroethoxy) methane	0.413		0.0133	mg/kg we		0.533			36 - 121%			
Bis(2-Chloroethyl) ether	0.389		0.0133	mg/kg we		0.533			31 - 120%			
2,2'-Oxybis(1-Chloropropane)	0.311		0.0133	mg/kg we		0.533			33 - 131%			Q-31

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompour	ds by EP	4 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
LCS (0100994-BS1)		Prepared	: 10/29/20 06:	55 Analyze	d: 10/29/2	0 13:45						
Hexachlorobenzene	0.539		0.00534	mg/kg we	t 2	0.533		101	45 - 122%			
Hexachlorobutadiene	0.535		0.0133	mg/kg we	t 2	0.533		100	32 - 123%			
Hexachlorocyclopentadiene	0.621		0.0266	mg/kg we	t 2	0.533		116	10 - 140%			Q-41
Hexachloroethane	0.423		0.0133	mg/kg we	t 2	0.533		79	28 - 120%			
2-Chloronaphthalene	0.456		0.00534	mg/kg we	t 2	0.533		85	41 - 120%			
,2,4-Trichlorobenzene	0.495		0.0133	mg/kg we	t 2	0.533		93	34 - 120%			
4-Bromophenyl phenyl ether	0.528		0.0133	mg/kg we	t 2	0.533		99	46 - 124%			
1-Chlorophenyl phenyl ether	0.523		0.0133	mg/kg we	t 2	0.533		98	45 - 121%			
Aniline	0.367		0.0266	mg/kg we	t 2	0.533		69	10 - 120%			
l-Chloroaniline	0.410		0.0133	mg/kg we		0.533		77	17 - 120%			
2-Nitroaniline	0.490		0.107	mg/kg we	t 2	0.533		92	44 - 127%			
-Nitroaniline	0.438		0.107	mg/kg we	t 2	0.533		82	33 - 120%			
-Nitroaniline	0.411		0.107	mg/kg we	t 2	0.533		77	70 - 138%			
2,4-Dinitrotoluene	0.537		0.0534	mg/kg we	t 2	0.533		101	48 - 126%			
2,6-Dinitrotoluene	0.510		0.0534	mg/kg we		0.533		96	46 - 124%			
Benzoic acid	0.793		0.666	mg/kg we	t 2	1.07		74	10 - 140%			Q-31
Benzyl alcohol	0.550		0.0266	mg/kg we		0.533		103	29 - 122%			
sophorone	0.445		0.0133	mg/kg we		0.533		83	30 - 122%			
Azobenzene (1,2-DPH)	0.356		0.0133	mg/kg we		0.533		67	39 - 125%			Q-31
Bis(2-Ethylhexyl) adipate	0.429		0.133	mg/kg we		0.533		80	61 - 121%			
3,3'-Dichlorobenzidine	1.24		0.107	mg/kg we		1.07		117	22 - 121%			
1,2-Dinitrobenzene	0.536		0.133	mg/kg we		0.533		101	44 - 120%			
.3-Dinitrobenzene	0.543		0.133	mg/kg we		0.533		102	43 - 127%			
.4-Dinitrobenzene	0.584		0.133	mg/kg we		0.533		109	37 - 132%			Q-41
Pyridine	0.195		0.0266	mg/kg we		0.533		37	10 - 120%			Q-31
,2-Dichlorobenzene	0.445		0.0133	mg/kg we		0.533		84	33 - 120%			
,3-Dichlorobenzene	0.434		0.0133	mg/kg we		0.533		81	30 - 120%			
,4-Dichlorobenzene	0.438		0.0133	mg/kg we		0.533		82	31 - 120%			
Surr: Nitrobenzene-d5 (Surr)	050		overy: 89 %	Limits: 37-			ution: 2x		21 12070			
2-Fluorobiphenyl (Surr)		Rec	93 %		120 %	Ditt	1110n. 2x					
Phenol-d6 (Surr)			93 % 88 %		120 %		,,					
p-Terphenyl-d14 (Surr)			105 %		127 %		"					
p-1erpnenyt-u14 (Surr) 2-Fluorophenol (Surr)			80 %		120 %		"					
2,4,6-Tribromophenol (Surr)			122 %		132 %		,,					Q-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Duplicate (0100994-DUP1)		Prepared	: 10/29/20 06:	55 Analyze	ed: 10/29/2	0 14:57						
OC Source Sample: DU-2After	Processing (A	.0J0826-11RE	2)									
EPA 8270E												
Acenaphthene	ND		0.0108	mg/kg dr	-		ND				30%	
Acenaphthylene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Anthracene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Benz(a)anthracene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Benzo(a)pyrene	ND		0.0162	mg/kg dr	y 4		0.00987			***	30%	Q-05
Benzo(b)fluoranthene	ND		0.0162	mg/kg dr	y 4		0.00869			***	30%	Q-05
Benzo(k)fluoranthene	ND		0.0162	mg/kg dr	y 4		ND				30%	
Benzo(g,h,i)perylene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Chrysene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Dibenz(a,h)anthracene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Fluoranthene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Fluorene	ND		0.0108	mg/kg dr	y 4		ND				30%	
Indeno(1,2,3-cd)pyrene	ND		0.0108	mg/kg dr	y 4		ND				30%	
l-Methylnaphthalene	ND		0.0215	mg/kg dr	y 4		0.0197			***	30%	
2-Methylnaphthalene	0.0253		0.0215	mg/kg dr	y 4		0.0269			6	30%	
Naphthalene	0.0257		0.0215	mg/kg dr	y 4		0.0269			5	30%	
Phenanthrene	ND		0.0108	mg/kg dr	y 4		0.00927			***	30%	
Pyrene	ND		0.0108	mg/kg dr	y 4		0.00581			***	30%	Q-05
Carbazole	ND		0.0162	mg/kg dr	y 4		ND				30%	
Dibenzofuran	ND		0.0108	mg/kg dr	y 4		ND				30%	
2-Chlorophenol	ND		0.0537	mg/kg dr	y 4		ND				30%	
4-Chloro-3-methylphenol	ND		0.108	mg/kg dr	y 4		ND				30%	
2,4-Dichlorophenol	ND		0.0537	mg/kg dr	y 4		ND				30%	
2,4-Dimethylphenol	ND		0.0537	mg/kg dr	y 4		ND				30%	
2,4-Dinitrophenol	ND		0.269	mg/kg dr	y 4		ND				30%	
4,6-Dinitro-2-methylphenol	ND		0.269	mg/kg dr	y 4		ND				30%	
2-Methylphenol	ND		0.0269	mg/kg dr	y 4		ND				30%	
3+4-Methylphenol(s)	ND		0.0269	mg/kg dr	y 4		ND				30%	
2-Nitrophenol	ND		0.108	mg/kg dr	y 4		ND				30%	
4-Nitrophenol	ND		0.108	mg/kg dr			ND				30%	
Pentachlorophenol (PCP)	ND		0.108	mg/kg dr	-		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

F

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic Co	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Duplicate (0100994-DUP1)		Prepared	: 10/29/20 06:5	55 Analyzed	d: 10/29/2	0 14:57						
QC Source Sample: DU-2After I	Processing (A0J0826-11RE	2)									
Phenol	ND		0.0215	mg/kg dry	4		ND				30%	
2,3,4,6-Tetrachlorophenol	ND		0.0537	mg/kg dry	4		ND				30%	
2,3,5,6-Tetrachlorophenol	ND		0.0537	mg/kg dry	4		ND				30%	
2,4,5-Trichlorophenol	ND		0.0537	mg/kg dry	4		ND				30%	
Vitrobenzene	ND		0.108	mg/kg dry	4		ND				30%	
2,4,6-Trichlorophenol	ND		0.0537	mg/kg dry			ND				30%	
Bis(2-ethylhexyl)phthalate	ND		0.162	mg/kg dry	4		ND				30%	
Butyl benzyl phthalate	ND		0.108	mg/kg dry	4		ND				30%	
Diethylphthalate	ND		0.108	mg/kg dry	4		ND				30%	
Dimethylphthalate	ND		0.108	mg/kg dry	4		ND				30%	
Di-n-butylphthalate	ND		0.108	mg/kg dry	4		ND				30%	
Di-n-octyl phthalate	ND		0.108	mg/kg dry	4		ND				30%	
N-Nitrosodimethylamine	ND		0.0269	mg/kg dry	4		ND				30%	
N-Nitroso-di-n-propylamine	ND		0.0269	mg/kg dry	4		ND				30%	
N-Nitrosodiphenylamine	ND		0.0269	mg/kg dry	4		ND				30%	
Bis(2-Chloroethoxy) methane	ND		0.0269	mg/kg dry	4		ND				30%	
Bis(2-Chloroethyl) ether	ND		0.0269	mg/kg dry	4		ND				30%	
2,2'-Oxybis(1-Chloropropane)	ND		0.0269	mg/kg dry	4		ND				30%	
Hexachlorobenzene	ND		0.0108	mg/kg dry	4		ND				30%	
Hexachlorobutadiene	ND		0.0269	mg/kg dry	4		ND				30%	
Hexachlorocyclopentadiene	ND		0.0537	mg/kg dry	4		ND				30%	
Hexachloroethane	ND		0.0269	mg/kg dry			ND				30%	
2-Chloronaphthalene	ND		0.0108	mg/kg dry			ND				30%	
,2,4-Trichlorobenzene	ND		0.0269	mg/kg dry	4		ND				30%	
l-Bromophenyl phenyl ether	ND		0.0269	mg/kg dry	4		ND				30%	
I-Chlorophenyl phenyl ether	ND		0.0269	mg/kg dry			ND				30%	
Aniline	ND		0.0537	mg/kg dry			ND				30%	
l-Chloroaniline	ND		0.0269	mg/kg dry			ND				30%	
2-Nitroaniline	ND		0.215	mg/kg dry			ND				30%	
3-Nitroaniline	ND		0.215	mg/kg dry			ND				30%	
I-Nitroaniline	ND		0.215	mg/kg dry			ND				30%	
2,4-Dinitrotoluene	ND		0.108	mg/kg dry			ND				30%	
.6-Dinitrotoluene	ND		0.108	mg/kg dry			ND				30%	
,o-Dimuotoluciic	ND		0.108	mg/kg dry	4		ND				30/0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

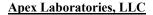
Assa & Jamenghine

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258


QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Duplicate (0100994-DUP1)		Prepared	: 10/29/20 06::	55 Analyze	ed: 10/29/2	0 14:57						
QC Source Sample: DU-2After l	Processing (A	A0J0826-11RE	<u>(2)</u>									
Benzoic acid	ND		1.35	mg/kg dr	y 4		ND				30%	
Benzyl alcohol	ND		0.0537	mg/kg dr	y 4		ND				30%	
Isophorone	ND		0.0269	mg/kg dr	y 4		ND				30%	
Azobenzene (1,2-DPH)	ND		0.0269	mg/kg dr	y 4		ND				30%	
Bis(2-Ethylhexyl) adipate	ND		0.269	mg/kg dr	y 4		ND				30%	
3,3'-Dichlorobenzidine	ND		0.215	mg/kg dr	y 4		ND				30%	Q-52
1,2-Dinitrobenzene	ND		0.269	mg/kg dr	y 4		ND				30%	
1,3-Dinitrobenzene	ND		0.269	mg/kg dr	y 4		ND				30%	
1,4-Dinitrobenzene	ND		0.269	mg/kg dr	y 4		ND				30%	
Pyridine	ND		0.0537	mg/kg dr	y 4		ND				30%	
1,2-Dichlorobenzene	ND		0.0269	mg/kg dr	y 4		ND				30%	
1,3-Dichlorobenzene	ND		0.0269	mg/kg dr	y 4		ND				30%	
1,4-Dichlorobenzene	ND		0.0269	mg/kg dr	y 4		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Rece	overy: 59 %	Limits: 37-	-122 %	Dil	ution: 4x					
2-Fluorobiphenyl (Surr)			75 %	44-	120 %		"					
Phenol-d6 (Surr)			45 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			82 %	54-	127 %		"					
2-Fluorophenol (Surr)			36 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			42 %	39-	132 %		"					Q-41
Matrix Spike (0100994-MS1)		Prepared	: 10/29/20 06::	55 Analyze	ed: 10/29/2	0 15:33						
QC Source Sample: DU-2After l	Processing (
EPA 8270E												
Acenaphthene	0.378		0.0108	mg/kg dr	y 4	0.539	ND	70	40 - 123%			
Acenaphthylene	0.402		0.0108	mg/kg dr	y 4	0.539	ND	75	32 - 132%			
Anthracene	0.386		0.0108	mg/kg dr	y 4	0.539	ND	72	47 - 123%			
Benz(a)anthracene	0.374		0.0108	mg/kg dr	y 4	0.539	ND	69	49 - 126%			
Benzo(a)pyrene	0.383		0.0162	mg/kg dr	y 4	0.539	0.00987	69	45 - 129%			
Benzo(b)fluoranthene	0.402		0.0162	mg/kg dr	y 4	0.539	0.00869	73	45 - 132%			
Benzo(k)fluoranthene	0.352		0.0162	mg/kg dr	y 4	0.539	ND	65	47 - 132%			
Benzo(g,h,i)perylene	0.354		0.0108	mg/kg dr	y 4	0.539	ND	66	43 - 134%			
Chrysene	0.375		0.0108	mg/kg dr	y 4	0.539	ND	70	50 - 124%			
Dibenz(a,h)anthracene	0.329		0.0108	mg/kg dr	y 4	0.539	ND	61	45 - 134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

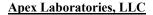
Gisa A Jamenghini

F

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM


4412 SW Corbett Ave Project Number: 24159.000 Report ID: Portland, OR 97239 Project Manager: Chris Sheridan A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic Co	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Matrix Spike (0100994-MS1)		Prepared	: 10/29/20 06::	55 Analyzeo	d: 10/29/2	0 15:33						
QC Source Sample: DU-2After	Processing (A0J0826-11RE	<u>(2)</u>									
Fluoranthene	0.424		0.0108	mg/kg dry	4	0.539	ND	79	50 - 127%			
Fluorene	0.383		0.0108	mg/kg dry	4	0.539	ND	71	43 - 125%			
Indeno(1,2,3-cd)pyrene	0.314		0.0108	mg/kg dry	4	0.539	ND	58	45 - 133%			
1-Methylnaphthalene	0.403		0.0215	mg/kg dry	4	0.539	0.0197	71	40 - 120%			
2-Methylnaphthalene	0.418		0.0215	mg/kg dry	4	0.539	0.0269	73	38 - 122%			
Naphthalene	0.376		0.0215	mg/kg dry	4	0.539	0.0269	65	35 - 123%			
Phenanthrene	0.380		0.0108	mg/kg dry	4	0.539	0.00927	69	50 - 121%			
Pyrene	0.402		0.0108	mg/kg dry	4	0.539	0.00581	74	47 - 127%			
Carbazole	0.385		0.0162	mg/kg dry	4	0.539	ND	71	50 - 123%			
Dibenzofuran	0.372		0.0108	mg/kg dry	4	0.539	ND	69	44 - 120%			
2-Chlorophenol	0.277		0.0537	mg/kg dry	4	0.539	ND	51	34 - 121%			
4-Chloro-3-methylphenol	0.316		0.108	mg/kg dry	4	0.539	ND	59	45 - 122%			
2,4-Dichlorophenol	0.306		0.0537	mg/kg dry	4	0.539	ND	57	40 - 122%			Q-41
2,4-Dimethylphenol	0.357		0.0537	mg/kg dry		0.539	ND	66	30 - 127%			
2,4-Dinitrophenol	ND		0.269	mg/kg dry		0.539	ND		10 - 137%			Q-01, Q-41
4,6-Dinitro-2-methylphenol	ND		0.269	mg/kg dry	4	0.539	ND		29 - 132%			Q-01, Q-41
2-Methylphenol	0.312		0.0269	mg/kg dry	4	0.539	ND	58	32 - 122%			
3+4-Methylphenol(s)	0.282		0.0269	mg/kg dry		0.539	ND	52	34 - 120%			
2-Nitrophenol	0.154		0.108	mg/kg dry		0.539	ND	29	36 - 123%			Q-01
4-Nitrophenol	ND		0.108	mg/kg dry	4	0.539	ND	18	30 - 132%			Q-01
Pentachlorophenol (PCP)	ND		0.108	mg/kg dry		0.539	ND	13	25 - 133%			Q-01
Phenol	0.224		0.0215	mg/kg dry		0.539	ND	42	34 - 121%			-
2,3,4,6-Tetrachlorophenol	0.123		0.0537	mg/kg dry		0.539	ND	23	44 - 125%			Q-01
2,3,5,6-Tetrachlorophenol	0.0985		0.0537	mg/kg dry		0.539	ND		40 - 120%			Q-01, Q-41
2,4,5-Trichlorophenol	0.188		0.0537	mg/kg dry		0.539	ND		41 - 124%			Q-01
Nitrobenzene	0.306		0.108	mg/kg dry		0.539	ND	57	34 - 122%			-
2,4,6-Trichlorophenol	0.214		0.0537	mg/kg dry		0.539	ND	40	39 - 126%			
Bis(2-ethylhexyl)phthalate	0.408		0.162	mg/kg dry		0.539	ND	76	51 - 133%			
Butyl benzyl phthalate	0.396		0.108	mg/kg dry		0.539	ND	74	48 - 132%			
Diethylphthalate	0.312		0.108	mg/kg dry		0.539	ND	58	50 - 124%			
Dimethylphthalate	0.311		0.108	mg/kg dry		0.539	ND	58	48 - 124%			
Di-n-butylphthalate	0.378		0.108	mg/kg dry		0.539	ND	70	51 - 128%			
Di-n-octyl phthalate	0.434		0.108	mg/kg dry		0.539	ND	81	45 - 140%			
Di ii octyi piitiiaiate	0.434		0.100	mg/kg ul y	7	0.337	TAD	01	-J - 14U/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

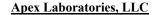
F

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258


QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Matrix Spike (0100994-MS1)		Prepared	: 10/29/20 06:	55 Analyzeo	d: 10/29/2	0 15:33						
QC Source Sample: DU-2After	Processing (A	A0J0826-11RE	<u>(2)</u>									
N-Nitrosodimethylamine	0.0941		0.0269	mg/kg dry	4	0.539	ND	17	23 - 120%			Q-01, Q-31
N-Nitroso-di-n-propylamine	0.218		0.0269	mg/kg dry	4	0.539	ND	40	36 - 120%			Q-31
N-Nitrosodiphenylamine	0.374		0.0269	mg/kg dry	4	0.539	ND	69	38 - 127%			
Bis(2-Chloroethoxy) methane	0.300		0.0269	mg/kg dry	4	0.539	ND	56	36 - 121%			
Bis(2-Chloroethyl) ether	0.281		0.0269	mg/kg dry	4	0.539	ND	52	31 - 120%			
2,2'-Oxybis(1-Chloropropane)	0.227		0.0269	mg/kg dry	4	0.539	ND	42	33 - 131%			Q-31
Hexachlorobenzene	0.429		0.0108	mg/kg dry	4	0.539	ND	80	45 - 122%			
Hexachlorobutadiene	0.435		0.0269	mg/kg dry	4	0.539	ND	81	32 - 123%			
Hexachlorocyclopentadiene	0.491		0.0537	mg/kg dry	4	0.539	ND	91	10 - 140%			Q-41
Hexachloroethane	0.360		0.0269	mg/kg dry	4	0.539	ND	67	28 - 120%			
2-Chloronaphthalene	0.362		0.0108	mg/kg dry	4	0.539	ND	67	41 - 120%			
1,2,4-Trichlorobenzene	0.399		0.0269	mg/kg dry	4	0.539	ND	74	34 - 120%			
4-Bromophenyl phenyl ether	0.428		0.0269	mg/kg dry	4	0.539	ND	79	46 - 124%			
4-Chlorophenyl phenyl ether	0.403		0.0269	mg/kg dry		0.539	ND	75	45 - 121%			
Aniline	ND		0.0537	mg/kg dry		0.539	ND		10 - 120%			Q-01
4-Chloroaniline	0.0289		0.0269	mg/kg dry	4	0.539	ND	5	17 - 120%			Q-01
2-Nitroaniline	0.339		0.215	mg/kg dry		0.539	ND	63	44 - 127%			
3-Nitroaniline	ND		0.215	mg/kg dry	4	0.539	ND	35	33 - 120%			
4-Nitroaniline	ND		0.215	mg/kg dry		0.539	ND	31	70 - 138%			Q-01
2,4-Dinitrotoluene	0.334		0.108	mg/kg dry	4	0.539	ND	62	48 - 126%			
2,6-Dinitrotoluene	0.386		0.108	mg/kg dry		0.539	ND	72	46 - 124%			
Benzoic acid	ND		1.35	mg/kg dry		1.08	ND		10 - 140%			Q-01, Q-31
Benzyl alcohol	0.280		0.0537	mg/kg dry		0.539	ND	52	29 - 122%			
Isophorone	0.224		0.0269	mg/kg dry		0.539	ND	42	30 - 122%			
Azobenzene (1,2-DPH)	0.281		0.0269	mg/kg dry		0.539	ND	52	39 - 125%			Q-31
Bis(2-Ethylhexyl) adipate	0.367		0.269	mg/kg dry		0.539	ND	68	61 - 121%			
3,3'-Dichlorobenzidine	0.223		0.215	mg/kg dry		1.08	ND	21	22 - 121%			Q-01
1,2-Dinitrobenzene	0.390		0.269	mg/kg dry		0.539	ND	72	44 - 120%			-
1,3-Dinitrobenzene	0.350		0.269	mg/kg dry		0.539	ND		43 - 127%			
1,4-Dinitrobenzene	0.376		0.269	mg/kg dry		0.539	ND		37 - 132%			Q-41
Pyridine	ND		0.0537	mg/kg dry		0.539	ND		10 - 120%			Q-01, Q-31
1,2-Dichlorobenzene	0.342		0.0269	mg/kg dry		0.539	ND		33 - 120%			. , , , , , , ,
1,3-Dichlorobenzene	0.336		0.0269	mg/kg dry		0.539	ND		30 - 120%			
.,5 Ziemorooenzene	0.550		0.0207	mg/Rg di y	,	0.557	1,12	02	23 120/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awas Zmenghini

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

		Ser	nivolatile	Organic (Compoun	ds by EP/	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100994 - EPA 3546							Soil					
Matrix Spike (0100994-MS1)		Prepared:	10/29/20 06:	55 Analyz	ed: 10/29/20	15:33						
QC Source Sample: DU-2After F	rocessing (A0J0826-11RE2	2)									
1,4-Dichlorobenzene	0.339		0.0269	mg/kg di	ry 4	0.539	ND	63 3	1 - 120%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 60 %	Limits: 37	7-122 %	Dilu	tion: 4x					
2-Fluorobiphenyl (Surr)			73 %	44	-120 %		"					
Phenol-d6 (Surr)			42 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			81 %	54	-127 %		"					
2-Fluorophenol (Surr)			35 %	35	-120 %		"					
2,4,6-Tribromophenol (Surr)			52 %	39	-132 %		"					Q-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by l	EPA 6020	A (ICPMS	5)				· ·	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100878 - EPA 3051A							Soil					
Blank (0100878-BLK1)		Prepared	: 10/26/20 11:0)3 Analyze	ed: 10/27/20	16:39						
EPA 6020A												
Arsenic	ND		0.962	mg/kg we	t 10							
Barium	ND		0.962	mg/kg we	et 10							
Cadmium	ND		0.192	mg/kg we	et 10							
Chromium	ND		0.962	mg/kg we	et 10							
Lead	ND		0.192	mg/kg we	et 10							
Mercury	ND		0.0769	mg/kg we	et 10							
Selenium	ND		0.962	mg/kg we	et 10							
Silver	ND		0.192	mg/kg we	t 10							
LCS (0100878-BS1)		Prepared	: 10/26/20 11:0	03 Analyze	ed: 10/27/20	0 16:43						
EPA 6020A												
Arsenic	51.4		1.00	mg/kg we	et 10	50.0		103	80 - 120%			
Barium	53.4		1.00	mg/kg we	et 10	50.0		107	80 - 120%			
Cadmium	50.4		0.200	mg/kg we	et 10	50.0		101	80 - 120%			
Chromium	49.4		1.00	mg/kg we	et 10	50.0		99	80 - 120%			
Lead	53.1		0.200	mg/kg we	et 10	50.0		106	80 - 120%			
Mercury	1.00		0.0800	mg/kg we	t 10	1.00		100	80 - 120%			
Selenium	24.7		1.00	mg/kg we	t 10	25.0		99	80 - 120%			
Silver	24.0		0.200	mg/kg we	t 10	25.0		96	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by l	PA 6020	A (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0101027 - EPA 3051A							Soil					
Blank (0101027-BLK1)		Prepared	: 10/29/20 12:4	44 Analyze	d: 10/29/2	0 18:12						
EPA 6020A												
Arsenic	ND		0.962	mg/kg we	t 10							
Barium	ND		0.962	mg/kg we	t 10							
Cadmium	ND		0.192	mg/kg we	t 10							
Chromium	ND		0.962	mg/kg we	t 10							
Lead	ND		0.192	mg/kg we	t 10							
Mercury	ND		0.0769	mg/kg we	t 10							
Selenium	ND		0.962	mg/kg we	t 10							
Silver	ND		0.192	mg/kg we	t 10							
LCS (0101027-BS1)		Prepared	: 10/29/20 12:4	14 Analyze	d: 10/29/2	0 18:21						
EPA 6020A		-										
Arsenic	50.6		1.00	mg/kg we	t 10	50.0		101	80 - 120%			
Barium	50.8		1.00	mg/kg we	t 10	50.0		102	80 - 120%			
Cadmium	50.3		0.200	mg/kg we	t 10	50.0		101	80 - 120%			
Chromium	49.1		1.00	mg/kg we	t 10	50.0		98	80 - 120%			
Lead	48.9		0.200	mg/kg we	t 10	50.0		98	80 - 120%			
Mercury	0.949		0.0800	mg/kg we		1.00		95	80 - 120%			
Selenium	24.2		1.00	mg/kg we		25.0		97	80 - 120%			
Silver	23.2		0.200	mg/kg we		25.0		93	80 - 120%			
Ouplicate (0101027-DUP1)		Prepared	: 10/29/20 12:4	14 Analyze	d: 10/29/2	0 18:41						
QC Source Sample: DU-2After	Processing (A0J0826-11)										
EPA 6020A												
Arsenic	4.76		1.10	mg/kg dr	, 10		4.06			16	20%	
Barium	317		1.10	mg/kg dr			318			0.4	20%	
Cadmium	ND		0.219	mg/kg dr			0.183			***	20%	
Chromium	84.6		1.10	mg/kg dr			86.1			2	20%	
ead	8.14		0.219	mg/kg dr			9.01			10	20%	
Mercury	ND		0.0877	mg/kg dr			ND				20%	
Selenium	1.12		1.10	mg/kg dr			1.14			2	20%	
Silver	ND		0.219	mg/kg dr			ND				20%	
Matrix Spike (0101027-MS1)		Prepared	: 10/29/20 12:4	14 Analyze	d: 10/29/2	J 18:53						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zomenighini

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by E	PA 6020	A (ICPMS	<u>s)</u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 0101027 - EPA 3051A							Soil					
Matrix Spike (0101027-MS1)		Prepared	: 10/29/20 12:4	44 Analyze	d: 10/29/2	0 18:53						
QC Source Sample: DU-2After F	rocessing (A0J0826-11)										
EPA 6020A												
Arsenic	56.9		1.10	mg/kg dry	/ 10	55.0	4.06	96	75 - 125%			
Barium	375		1.10	mg/kg dry	/ 10	55.0	318	103	75 - 125%			
Cadmium	56.4		0.220	mg/kg dry	/ 10	55.0	0.183	102	75 - 125%			
Chromium	143		1.10	mg/kg dry	/ 10	55.0	86.1	104	75 - 125%			
Lead	59.1		0.220	mg/kg dry	/ 10	55.0	9.01	91	75 - 125%			
Mercury	1.01		0.0880	mg/kg dry	/ 10	1.10	ND	92	75 - 125%			
Selenium	26.9		1.10	mg/kg dry	/ 10	27.5	1.14	94	75 - 125%			
Silver	25.3		0.220	mg/kg dry	/ 10	27.5	ND	92	75 - 125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100916 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (0100916-DUP4)		Prepared	: 10/27/20 09:0	03 Analy	zed: 10/28/2	0 08:26						
QC Source Sample: Ditch-1 (A0, EPA 8000D	10826-03)											
% Solids	74.4		1.00	%	1		71.1			5	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0100953 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (0100953-DUP1)		Prepared	: 10/28/20 08:3	30 Analy	zed: 10/29/2	0 08:26						
QC Source Sample: DU-3After EPA 8000D	Processing (A0J0826-02)										
% Solids	96.4		1.00	%	1		96.4			0.03	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fu	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0100935							
A0J0826-03	Soil	NWTPH-Dx	10/22/20 15:30	10/27/20 12:40	10.42g/5mL	10g/5mL	0.96
A0J0826-04	Soil	NWTPH-Dx	10/22/20 15:40	10/27/20 12:40	10.03g/5mL	10g/5mL	1.00
A0J0826-05	Soil	NWTPH-Dx	10/22/20 15:50	10/27/20 12:40	10.18g/5mL	10g/5mL	0.98
A0J0826-06	Soil	NWTPH-Dx	10/22/20 16:00	10/27/20 12:40	10.77g/5mL	10g/5mL	0.93
A0J0826-07	Soil	NWTPH-Dx	10/22/20 16:10	10/27/20 12:40	10.32g/5mL	10g/5mL	0.97
Batch: 0101024							
A0J0826-02	Soil	NWTPH-Dx	10/22/20 11:50	10/29/20 12:42	10.47g/5mL	10g/5mL	0.96
		Semivolat	ile Organic Compour	nds by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0100929							

Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0100929							
A0J0826-09	Soil	EPA 8270E	10/23/20 11:00	10/27/20 11:58	15.05g/5mL	15g/2mL	2.49
Batch: 0100994							
A0J0826-11RE2	Soil	EPA 8270E	10/23/20 13:15	10/29/20 06:55	15.2g/2mL	15g/2mL	0.99

	_	Tota	al Metals by EPA 602	0A (ICPMS)	_		
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0100878							
A0J0826-03	Soil	EPA 6020A	10/22/20 15:30	10/26/20 11:03	0.492g/50mL	0.5g/50mL	1.02
A0J0826-04	Soil	EPA 6020A	10/22/20 15:40	10/26/20 11:03	0.495g/50mL	0.5g/50mL	1.01
A0J0826-05	Soil	EPA 6020A	10/22/20 15:50	10/26/20 11:03	0.478g/50mL	0.5g/50mL	1.05
A0J0826-06	Soil	EPA 6020A	10/22/20 16:00	10/26/20 11:03	0.504g/50mL	0.5g/50mL	0.99
A0J0826-07	Soil	EPA 6020A	10/22/20 16:10	10/26/20 11:03	$0.492 \\ g/50 \\ mL$	0.5g/50mL	1.02
Batch: 0101027							
A0J0826-09	Soil	EPA 6020A	10/23/20 11:00	10/29/20 12:44	0.478g/50mL	0.5g/50mL	1.05
A0J0826-11	Soil	EPA 6020A	10/23/20 13:15	10/29/20 12:44	0.49g/50mL	0.5g/50mL	1.02

			Percent Dry We	ight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa & Jamenyhini

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

SAMPLE PREPARATION INFORMATION

			Percent Dry Wei	ight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0100916							
A0J0826-03	Soil	EPA 8000D	10/22/20 15:30	10/27/20 09:03			NA
A0J0826-04	Soil	EPA 8000D	10/22/20 15:40	10/27/20 09:03			NA
A0J0826-05	Soil	EPA 8000D	10/22/20 15:50	10/27/20 09:03			NA
A0J0826-06	Soil	EPA 8000D	10/22/20 16:00	10/27/20 09:03			NA
A0J0826-07	Soil	EPA 8000D	10/22/20 16:10	10/27/20 09:03			NA
Batch: 0100953							
A0J0826-02	Soil	EPA 8000D	10/22/20 11:50	10/28/20 08:30			NA
A0J0826-09	Soil	EPA 8000D	10/23/20 11:00	10/28/20 08:30			NA
A0J0826-11	Soil	EPA 8000D	10/23/20 13:15	10/28/20 08:30			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

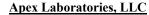
ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

QUALIFIER DEFINITIONS


Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-18	Matrix Spike results for this extraction batch are not reported due to the high dilution necessary for analysis of the source sample.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
S-03	Reextraction and analysis, or analysis of laboratory duplicate, confirms surrogate failure due to sample matrix effect.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

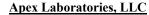
"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.


For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Assa & Zomenighini

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental Project: Millpond Crossing-RSM

 4412 SW Corbett Ave
 Project Number: 24159.000
 Report ID:

 Portland, OR 97239
 Project Manager: Chris Sheridan
 A0J0826 - 11 05 20 1258

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the exception of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Millpond Crossing-RSM

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A0J0826 - 11 05 20 1258

Company: PBS		Company: PBS Project Mer: Cha	Project Mer. Chris Sheridan	5,02	18	20	3		1	iect N	James	8	1.5	9	7	2	Provisor Name. Mill Pond Poncerna	Ź				241	04169 080		J
Address:						Phone:					Email					3				Project#:	: ::::::::::::::::::::::::::::::::::::		20 1/ 0		
Sampled by: S. ECKeS					NECESTED IN											310	AMAT VOIC DE CATEGO	1		Ž.					
Site Location:					8			-					٦,			<u> </u>		a is							
OR WA CA		***************************************			RS				s:		isi		siJ Ilu					M, 8H M, 8H	CLP						
AK ID					-				OA I	8OOA	Ha4 :	sHVe	4 stoV			(8) sla		V '9S ';	L 'S	(8) sp	5v	3			
	# OI B	V.LE	ME	XIRIX	E CON	H-HÁLA	VTPH-D	PO BLEY	60 RBD	ofsH 03	90 AOC	I WIS 04	-iməS 0	ST PCBS	1 Pest	RA Met	ority Me	b, As, Ba Cu, F Mo, Ni, K	SIG TV	LP Meta	ixai	21			
SAMPLE ID	4		IL	'W	\dashv	-+	\rightarrow	\rightarrow	78	78	78	.78	.78	808		KC		Cr, C	TOT	эт	Q	S			укср
Du-3	3	22/01	1150 Sel	`\$. ,	∀ -																	-	1
Ditch-			1530	_	~											×									1
D:+0-2			oh51			-								t^-	-	+	1					+		1	
Ditch-3			0531	<u> </u>	-		-	<u> </u>			I		†	+	+-							+			-
Ditch-4			1600	‡_	 			-	_				1	+	+-		T		1			+			
Dita-s		5	16.0	É	>	<u> </u>	<u> </u>	-	_			1		+	-	+									ı
DVI - 1	10	10h3 1100	100		+-		-	4					1	+	> >	> >	+		1		7	>			
DM-2	0	10/23 135		>		<u> </u>	-	_	L				T	+	10	8					< ×	₹×		-	
							ļ	-						+	-	+					4	ζ -			
E IV							\sqcup								+	-									
Normal 1 um Around Time (TAT) = 10 Business Days	m Around	Time ([AT)=1	10 Busi	ness D	Syl				T	SPEC	SPECIAL INSTRUCTIONS:	INST	SUCT	IONS					1 .	1		,	100	1
TAT Requested (circle)	1 Day	77	2 Day	ارف	3 Day						75	٤	3	g.	<u>}</u>	· a)	E E	<u> </u>	S	mph	3	ے ا	of may analyze "Ditch" samples for VOCS/6VOCS	> گ	
	4 DAY	vo.	5 DAY		Other:	ii.			ſ																
	SAMPLES ARE HELD FOR 30 DAYS	HELD F.	OR 30 DA	4YS		l	\square			П															
Signature:	Date: Si. (8)	S S	E 5	CEIVED BY:	1		Date:	c's	0%-20		RELINQUISHED BY: Signature:	NQUIS	SHED	BY:		ĺ		Date:		RECE	RECEIVED BY: Signature;	BY:	Date:	l 1	1
S, PT/69	Time: 1706		Printed Name: TAN NO. Soci	12 OC 1	Sic.	100	4/4	\ <u>-</u>	30.0	Q	Printed Name	Name	ài					Time:		Printe	Printed Name		Time:	ii.	
Company: PBS		0	ompany:	-2	1	9	5				Company:	iá i								Company:	uy:				1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project:

Millpond Crossing-RSM

Project Number: 24159.000

. 24137.000

Project Manager: Chris Sheridan

Report ID: A0J0826 - 11 05 20 1258

Date/time received: D2320 @ 7 0 \to By:	
Delivery Info: Date/time received: 0 23 20 @ 7 0 0 By:	Client: TBS Element WO#: A0 JOEW
Delivery Info: Date/time received: 0 23 20 @ 77 0 6	Project/Project #: Mill 0000/ Crossing / 24159 000
Cooler Inspection Date/time inspected: D-2320 @ 1706 By: T-25 Chain of Custody included? Yes No Custody seals? Yes No Signed/dated by client? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #7 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #7 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #7 Cooler on ice? (Y/N)	, , , , , , , , , , , , , , , , , , ,
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Date/time inspected: 10-73.20 @ 17.00 By: 12400 Chain of Custody included? Yes No Custody seals? Yes No Signed/dated by client? Yes No Signed/dated by client? Yes No Signed/dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C)	Date/time received: /0-23-20 @ /7:00 By:
Cooler Inspection Date/time inspected: D-2320@ 7000 By: T-2500 By:	
Chain of Custody included? Yes No Custody seals? Yes No Signed/dated by client? Yes No Signed/dated by client? Yes No Signed/dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #5 Cooler #6 Cooler #7 Temperature (°C)	
Signed/dated by client? Yes No	_
Signed/dated by Apex? Yes No_Cooler#1 Cooler#2 Cooler#3 Cooler#4 Cooler#5 Cooler#6 Cooler#7 Temperature (°C)	
Temperature (°C)	Signed/dated by Apex? Yes No
Comments Water samples: pH checked: YesNoNAY pH appropriate? YesNoNAY Comments:	Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Note type: (Gel/Real/Other) Received on ice? (Y/N) Note type: (Gel/Real/Other) Received on ice? (Y/N) Note type: (Gel/Real/Other) Received on ice? (Y/N) Note type: (Gel/Real/Other) Note of temp? (Y/N) Possible reason why: If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No/N Out of temperature samples form initiated? Yes/No/N Samples Inspection: Date/time inspected: (1/2) (1
Comments Water samples: pH checked: YesNoNAY pH appropriate? YesNoNAY Comments: Additional information:	Do VOA vials have visible headspace? Yes No NA X
Additional information:	
Additional information:	Water samples: pH checked: Yes No NA pH appropriate? Yes No NA
_abeled by: Witness: Cooler Inspected by: See Project Contact Form: Y	Additional information:
abeled by: Witness: Cooler Inspected by: See Project Contact Form: Y	
DA / 4/ /	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

an affiliate of The GEL Group INC

www.capefearanalytical.com

November 12, 2020

Ms. Lisa Domenighini Apex Laboratories 6700 SW Sandburg Street Portland, Oregon 97223

Re: 2018 DXN & PCB IDIQ

Work Order: 17316 SDG: A0J0826

Dear Ms. Domenighini:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 30, 2020. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Cyrole Larkins

Cynde Larkins Project Manager

Enclosures

SUBCONTRACT ORDER

Apex Laboratories

A0J0826

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Lisa Domenighini **RECEIVING LABORATORY:**

Cape Fear Analytical, LLC 3306 Kitty Hawk Rd Suite 120 Wilmington, NC 28405

Phone:(910) 795-0421

Fax: -

Sample Name: DU-1--After Processing

Soil

Sampled:

10/23/20 11:00

(A0J0826-09)

CFA WOH 17316

Analysis

Due

Expires

Comments

Comments

1613B Dioxins and Furans (SUB)

11/12/20 17:00

04/21/21 11:00

Containers Supplied: (B)4 oz Glass Jar

Sample Name: DU-2--After Processing

Soil

Sampled:

10/23/20 13:15

(A0J0826-11)

Analysis

Expires

Due

04/21/21 13:15

(B)4 oz Glass Jar

1613B Dioxins and Furans (SUB)

Containers Supplied:

10 day TAT

11/12/20 17:00

temp:=1.3°C

Fed Ex (Shipper)

Released By

Fed Ex (Shipper)

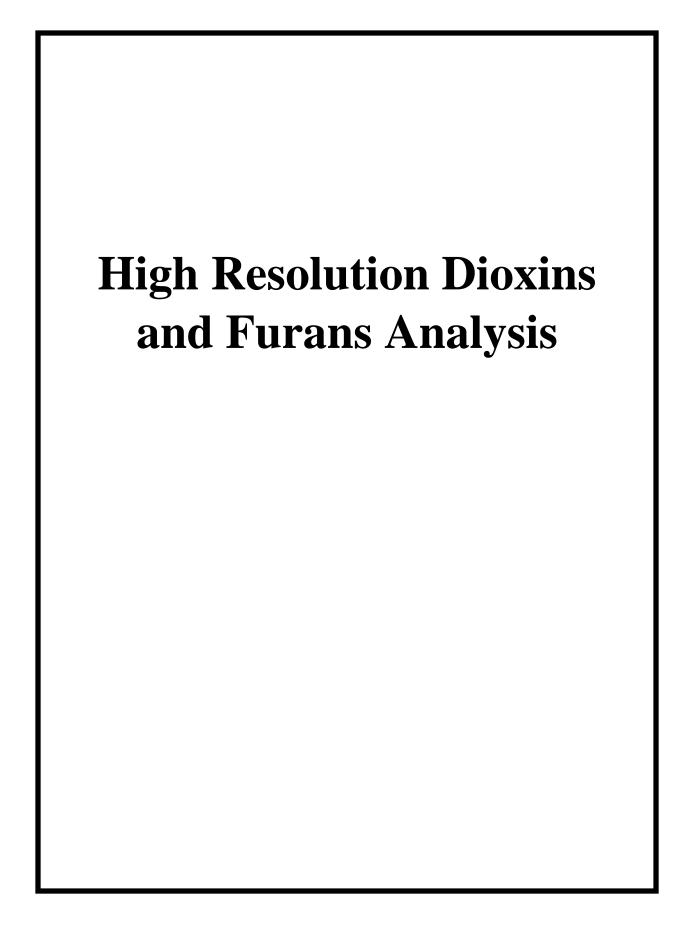
Date

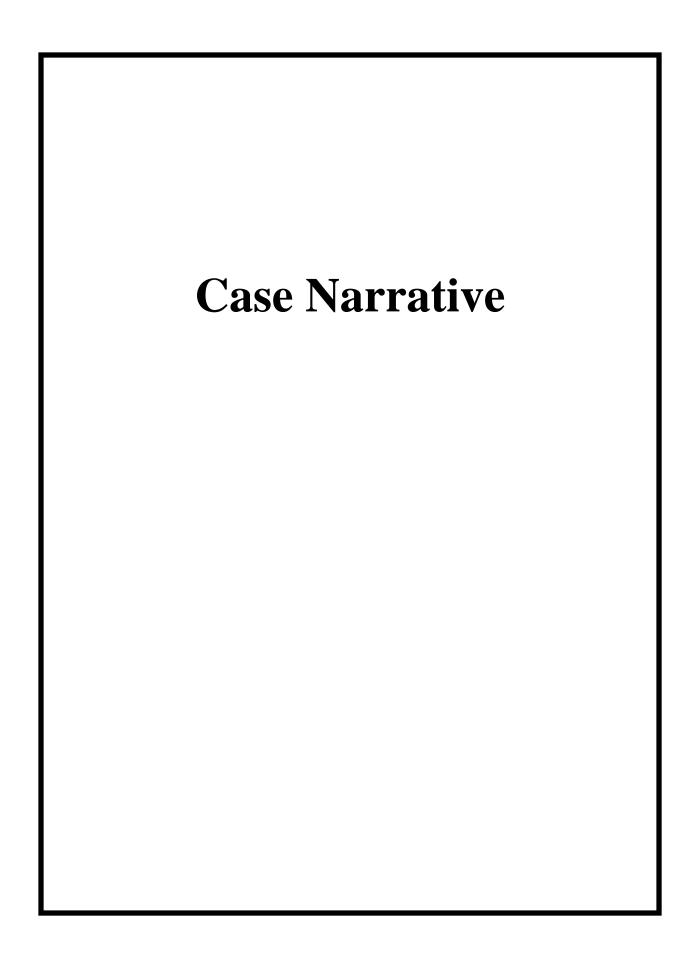
Receimed By

Received By

Date

1000


Page 1 of 1


Page 2 of 24 Work Order: 17316

46 of 68

SAMPLE RECEIPT CHECKLIST

nıı	pping Company: Y W2+				Date/Time Received: 10 30 20 11:00
_	ppected Hazard Information pped as DOT Hazardous?	Yes	NA	No	DOE Site Sample Packages Yes NA I Screened <0.5 mR/hr?
San	nples identified as Foreign Soil?			/	Samples < 2x background?
	Sample Receipt Specifics	Yes	NA	No	* Notify RSO of any responses in this column immediately.
AIL	sample in shipment?			/	Air Witness:
1	Shipping containers received intact and sealed?	Yes	ΝA	No	Comments/Qualifiers (required for Non-Conforming Items) Circle Applicable: seals broken damaged container leaking container other(describe)
2	Custody seal/s present on cooler?			1	Seal intact? Yes No
3	Chain of Custody documents included with shipment?		-		
4	Samples requiring cold preservation within 0-6°C?	/			Preservation Method: Cologs loose ice blue ice dry ice none other (describe) (14-0.(5.2)
5	Aqueous samples found to have visible solids?		/	•	Sample IDs, containers affected:
5	Samples requiring chemical preservation at proper pH?		/		Sample IDs, containers affected and pH observed: If preservative added, Lot#:
7	Samples requiring preservation have no residual chlorine?		/	•	Sample IDs, containers affected: If preservative added, Lot#:
8	Samples received within holding time?		,		Sample IDs, tests affected:
9_	Sample IDs on COC match IDs on containers?			5 (C. 10)	Sample IDs, containers affected:
LO	Date & time of COC match date & time on containers?	/			Sample IDs, containers affected:
L1	Number of containers received match number indicated on COC?	/			List type and number of containers / Sample IDs, containers affected: Necessed 2 - 404 Leav
L2	COC form is properly signed in relinquished/received sections?	/			
:on	nments:				

HDOX Case Narrative Apex Laboratories (APEX) SDG A0J0826 Work Order 17316

Method/Analysis Information

Product: Dioxins/Furans by EPA Method 1613B in Solids

Analytical Method: EPA Method 1613B

Extraction Method: SW846 3540C

Analytical Batch Number: 45199 Clean Up Batch Number: 45198 Extraction Batch Number: 45197

Sample Analysis

Samples were received at 1.3°C. (17316001,17316002). The following samples were analyzed using the analytical protocol as established in EPA Method 1613B:

Sample ID	Client ID
12027838	Method Blank (MB)
12027839	Laboratory Control Sample (LCS)
12027840	Laboratory Control Sample Duplicate (LCSD)
17316001	DU-1After Processing
17316002	DU-2After Processing

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 18.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Page 6 of 24 Work Order: 17316 50 of 68

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Receipt Temperature

Samples were received within temperature requirements.

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

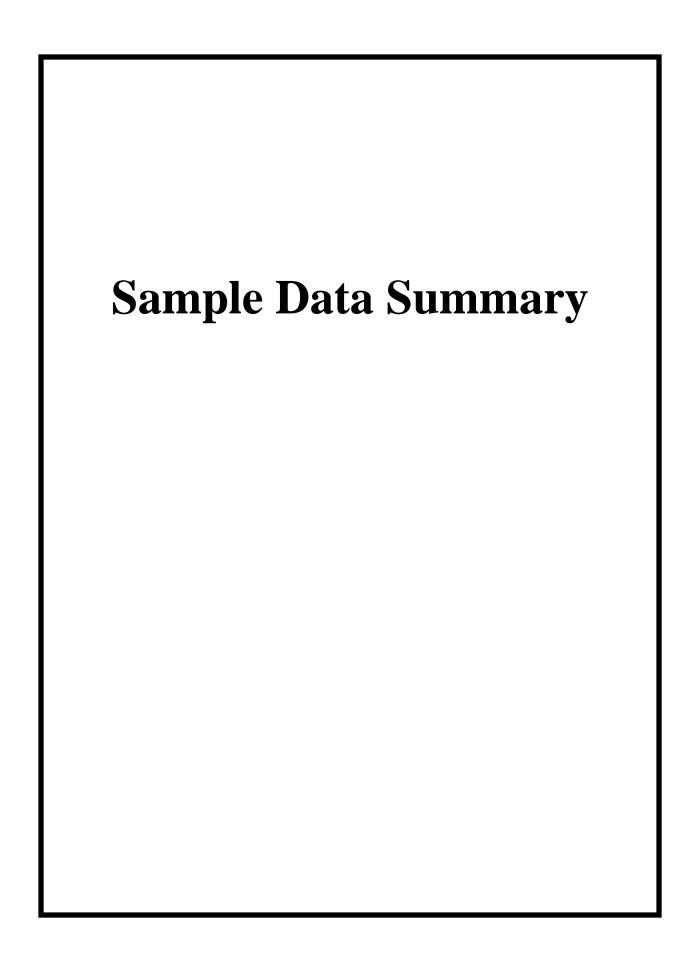
Manual Integrations

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

Sample Preparation

No difficulties were encountered during sample preparation.

System Configuration


This analysis was performed on the following instrument configuration:

Instrument ID	Instrument	System Configuration	Column ID	Column Description
HRP750_2	Primary Dioxin Analysis	Dioxin Analysis	DB-5MS	60m x 0.25mm, 0.25um

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Page 8 of 24 Work Order: 17316

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Qualifier Definition Report for

APEX001 Apex Laboratories

Client SDG: A0J0826 CFA Work Order: 17316

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- J Value is estimated
- K Estimated Maximum Possible Concentration
- U Analyte was analyzed for, but not detected above the specified detection limit.
- DL Indicates that sample is diluted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Subre Name: Erin Suhrie

Date: 12 NOV 2020 Title: Data Validator

Page 10 of 24 Work Order: 17316

A06NOV20A_2-8

Data File:

Report Date: November 12, 2020

of 2

Page 1

Dilution:

1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

APEX00217 SDG Number: A0J0826 Client: APEX001 Project: 10/23/2020 11:00 17316001 Lab Sample ID: **Date Collected:** Matrix: SOIL 3.5 1613B Soil 10/30/2020 10:00 %Moisture: Date Received: **Client Sample: Client ID: DU-1--After Processing Prep Basis: Dry Weight Batch ID:** 45199 Method: EPA Method 1613B **HRP750** Run Date: 11/07/2020 02:42 Analyst: MLL **Instrument:**

Prep Batch: 45197 Prep Method: SW846 3540C Prep Date: 02-NOV-20 Prep Aliquot: 11.04 g

Prep Date: EDL PQL CAS No. **Parmname** Qual Result Units 1746-01-6 2,3,7,8-TCDD U 0.166 0.166 0.939 pg/g JK 40321-76-4 1,2,3,7,8-PeCDD 0.582 pg/g 0.381 4.69 39227-28-6 1,2,3,4,7,8-HxCDD J 1.47 0.437 4.69 pg/g 1,2,3,6,7,8-HxCDD 57653-85-7 J 3.43 0.411 4.69 pg/g 19408-74-3 1,2,3,7,8,9-HxCDD J 2.36 pg/g 0.430 4.69 35822-46-9 1,2,3,4,6,7,8-HpCDD 97.4 1.09 4.69 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 1120 1.50 9.39 pg/g 51207-31-9 2,3,7,8-TCDF JK 0.347 0.304 0.939 pg/g 57117-41-6 1,2,3,7,8-PeCDF J 0.364 pg/g 0.208 4.69 57117-31-4 2,3,4,7,8-PeCDF J 0.490 0.199 4.69 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF 0.939 0.317 4.69 pg/g 57117-44-9 1,2,3,6,7,8-HxCDF J 0.631 pg/g 0.317 4.69 60851-34-5 2,3,4,6,7,8-HxCDF 0.809 0.332 J 4.69 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF J 0.486 0.471 4.69 pg/g 67562-39-4 1,2,3,4,6,7,8-HpCDF 14.8 pg/g 0.334 4.69 55673-89-7 1,2,3,4,7,8,9-HpCDF JK 0.766 0.578 4.69 pg/g 39001-02-0 1,2,3,4,6,7,8,9-OCDF 0.770 25.6 pg/g 9.39 41903-57-5 Total TeCDD JK 1.27 0.166 0.939 pg/g 36088-22-9 Total PeCDD JK 3.76 0.381 4.69 pg/g Total HxCDD JK 34465-46-8 23.9 0.411 4.69 pg/g 37871-00-4 Total HpCDD 176 pg/g 1.09 4.69 30402-14-3 Total TeCDF IK 0.304 0.939 1.78 pg/g 30402-15-4 Total PeCDF JK 8.23 0.0781 4.69 pg/g 55684-94-1 Total HxCDF J 21.8 0.317 4.69 pg/g 38998-75-3 Total HpCDF JK 42.2 pg/g 0.334 4.69 3333-30-2 TEQ WHO2005 ND=0 with EMPCs 3.26 pg/g 3333-30-3 TEQ WHO2005 ND=0.5 with EMPCs 3.35 pg/g

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		122	188	pg/g	65.1	(25%-164%)
13C-1,2,3,7,8-PeCDD		118	188	pg/g	62.9	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		113	188	pg/g	60.4	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		120	188	pg/g	63.7	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		122	188	pg/g	65.0	(23%-140%)
13C-OCDD		222	375	pg/g	59.2	(17%-157%)
13C-2,3,7,8-TCDF		125	188	pg/g	66.7	(24%-169%)
13C-1,2,3,7,8-PeCDF		113	188	pg/g	60.4	(24%-185%)
13C-2,3,4,7,8-PeCDF		114	188	pg/g	60.9	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		112	188	pg/g	59.9	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		113	188	pg/g	60.0	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		114	188	pg/g	60.6	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		112	188	pg/g	59.9	(29%-147%)

Page 2 of 2

Report Date: November 12, 2020

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

MLL

Result

SDG Number: A0J0826 Lab Sample ID: 17316001 Client Sample: 1613B Soil

0826 Client:
16001 Date Collected:
BB Soil Date Received:

APEX001 : 10/23/2020 11:00 : 10/30/2020 10:00

EPA Method 1613B

Project:
Matrix:
%Moisture:

Units

APEX00217 SOIL

3.5

PQL

Prep Basis: Dry Weight

Client ID: DU-1--After Processing

Batch ID: 45199

Run Date: 11/07/2020 02:42 Data File: A06NOV20A_2-8 Analyst:

Prep Method:

Qual

Method:

Instrument: HRP750 Dilution: 1

EDL

Prep Batch: 45197 Prep Date: 02-NOV-20

Parmname

Prep Method: SW846 3540C Prep Aliquot: 11.04 g

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		116	188	pg/g	61.8	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		114	188	pg/g	60.5	(26%-138%)
37Cl-2,3,7,8-TCDD		16.6	18.8	pg/g	88.2	(35%-197%)

Comments:

CAS No.

J Value is estimated

K Estimated Maximum Possible Concentration

U Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: November 12, 2020

 $\quad \text{of } 2$

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

A0J0826 APEX001 APEX00217 SDG Number: Client: **Project:** 17316002 10/23/2020 13:15 **Date Collected:** Lab Sample ID: Matrix: SOIL 1613B Soil 10/30/2020 10:00 %Moisture: 32.3 Date Received: **Client Sample: DU-2--After Processing** Dry Weight **Client ID: Prep Basis: Batch ID:** 45199 Method: EPA Method 1613B 11/07/2020 03:30 **Instrument: HRP750 Run Date: Analyst:** MLL Dilution: 1

 Data File:
 A06NOV20A_2-9

 Prep Batch:
 45197
 Prep Method:
 SW846 3540C

 Prep Date:
 02-NOV-20
 Prep Aliquot:
 15.42 g

Prep Date:	02-NOV-20	Prep Aliquot:	15.42 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	U	0.194	pg/g	0.194	0.958
40321-76-4	1,2,3,7,8-PeCDD	U	0.168	pg/g	0.168	4.79
39227-28-6	1,2,3,4,7,8-HxCDD	U	0.211	pg/g	0.211	4.79
57653-85-7	1,2,3,6,7,8-HxCDD	U	0.201	pg/g	0.201	4.79
19408-74-3	1,2,3,7,8,9-HxCDD	U	0.209	pg/g	0.209	4.79
35822-46-9	1,2,3,4,6,7,8-HpCDD	J	2.46	pg/g	0.506	4.79
3268-87-9	1,2,3,4,6,7,8,9-OCDD		22.2	pg/g	0.788	9.58
51207-31-9	2,3,7,8-TCDF	U	0.268	pg/g	0.268	0.958
57117-41-6	1,2,3,7,8-PeCDF	J	0.176	pg/g	0.169	4.79
57117-31-4	2,3,4,7,8-PeCDF	U	0.163	pg/g	0.163	4.79
70648-26-9	1,2,3,4,7,8-HxCDF	JK	0.243	pg/g	0.186	4.79
57117-44-9	1,2,3,6,7,8-HxCDF	U	0.179	pg/g	0.179	4.79
60851-34-5	2,3,4,6,7,8-HxCDF	U	0.179	pg/g	0.179	4.79
72918-21-9	1,2,3,7,8,9-HxCDF	U	0.276	pg/g	0.276	4.79
67562-39-4	1,2,3,4,6,7,8-HpCDF	BJ	0.880	pg/g	0.224	4.79
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	0.389	pg/g	0.389	4.79
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	0.544	pg/g	0.544	9.58
41903-57-5	Total TeCDD	U	0.194	pg/g	0.194	0.958
36088-22-9	Total PeCDD	JK	0.171	pg/g	0.168	4.79
34465-46-8	Total HxCDD	JK	0.711	pg/g	0.201	4.79
37871-00-4	Total HpCDD	J	4.40	pg/g	0.506	4.79
30402-14-3	Total TeCDF	U	0.268	pg/g	0.268	0.958
30402-15-4	Total PeCDF	BJK	0.909	pg/g	0.0941	4.79
55684-94-1	Total HxCDF	JK	1.49	pg/g	0.179	4.79
38998-75-3	Total HpCDF	BJ	1.89	pg/g	0.224	4.79
3333-30-2	TEQ WHO2005 ND=0 with EMPCs		0.0697	pg/g		
3333-30-3	TEQ WHO2005 ND=0.5 with EMPCs		0.353	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		108	192	pg/g	56.2	(25%-164%)
13C-1,2,3,7,8-PeCDD		134	192	pg/g	69.7	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		97.3	192	pg/g	50.8	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		108	192	pg/g	56.1	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		115	192	pg/g	60.0	(23%-140%)
13C-OCDD		184	383	pg/g	47.9	(17%-157%)
13C-2,3,7,8-TCDF		103	192	pg/g	53.9	(24%-169%)
13C-1,2,3,7,8-PeCDF		132	192	pg/g	68.7	(24%-185%)
13C-2,3,4,7,8-PeCDF		131	192	pg/g	68.2	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		98.2	192	pg/g	51.2	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		100	192	pg/g	52.2	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		104	192	pg/g	54.3	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		102	192	pg/g	53.4	(29%-147%)

Report Date: November 12, 2020

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

MLL

A0J0826 SDG Number: 17316002 Lab Sample ID: 1613B Soil **Client Sample: DU-2--After Processing**

45199

11/07/2020 03:30

A06NOV20A_2-9

Client: **Date Collected: Date Received:**

APEX001 10/23/2020 13:15 10/30/2020 10:00

EPA Method 1613B

Project: Matrix: %Moisture: **APEX00217** SOIL

Page 2

Prep Basis:

Dry Weight

Instrument: HRP750 1

SW846 3540C

Dilution:

45197 Prep Batch: **Prep Date:**

Client ID:

Batch ID:

Run Date:

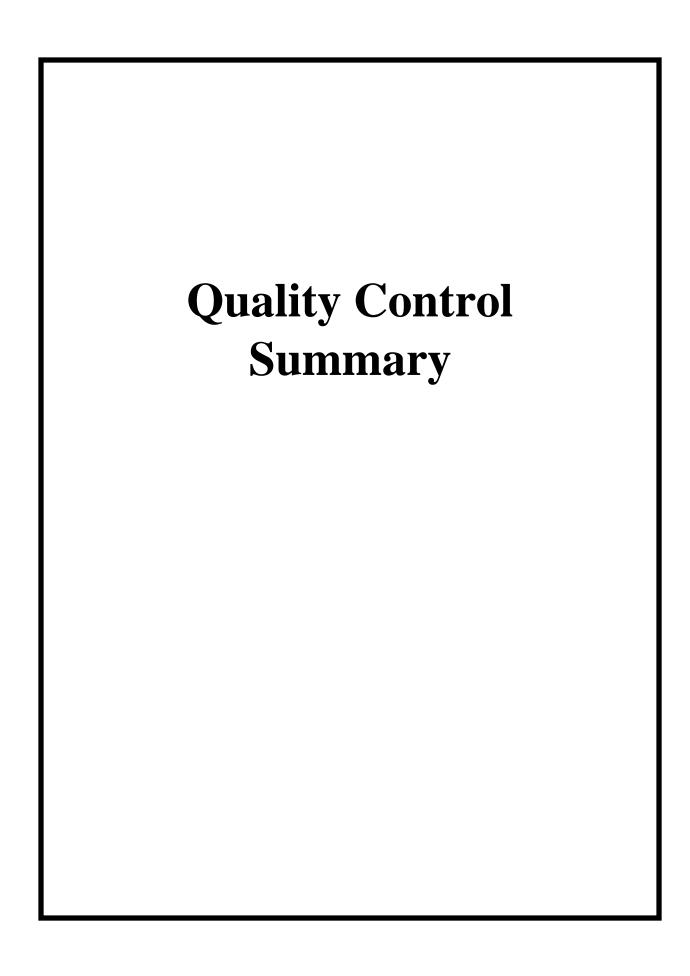
Data File:

Prep Method: 02-NOV-20

Prep Aliquot: 15.42 g

CAS No. Units **EDL PQL Parmname** Qual Result

Method:


Analyst:

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		112	192	pg/g	58.6	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		108	192	pg/g	56.4	(26%-138%)
37C1-2,3,7,8-TCDD		16.5	19.2	pg/g	86.1	(35%-197%)

Comments:

В The target analyte was detected in the associated blank.

- Value is estimated J
- K **Estimated Maximum Possible Concentration**
- Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A0J0826 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2027839	LCS for batch 45197	13C-2,3,7,8-TCDD		77.8	(20%-175%)
		13C-1,2,3,7,8-PeCDD		86.6	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		73.2	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		83.6	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		87.1	(22%-166%)
		13C-OCDD		78.5	(13%-199%)
		13C-2,3,7,8-TCDF		81.0	(22%-152%)
		13C-1,2,3,7,8-PeCDF		87.9	(21%-192%)
		13C-2,3,4,7,8-PeCDF		86.5	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		77.4	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		78.7	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		79.5	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		80.4	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		84.4	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		83.7	(20%-186%)
		*		91.0	
		37Cl-2,3,7,8-TCDD		91.0	(31%-191%)
2027840	LCSD for batch 45197	13C-2,3,7,8-TCDD		74.4	(20%-175%)
		13C-1,2,3,7,8-PeCDD		82.3	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		66.5	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		73.5	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		79.9	(22%-166%)
		13C-OCDD		72.3	(13%-199%)
		13C-2,3,7,8-TCDF		77.2	(22%-152%)
		13C-1,2,3,7,8-PeCDF		85.4	(21%-192%)
		13C-2,3,4,7,8-PeCDF		83.8	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		68.0	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		71.7	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		71.3	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		71.4	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		74.5	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		79.1	(20%-186%)
		37Cl-2,3,7,8-TCDD		93.9	(31%-191%)
027020	MD 6 1 1 1 45105	120 2 2 0 7 0 7000		50.4	(250/ 1640/)
.027838	MB for batch 45197	13C-2,3,7,8-TCDD		59.4	(25%-164%)
		13C-1,2,3,7,8-PeCDD		61.3	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		56.1	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		61.8	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		66.3	(23%-140%)
		13C-OCDD		57.4	(17%-157%)
		13C-2,3,7,8-TCDF		60.7	(24%-169%)
		13C-1,2,3,7,8-PeCDF		63.0	(24%-185%)
		13C-2,3,4,7,8-PeCDF		62.2	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		56.5	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		60.2	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		61.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		59.2	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		65.4	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		64.7	(26%-138%)
		37Cl-2,3,7,8-TCDD		86.9	(35%-197%)
7316001	DU-1After Processing	13C-2,3,7,8-TCDD		65.1	(25%-164%)

Page 2

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A0J0826 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
7316001	DU-1After Processing	13C-1,2,3,7,8-PeCDD		62.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		60.4	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		63.7	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		65.0	(23%-140%)
		13C-OCDD		59.2	(17%-157%)
		13C-2,3,7,8-TCDF		66.7	(24%-169%)
		13C-1,2,3,7,8-PeCDF		60.4	(24%-185%)
		13C-2,3,4,7,8-PeCDF		60.9	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		59.9	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		60.0	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		60.6	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		59.9	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		61.8	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		60.5	(26%-138%)
		37C1-2,3,7,8-TCDD		88.2	(35%-197%)
7316002	DU-2After Processing	13C-2,3,7,8-TCDD		56.2	(25%-164%)
		13C-1,2,3,7,8-PeCDD		69.7	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		50.8	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		56.1	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		60.0	(23%-140%)
		13C-OCDD		47.9	(17%-157%)
		13C-2,3,7,8-TCDF		53.9	(24%-169%)
		13C-1,2,3,7,8-PeCDF		68.7	(24%-185%)
		13C-2,3,4,7,8-PeCDF		68.2	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		51.2	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		52.2	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		54.3	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		53.4	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		58.6	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		56.4	(26%-138%)
		37C1-2,3,7,8-TCDD		86.1	(35%-197%)

^{*} Recovery outside Acceptance Limits # Column to be used to flag recovery values

D Sample Diluted

Page 1

Hi-Res Dioxins/Furans Quality Control Summary

Quality Control Summar Spike Recovery Report

SDG Number: A0J0826 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 45197 Matrix: SOIL

Lab Sample ID: 12027839

Instrument: HRP750 Analysis Date: 11/06/2020 09:30 Dilution: 1

Analyst: MLL Prep Batch ID:45197

Batch ID: 45199

			Amount Added	Spike Conc.	Dogovowy	Aggentang
CAS No.		Parmname	pg/g	pg/g	%	Acceptance Limits
1746-01-6	LCS	2,3,7,8-TCDD	20.0	20.9	104	67-158
40321-76-4	LCS	1,2,3,7,8-PeCDD	100	103	103	70-142
39227-28-6	LCS	1,2,3,4,7,8-HxCDD	100	105	105	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	100	101	101	76-134
19408-74-3	LCS	1,2,3,7,8,9-HxCDD	100	106	106	64-162
35822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	100	97.8	97.8	70-140
3268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	200	200	100	78-144
51207-31-9	LCS	2,3,7,8-TCDF	20.0	19.3	96.6	75-158
57117-41-6	LCS	1,2,3,7,8-PeCDF	100	102	102	80-134
7117-31-4	LCS	2,3,4,7,8-PeCDF	100	108	108	68-160
70648-26-9	LCS	1,2,3,4,7,8-HxCDF	100	99.5	99.5	72-134
57117-44-9	LCS	1,2,3,6,7,8-HxCDF	100	101	101	84-130
60851-34-5	LCS	2,3,4,6,7,8-HxCDF	100	99.1	99.1	70-156
72918-21-9	LCS	1,2,3,7,8,9-HxCDF	100	101	101	78-130
7562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	100	101	101	82-122
55673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	100	101	101	78-138
39001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	200	203	101	63-170

Page 2

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A0J0826 Sample Type: Laboratory Control Sample Duplicate

Client ID: LCSD for batch 45197 Matrix: SOIL

Lab Sample ID: 12027840

Instrument: HRP750 Analysis Date: 11/06/2020 10:18 Dilution: 1

Analyst: MLL Prep Batch ID:45197

Batch ID: 45199

CAS No.		Parmname	Amount Added pg/g	Spike Conc. pg/g	Recovery	Acceptance Limits	RPD %	Acceptance Limits
1746-01-6	LCSD	2,3,7,8-TCDD	20.0	21.3	106	67-158	1.93	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	100	107	107	70-142	3.84	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	100	102	102	70-164	2.44	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	100	103	103	76-134	2.50	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	100	107	107	64-162	0.779	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	100	97.4	97.4	70-140	0.375	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	200	202	101	78-144	0.888	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	20.0	20.0	100	75-158	3.46	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	100	101	101	80-134	0.872	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	100	108	108	68-160	0.348	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	100	102	102	72-134	2.38	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	100	99.9	99.9	84-130	1.12	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	100	100	100	70-156	0.924	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	100	104	104	78-130	3.38	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	100	102	102	82-122	1.63	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	100	97.5	97.5	78-138	3.83	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	200	196	98	63-170	3.35	0-20

Report Date: November 12, 2020

of 1

Page 1

Method Blank Summary

SDG Number: A0J0826 Client: APEX001 Matrix: SOIL

 Client ID:
 MB for batch 45197
 Instrument ID:
 HRP750
 Data File:
 A06NOV20A-4

 Lab Sample ID:
 12027838
 Prep Date:
 02-NOV-20
 Analyzed:
 11/06/20 11:07

Column:

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 45197	12027839	A06NOV20A-2	11/06/20	0930	
02 LCSD for batch 45197	12027840	A06NOV20A-3	11/06/20	1018	
03 DU-1After Processing	17316001	A06NOV20A_2-8	11/07/20	0242	
04 DU-2After Processing	17316002	A06NOV20A_2-9	11/07/20	0330	

Report Date: November 12, 2020

 $\quad \text{of } 2$

Page 1

As Received

HRP750

1

Dilution:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A0J0826 Client: APEX001 Project: APEX00217
Lab Sample ID: 12027838 Matrix: SOIL

Client Sample: QC for batch 45197

A06NOV20A-4

Data File:

Client ID: MB for batch 45197 Prep Basis:
Batch ID: 45199 Method: EPA Method 1613B
Run Date: 11/06/2020 11:07 Analyst: MLL Instrument:

Prep Batch: 45197 Prep Method: SW846 3540C

Prep Batch: Prep Date:	45197 02-NOV-20	Prep Method: Prep Aliquot:	SW846 3540C 10 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	U	0.254	pg/g	0.254	1.00
40321-76-4	1,2,3,7,8-PeCDD	U	0.186	pg/g	0.186	5.00
9227-28-6	1,2,3,4,7,8-HxCDD	U	0.246	pg/g	0.246	5.00
7653-85-7	1,2,3,6,7,8-HxCDD	U	0.224	pg/g	0.224	5.00
408-74-3	1,2,3,7,8,9-HxCDD	U	0.236	pg/g	0.236	5.00
822-46-9	1,2,3,4,6,7,8-HpCDD	U	0.348	pg/g	0.348	5.00
68-87-9	1,2,3,4,6,7,8,9-OCDD	J	0.864	pg/g	0.686	10.0
1207-31-9	2,3,7,8-TCDF	U	0.248	pg/g	0.248	1.00
7117-41-6	1,2,3,7,8-PeCDF	U	0.152	pg/g	0.152	5.00
7117-31-4	2,3,4,7,8-PeCDF	U	0.148	pg/g	0.148	5.00
648-26-9	1,2,3,4,7,8-HxCDF	U	0.184	pg/g	0.184	5.00
117-44-9	1,2,3,6,7,8-HxCDF	U	0.190	pg/g	0.190	5.00
851-34-5	2,3,4,6,7,8-HxCDF	U	0.196	pg/g	0.196	5.00
918-21-9	1,2,3,7,8,9-HxCDF	U	0.300	pg/g	0.300	5.00
562-39-4	1,2,3,4,6,7,8-HpCDF	JK	0.416	pg/g	0.196	5.00
573-89-7	1,2,3,4,7,8,9-HpCDF	U	0.310	pg/g	0.310	5.00
001-02-0	1,2,3,4,6,7,8,9-OCDF	U	0.608	pg/g	0.608	10.0
903-57-5	Total TeCDD	U	0.254	pg/g	0.254	1.00
088-22-9	Total PeCDD	U	0.186	pg/g	0.186	5.00
1465-46-8	Total HxCDD	U	0.224	pg/g	0.224	5.00
7871-00-4	Total HpCDD	U	0.348	pg/g	0.348	5.00
402-14-3	Total TeCDF	U	0.248	pg/g	0.248	1.00
402-15-4	Total PeCDF	J	0.190	pg/g	0.120	5.00
584-94-1	Total HxCDF	U	0.184	pg/g	0.184	5.00
998-75-3	Total HpCDF	JK	0.416	pg/g	0.196	5.00
33-30-2	TEQ WHO2005 ND=0 with EMPCs		0.00442	pg/g		
333-30-3	TEQ WHO2005 ND=0.5 with EMPCs		0.343	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		119	200	pg/g	59.4	(25%-164%)
13C-1,2,3,7,8-PeCDD		123	200	pg/g	61.3	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		112	200	pg/g	56.1	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		124	200	pg/g	61.8	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		133	200	pg/g	66.3	(23%-140%)
13C-OCDD		230	400	pg/g	57.4	(17%-157%)
13C-2,3,7,8-TCDF		121	200	pg/g	60.7	(24%-169%)
13C-1,2,3,7,8-PeCDF		126	200	pg/g	63.0	(24%-185%)
3C-2,3,4,7,8-PeCDF		124	200	pg/g	62.2	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		113	200	pg/g	56.5	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		120	200	pg/g	60.2	(26%-123%)
3C-2,3,4,6,7,8-HxCDF		124	200	pg/g	61.8	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		118	200	pg/g	59.2	(29%-147%)

Parmname

Report Date: November 12, 2020

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

A0J0826 SDG Number: Lab Sample ID:

12027838

Client:

APEX001

Project: Matrix: APEX00217

Page 2

SOIL

QC for batch 45197 **Client Sample: Client ID:** MB for batch 45197

Batch ID: 45199

11/06/2020 11:07 **Run Date:** Data File: A06NOV20A-4

Method: Analyst: EPA Method 1613B MLL

Prep Basis: Instrument: As Received **HRP750**

1

Dilution:

45197 Prep Batch:

Prep Date: 02-NOV-20 **Prep Method:**

Qual

10 g

SW846 3540C

Prep Aliquot:

Result

Units **EDL PQL**

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		131	200	pg/g	65.4	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		129	200	pg/g	64.7	(26%-138%)
37Cl-2,3,7,8-TCDD		17.4	20.0	pg/g	86.9	(35%-197%)

Comments:

CAS No.

Value is estimated J

Estimated Maximum Possible Concentration K

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Numbe Lab Sample Client Sampl	ID: 12027839	Clie	nt:	APEX001			Project: Matrix:	APEX00217 SOIL
Client ID: Batch ID: Run Date: Data File: Prep Batch:	LCS for batch 45197 45199 11/06/2020 09:30 A06NOV20A-2 45197	Ana	hod: lyst: o Method:	EPA Meth MLL SW846 35			Prep Basis: Instrument: Dilution:	As Received HRP750 1
Prep Date:	02-NOV-20		Aliquot:	10 g				
CAS No.	Parmname		Qual	Result		Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD			20.9		pg/g	0.234	1.00
40321-76-4	1,2,3,7,8-PeCDD			103		pg/g	0.380	5.00
39227-28-6	1,2,3,4,7,8-HxCDD			105		pg/g	0.604	5.00
57653-85-7	1,2,3,6,7,8-HxCDD			101		pg/g	0.602	5.00
19408-74-3	1,2,3,7,8,9-HxCDD			106		pg/g	0.612	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD			97.8		pg/g	0.628	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD			200		pg/g	1.56	10.0
51207-31-9	2,3,7,8-TCDF			19.3		pg/g	0.322	1.00
57117-41-6	1,2,3,7,8-PeCDF			102		pg/g	0.420	5.00
57117-31-4	2,3,4,7,8-PeCDF			108		pg/g	0.400	5.00
70648-26-9	1,2,3,4,7,8-HxCDF			99.5		pg/g	0.768	5.00
57117-44-9	1,2,3,6,7,8-HxCDF			101		pg/g	0.764	5.00
60851-34-5	2,3,4,6,7,8-HxCDF			99.1		pg/g	0.846	5.00
72918-21-9	1,2,3,7,8,9-HxCDF			101		pg/g	1.26	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF			101		pg/g	0.664	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF			101		pg/g	1.10	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF			203		pg/g	1.55	10.0
Surrogate/Ti	racer recovery	Qual	Result	Nominal	Units	Recovery%	6 Acceptab	le Limits
13C-2,3,7,8-TC	CDD		156	200	pg/g	77.8	(20%-	175%)
13C-1,2,3,7,8-F	PeCDD		173	200	pg/g	86.6	(21%-2	227%)
13C-1,2,3,4,7,8	-HxCDD		146	200	pg/g	73.2	(21%-	193%)
13C-1,2,3,6,7,8	-HxCDD		167	200	pg/g	83.6	(25%-	163%)
13C-1,2,3,4,6,7	',8-HpCDD		174	200	pg/g	87.1	(22%-	166%)
13C-OCDD			314	400	pg/g	78.5	(13%-	199%)
13C-2,3,7,8-TC	CDF		162	200	pg/g	81.0	(22%-	152%)
13C-1,2,3,7,8-F			176	200	pg/g	87.9	(21%-	
13C-2,3,4,7,8-F			173	200	pg/g	86.5	(13%-3	
7-7 7-7-					100		, - /- ·	•

155

157

159

161

169

167

18.2

200

200

200

200

200

200

20.0

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

77.4

78.7

79.5

80.4

84.4

83.7

91.0

(19%-202%)

(21%-159%)

(22%-176%)

(17%-205%)

(21%-158%)

(20%-186%)

(31%-191%)

Comments:

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37C1-2,3,7,8-TCDD

U Analyte was analyzed for, but not detected above the specified detection limit.

 $\quad \text{of} \ 1$

Page 1

Dilution:

1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

A0J0826 Client: APEX001 APEX00217 SDG Number: **Project:** 12027840 SOIL Lab Sample ID: Matrix: QC for batch 45197 **Client Sample:** Prep Basis: LCSD for batch 45197 **Client ID:** As Received **Batch ID:** 45199 Method: EPA Method 1613B HRP750 11/06/2020 10:18 **Instrument: Run Date: Analyst:** MLL

Data File: A06NOV20A-3 SW846 3540C 45197 **Prep Method:**

Prep Batch:

Prep Date:	02-NOV-20	Prep Aliquot:	10 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		21.3	pg/g	0.224	1.00
40321-76-4	1,2,3,7,8-PeCDD		107	pg/g	0.378	5.00
39227-28-6	1,2,3,4,7,8-HxCDD		102	pg/g	0.492	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		103	pg/g	0.476	5.00
19408-74-3	1,2,3,7,8,9-HxCDD		107	pg/g	0.490	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		97.4	pg/g	0.652	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		202	pg/g	1.20	10.0
51207-31-9	2,3,7,8-TCDF		20.0	pg/g	0.260	1.00
57117-41-6	1,2,3,7,8-PeCDF		101	pg/g	0.438	5.00
57117-31-4	2,3,4,7,8-PeCDF		108	pg/g	0.408	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		102	pg/g	0.774	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		99.9	pg/g	0.728	5.00
60851-34-5	2,3,4,6,7,8-HxCDF		100	pg/g	0.776	5.00
72918-21-9	1,2,3,7,8,9-HxCDF		104	pg/g	1.20	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF		102	pg/g	0.618	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF		97.5	pg/g	1.00	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF		196	pg/g	1.36	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		149	200	pg/g	74.4	(20%-175%)	
13C-1,2,3,7,8-PeCDD		165	200	pg/g	82.3	(21%-227%)	
13C-1,2,3,4,7,8-HxCDD		133	200	pg/g	66.5	(21%-193%)	
13C-1,2,3,6,7,8-HxCDD		147	200	pg/g	73.5	(25%-163%)	
13C-1,2,3,4,6,7,8-HpCDD		160	200	pg/g	79.9	(22%-166%)	
13C-OCDD		289	400	pg/g	72.3	(13%-199%)	
13C-2,3,7,8-TCDF		154	200	pg/g	77.2	(22%-152%)	
13C-1,2,3,7,8-PeCDF		171	200	pg/g	85.4	(21%-192%)	
13C-2,3,4,7,8-PeCDF		168	200	pg/g	83.8	(13%-328%)	
13C-1,2,3,4,7,8-HxCDF		136	200	pg/g	68.0	(19%-202%)	
13C-1,2,3,6,7,8-HxCDF		143	200	pg/g	71.7	(21%-159%)	
13C-2,3,4,6,7,8-HxCDF		143	200	pg/g	71.3	(22%-176%)	
13C-1,2,3,7,8,9-HxCDF		143	200	pg/g	71.4	(17%-205%)	
13C-1,2,3,4,6,7,8-HpCDF		149	200	pg/g	74.5	(21%-158%)	
13C-1,2,3,4,7,8,9-HpCDF		158	200	pg/g	79.1	(20%-186%)	
37Cl-2,3,7,8-TCDD		18.8	20.0	pg/g	93.9	(31%-191%)	

Comments:

Analyte was analyzed for, but not detected above the specified detection limit.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, April 6, 2021 Chris Sheridan PBS Engineering and Environmental 4412 SW Corbett Ave Portland, OR 97239

RE: A1C1055 - Mill Pond - 24159.000

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A1C1055, which was received by the laboratory on 3/26/2021 at 10:20:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler#1 2.3 degC Cooler#2 2.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMA	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB1-GW	A1C1055-01	Water	03/25/21 11:45	03/26/21 10:20
SB3-2	A1C1055-02	Soil	03/25/21 12:45	03/26/21 10:20
SB3-27	A1C1055-03	Soil	03/25/21 13:45	03/26/21 10:20
SB4-2	A1C1055-04	Soil	03/25/21 14:15	03/26/21 10:20
SB4-27	A1C1055-05	Soil	03/25/21 15:15	03/26/21 10:20
SB4-GW	A1C1055-06	Water	03/25/21 15:45	03/26/21 10:20
SB5-2	A1C1055-07	Soil	03/25/21 16:15	03/26/21 10:20
SB5-27	A1C1055-08	Soil	03/25/21 16:55	03/26/21 10:20
SB5-GW	A1C1055-09	Water	03/25/21 17:15	03/26/21 10:20
Trip Blank-032521	A1C1055-10	Water	03/25/21 16:00	03/26/21 10:20

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	ii Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SB1-GW (A1C1055-01)				Matrix: Wate	er	Batch:	1031156	PRES
Diesel	289		220	ug/L	1	03/31/21 00:21	NWTPH-Dx	F-13
Oil	ND		440	ug/L	1	03/31/21 00:21	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	6 1	03/31/21 00:21	NWTPH-Dx	
SB3-2 (A1C1055-02)				Matrix: Soil		Batch:	1031166	
Diesel	ND		26.6	mg/kg dry	1	03/31/21 02:14	NWTPH-Dx	
Oil	ND		53.3	mg/kg dry	1	03/31/21 02:14	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 68 %	Limits: 50-150 %	6 1	03/31/21 02:14	NWTPH-Dx	
SB3-27 (A1C1055-03)				Matrix: Soil		Batch:	1031166	
Diesel	ND		27.8	mg/kg dry	1	03/31/21 02:34	NWTPH-Dx	
Oil	ND		55.6	mg/kg dry	1	03/31/21 02:34	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 64 %	Limits: 50-150 %	6 1	03/31/21 02:34	NWTPH-Dx	
SB4-2 (A1C1055-04)				Matrix: Soil		Batch:	1031166	
Diesel	ND		26.6	mg/kg dry	1	03/31/21 02:55	NWTPH-Dx	
Oil	ND		53.1	mg/kg dry	1	03/31/21 02:55	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 70 %	Limits: 50-150 %	6 1	03/31/21 02:55	NWTPH-Dx	
SB4-27 (A1C1055-05)				Matrix: Soil		Batch:	1031166	
Diesel	ND		25.0	mg/kg dry	1	03/30/21 21:07	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	03/30/21 21:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 67 %	Limits: 50-150 %	6 1	03/30/21 21:07	NWTPH-Dx	
SB4-GW (A1C1055-06)				Matrix: Wate	er	Batch:	1031156	PRES
Diesel	ND		204	ug/L	1	03/31/21 00:43	NWTPH-Dx	
Oil	ND		408	ug/L	1	03/31/21 00:43	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	6 1	03/31/21 00:43	NWTPH-Dx	
SB5-2 (A1C1055-07)		Matrix: Soil Batch: 1031166						
Diesel	ND		27.2	mg/kg dry	1	03/30/21 21:27	NWTPH-Dx	
Oil	ND		54.4	mg/kg dry	1	03/30/21 21:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 53 %	Limits: 50-150 %	6 1	03/30/21 21:27	NWTPH-Dx	
SB5-27 (A1C1055-08)				Matrix: Soil	· · ·	Batch:	1031166	
Diesel	ND		25.4	mg/kg dry	1	03/30/21 21:48	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
SB5-27 (A1C1055-08)				Matrix: Soil		Batch:	1031166				
Oil	ND		50.8	mg/kg dry	1	03/30/21 21:48	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 70 %	Limits: 50-150 %	5 1	03/30/21 21:48	NWTPH-Dx				
SB5-GW (A1C1055-09)				Matrix: Wate	er	Batch:	1031156	PRES			
Diesel	ND		202	ug/L	1	03/31/21 01:04	NWTPH-Dx				
Oil	ND		404	ug/L	1	03/31/21 01:04	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	5 1	03/31/21 01:04	NWTPH-Dx				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

Gaso	line Range Hy	drocarbons (I	Benzene tl	rough Napht	halene) by	/ NWTPH-Gx		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SB3-2 (A1C1055-02)				Matrix: So	il	Batch	ı: 1031108	
Gasoline Range Organics	ND		7.92	mg/kg dry	50	03/29/21 18:35	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 101 %	Limits: 50-150	% 1	03/29/21 18:35	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150	% 1	03/29/21 18:35	NWTPH-Gx (MS)	
SB3-27 (A1C1055-03)				Matrix: So	il	Batch	: 1031108	
Gasoline Range Organics	ND		8.29	mg/kg dry	50	03/29/21 19:29	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 103 %	Limits: 50-150	% 1	03/29/21 19:29	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150	% 1	03/29/21 19:29	NWTPH-Gx (MS)	
SB4-2 (A1C1055-04)				Matrix: So	il	Batch	ı: 1031108	
Gasoline Range Organics	ND		8.37	mg/kg dry	50	03/29/21 19:56	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 100 %	Limits: 50-150	% 1	03/29/21 19:56	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150	% 1	03/29/21 19:56	NWTPH-Gx (MS)	
SB4-27 (A1C1055-05)				Matrix: So	il	Batch	ı: 1031108	
Gasoline Range Organics	ND		5.74	mg/kg dry	50	03/29/21 20:23	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 103 %	Limits: 50-150	% 1	03/29/21 20:23	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150	% 1	03/29/21 20:23	NWTPH-Gx (MS)	
SB4-GW (A1C1055-06)				Matrix: Wa	iter	Batch	ı: 1031184	
Gasoline Range Organics	ND		100	ug/L	1	03/31/21 09:00	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 97%	Limits: 50-150	% 1	03/31/21 09:00	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-150	% 1	03/31/21 09:00	NWTPH-Gx (MS)	
SB5-2 (A1C1055-07)				Matrix: So	il	Batch	ı: 1031108	
Gasoline Range Organics	ND		8.55	mg/kg dry	50	03/29/21 20:50	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 102 %	Limits: 50-150	% 1	03/29/21 20:50	NWTPH-Gx (MS)	
I,4-Difluorobenzene (Sur)			107 %	50-150	% 1	03/29/21 20:50	NWTPH-Gx (MS)	
SB5-27 (A1C1055-08)				Matrix: So	il	Batch	ı: 1031108	
Gasoline Range Organics	ND		5.76	mg/kg dry	50	03/29/21 21:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 101 %	Limits: 50-150	% 1	03/29/21 21:17	NWTPH-Gx (MS)	
I,4-Difluorobenzene (Sur)			105 %	50-150	% 1	03/29/21 21:17	NWTPH-Gx (MS)	
SB5-GW (A1C1055-09)				Matrix: Wa	nter	Batch	ı: 1031184	
Gasoline Range Organics	ND		100	ug/L	1	03/31/21 09:27	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

Gasol	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
SB5-GW (A1C1055-09)				Matrix: Wa	ter	Batch	: 1031184				
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 98 % 100 %	Limits: 50-150 5		03/31/21 09:27 03/31/21 09:27	NWTPH-Gx (MS) NWTPH-Gx (MS)				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank-032521 (A1C1055-10)				Matrix: W	ater	Batch:	1031184	
Acetone	ND		20.0	ug/L	1	03/31/21 00:50	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Benzene	ND		0.200	ug/L	1	03/31/21 00:50	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	03/31/21 00:50	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	03/31/21 00:50	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	03/31/21 00:50	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	03/31/21 00:50	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L ug/L	1	03/31/21 00:50	EPA 8260D	
uans-1,5-Dienioropropene	ND		1.00	ug/L	1	00.01121 00.00	L171 0200D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa't Smeinghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

			-	nds by EPA 8260		D :		
Analuta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Kesult	Lillit	Limit					notes
Trip Blank-032521 (A1C1055-10)				Matrix: Water	r	Batch:	1031184	
Ethylbenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	03/31/21 00:50	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	03/31/21 00:50	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	03/31/21 00:50	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	03/31/21 00:50	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Naphthalene	ND		4.00	ug/L	1	03/31/21 00:50	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Styrene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
Vinyl chloride	ND		0.400	ug/L	1	03/31/21 00:50	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	03/31/21 00:50	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	03/31/21 00:50	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	I	03/31/21 00:50	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	03/31/21 00:50	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	03/31/21 00:50	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

	1 Olyan	omano riyare		AHs) by EPA 82				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SB1-GW (A1C1055-01RE1)				Matrix: Wate	er	Batch	: 1040016	
Acenaphthene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Acenaphthylene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Anthracene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Benz(a)anthracene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Benzo(a)pyrene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Chrysene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Fluoranthene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Fluorene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
1-Methylnaphthalene	ND		0.0777	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
2-Methylnaphthalene	ND		0.0777	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Naphthalene	ND		0.0777	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Phenanthrene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Pyrene	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Dibenzofuran	ND		0.0388	ug/L	1	04/01/21 16:57	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 76 %	Limits: 44-120 %	<i>i</i> 1	04/01/21 16:57	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			39 %	50-134 %	1	04/01/21 16:57	EPA 8270E SIM	S-06

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project Number: 24159.000
Project Manager: Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

ANALYTICAL SAMPLE RESULTS

	Pe	ercent Dry W	eight				
Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
			Matrix: So	il	Batch:		
72.9		1.00	%	1	03/31/21 07:38	EPA 8000D	
			Matrix: So	il	Batch:	1031151	
68.5		1.00	%	1	03/31/21 07:38	EPA 8000D	
			Matrix: So	il	Batch:	1031151	
72.0		1.00	%	1	03/31/21 07:38	EPA 8000D	
			Matrix: So	il	Batch:	1031151	
83.7		1.00	%	1	03/31/21 07:38	EPA 8000D	
			Matrix: So	il	Batch:	1031151	
72.4		1.00	%	1	03/31/21 07:38	EPA 8000D	
			Matrix: So	il	Batch:	1031151	
78.2		1.00	%	1	03/31/21 07:38	EPA 8000D	
	72.9 68.5 72.0 83.7	Sample Result Detection Limit 72.9 68.5 72.0 72.4	Sample Result Detection Limit Reporting Limit 72.9 1.00 68.5 1.00 72.0 1.00 83.7 1.00 72.4 1.00	Result Limit Limit Units	Sample Detection Reporting Limit Units Dilution	Sample Detection Reporting Limit Units Dilution Analyzed	Sample Result Detection Reporting Limit Units Dilution Date Analyzed Method Ref.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbor	ns by NW1	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031156 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (1031156-BLK1)		Prepared	: 03/30/21 09:	52 Analyz	ed: 03/30/2	1 21:06						
NWTPH-Dx												
Diesel	ND		182	ug/L	1							
Oil	ND		364	ug/L	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 95 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (1031156-BS1)		Prepared	: 03/30/21 09:	52 Analyz	ed: 03/30/2	1 21:28						
NWTPH-Dx												
Diesel	1190		200	ug/L	1	1250		95	59 - 115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 99 %	Limits: 50	0-150 %	Dilı	ution: 1x					
Batch 1031166 - EPA 3546 (I	Fuels)						Soil					
Blank (1031166-BLK1)	Fuels)	Prepared	: 03/30/21 13:	10 Analyz	ed: 03/30/2	1 21:07	Soil					
Blank (1031166-BLK1) NWTPH-Dx	, 					1 21:07	Soil					
Blank (1031166-BLK1) NWTPH-Dx Diesel	ND		25.0	mg/kg w	et 1							
Blank (1031166-BLK1) NWTPH-Dx	, 				et 1 et 1		Soil					
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr)	ND	 Reco	25.0 50.0 overy: 87 %	mg/kg w mg/kg w	et 1 et 1	 Dilı						
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil	ND	 Reco	25.0 50.0	mg/kg w mg/kg w	et 1 et 1	 Dilı				 		
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1)	ND	 Reco	25.0 50.0 overy: 87 %	mg/kg w mg/kg w Limits: 50	et 1 et 1 0-150 % ed: 03/30/2	 Dilı			 73 - 115%			
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1) NWTPH-Dx	ND ND	 Reco	25.0 50.0 overy: 87 %	mg/kg w mg/kg w	et 1 et 1 0-150 % ed: 03/30/2	 Dilh 1 21:27						
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1) NWTPH-Dx Diesel	ND ND	Prepared	25.0 50.0 50.0 overy: 87 % : 03/30/21 13:	mg/kg w mg/kg w Limits: 50 10 Analyz mg/kg w Limits: 50	et 1 et 1 -150 % ed: 03/30/2 et 1 -150 %	1 21:27 125 Dila	 uution: 1x					
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1) NWTPH-Dx Diesel Surr: o-Terphenyl (Surr)	ND ND	Prepared	25.0 50.0 50.0 50.0 50.0 50.0 50.0 20.0 50.0 5	mg/kg w mg/kg w Limits: 50 10 Analyz mg/kg w Limits: 50	et 1 et 1 -150 % ed: 03/30/2 et 1 -150 %	1 21:27 125 Dila	 uution: 1x					
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1) NWTPH-Dx Diesel Surr: o-Terphenyl (Surr) Duplicate (1031166-DUP2)	ND ND	Prepared	25.0 50.0 50.0 50.0 50.0 50.0 50.0 20.0 50.0 5	mg/kg w mg/kg w Limits: 50 10 Analyz mg/kg w Limits: 50	et 1 et 1 -150 % ed: 03/30/2 et 1 -150 %	1 21:27 125 Dila	 uution: 1x					
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1) NWTPH-Dx Diesel Surr: o-Terphenyl (Surr) Duplicate (1031166-DUP2) OC Source Sample: SB5-27 (A1	ND ND	Prepared	25.0 50.0 50.0 50.0 50.0 50.0 50.0 20.0 50.0 5	mg/kg w mg/kg w Limits: 50 10 Analyz mg/kg w Limits: 50	et 1 et 1 -150 % ed: 03/30/2 et 1 -150 % ed: 03/30/2	1 21:27 125 Dila	 uution: 1x				30%	
Blank (1031166-BLK1) NWTPH-Dx Diesel Oil Surr: o-Terphenyl (Surr) LCS (1031166-BS1) NWTPH-Dx Diesel Surr: o-Terphenyl (Surr) Duplicate (1031166-DUP2) OC Source Sample: SB5-27 (AI	ND ND 123	Prepared Prepared Prepared	25.0 50.0 50.0 overy: 87 % : 03/30/21 13: 20.0 overy: 95 % : 03/30/21 13:	mg/kg w mg/kg w Limits: 50 10 Analyz mg/kg w Limits: 50	et 1 et 1 -150 % ed: 03/30/2 et 1 -150 % ed: 03/30/2	1 21:27 125 Dilu 1 22:08	 ution: Ix ution: Ix	99	73 - 115%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental
4412 SW Corbett Ave

Portland, OR 97239

Project: Mill Pond
Project Number: 24159.000
Project Manager: Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ns (Benz	ene thro	ugh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031108 - EPA 5035A							Soil					
Blank (1031108-BLK1)		Prepared	: 03/29/21 09:	00 Analyz	red: 03/29/2	1 11:52						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	ret 50							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 97 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			108 %	50)-150 %		"					
LCS (1031108-BS2)		Prepared	: 03/29/21 09:	00 Analyz	ed: 03/29/2	1 10:58						
NWTPH-Gx (MS)												
Gasoline Range Organics	23.7		5.00	mg/kg w	ret 50	25.0		95 8	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 95 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50)-150 %		"					
Duplicate (1031108-DUP2)		Prepared	: 03/25/21 12:	45 Analyz	ed: 03/29/2	1 19:02						
QC Source Sample: SB3-2 (A1C1	<u>055-02)</u>											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		7.49	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project Number: 24159.000
Project Manager: Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031184 - EPA 5030B							Wat	er				
Blank (1031184-BLK1)		Prepared	03/30/21 18:	38 Analy	zed: 03/31/2	1 00:23						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	51	0-150 %		"					
LCS (1031184-BS2)		Prepared	03/30/21 18:	38 Analy	zed: 03/30/2	1 23:56						
NWTPH-Gx (MS)												
Gasoline Range Organics	407		100	ug/L	1	500		81	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 102 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	5	0-150 %		"					
Duplicate (1031184-DUP1)		Prepared	03/30/21 18:	38 Analy	zed: 03/31/2	1 09:55						
QC Source Sample: SB4-GW (A1	C1055-06)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			101 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PBS Engineering and Environmental

4412 SW Corbett Ave

Portland, OR 97239

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Project: Mill Pond

Project Number: 24159.000
Project Manager: Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution Result % REC Limits **RPD** Limit Amount Notes Limit Batch 1031184 - EPA 5030B Water Blank (1031184-BLK1) Prepared: 03/30/21 18:38 Analyzed: 03/31/21 00:23 EPA 8260D ND Acetone 20.0 ug/L 1 ND 2.00 1 Acrylonitrile ug/L Benzene ND 0.200 ug/L 1 Bromobenzene ND 0.500 ug/L 1 Bromochloromethane ND 1.00 ug/L 1 ND Bromodichloromethane 1.00 1 ug/L Bromoform ND 1.00 ug/L 1 Bromomethane ND 5.00 1 ug/L 2-Butanone (MEK) ND 1 10.0 ug/L n-Butylbenzene ND ---1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L 1 tert-Butylbenzene ND 1.00 ug/L 1 ND 10.0 Carbon disulfide ug/L 1 Carbon tetrachloride ND 1.00 1 ug/L Chlorobenzene ND 0.500 1 ug/L Chloroethane ND 5.00 ug/L 1 ------Chloroform ND 1.00 ug/L 1 ND 5.00 1 Chloromethane ug/L 2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 1 ug/L Dibromochloromethane ND 1.00 ug/L 1 ND 1,2-Dibromo-3-chloropropane 5.00 ug/L 1 ---1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 Dibromomethane ND 1.00 ug/L 1 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.500 1 ug/L ------------1,4-Dichlorobenzene ND 0.500 ug/L 1 ND 1.00 Dichlorodifluoromethane ug/L 1 ---1,1-Dichloroethane ND 0.400 ug/L 1 ___ 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 1 ug/L ------0.400trans-1,2-Dichloroethene ND ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 1031184 - EPA 5030B							Wat	er						
Blank (1031184-BLK1)		Prepared	: 03/30/21 18:3	38 Analyz	red: 03/31/2	1 00:23								
1,2-Dichloropropane	ND		0.500	ug/L	1									
1,3-Dichloropropane	ND		1.00	ug/L	1									
2,2-Dichloropropane	ND		1.00	ug/L	1									
1,1-Dichloropropene	ND		1.00	ug/L	1									
cis-1,3-Dichloropropene	ND		1.00	ug/L	1									
trans-1,3-Dichloropropene	ND		1.00	ug/L	1									
Ethylbenzene	ND		0.500	ug/L	1									
Hexachlorobutadiene	ND		5.00	ug/L	1									
2-Hexanone	ND		10.0	ug/L	1									
Isopropylbenzene	ND		1.00	ug/L	1									
4-Isopropyltoluene	ND		1.00	ug/L	1									
Methylene chloride	ND		10.0	ug/L	1									
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1									
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1									
Naphthalene	ND		4.00	ug/L	1									
n-Propylbenzene	ND		0.500	ug/L	1									
Styrene	ND		1.00	ug/L	1									
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1									
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1									
Tetrachloroethene (PCE)	ND		0.400	ug/L	1									
Toluene	ND		1.00	ug/L	1									
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1									
1,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1									
1,1,1-Trichloroethane	ND		0.400	ug/L ug/L	1									
1,1,2-Trichloroethane	ND		0.500	ug/L ug/L	1									
Trichloroethene (TCE)	ND		0.400	ug/L ug/L	1									
Trichlorofluoromethane	ND		2.00	ug/L	1									
1,2,3-Trichloropropane	ND		1.00	ug/L ug/L	1									
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1									
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1									
Vinyl chloride	ND		0.400	ug/L ug/L	1									
m,p-Xylene	ND		1.00	ug/L	1									
o-Xylene	ND		0.500	ug/L	1									
Surr: 1,4-Difluorobenzene (Surr)	ND		very: 101 %	Limits: 80			ution: 1x							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa't Jomenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000

Portland, OR 97239 Project Manager: Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 1031184 - EPA 5030B							Wat	er				
Blank (1031184-BLK1)		Prepared	: 03/30/21 18:	38 Analyz	zed: 03/31/2	1 00:23						
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			104 %	80	0-120 %		"					
LCS (1031184-BS1)		Prepared	: 03/30/21 18::	38 Analyz	zed: 03/30/2	1 23:28						
EPA 8260D												
Acetone	32.8		20.0	ug/L	1	40.0		82	80 - 120%			
Acrylonitrile	17.4		2.00	ug/L	1	20.0		87	80 - 120%			
Benzene	18.1		0.200	ug/L	1	20.0		91	80 - 120%			
Bromobenzene	19.6		0.500	ug/L	1	20.0		98	80 - 120%			
Bromochloromethane	22.2		1.00	ug/L	1	20.0		111	80 - 120%			
Bromodichloromethane	21.9		1.00	ug/L	1	20.0		110	80 - 120%			
Bromoform	28.1		1.00	ug/L	1	20.0		140	80 - 120%			Q-56
Bromomethane	23.8		5.00	ug/L	1	20.0		119	80 - 120%			
2-Butanone (MEK)	33.0		10.0	ug/L	1	40.0		82	80 - 120%			
n-Butylbenzene	18.5		1.00	ug/L	1	20.0		92	80 - 120%			
sec-Butylbenzene	19.0		1.00	ug/L	1	20.0		95	80 - 120%			
ert-Butylbenzene	17.6		1.00	ug/L	1	20.0		88	80 - 120%			
Carbon disulfide	17.6		10.0	ug/L	1	20.0		88	80 - 120%			
Carbon tetrachloride	24.1		1.00	ug/L	1	20.0		120	80 - 120%			
Chlorobenzene	19.7		0.500	ug/L	1	20.0		99	80 - 120%			
Chloroethane	20.6		5.00	ug/L	1	20.0		103	80 - 120%			
Chloroform	20.2		1.00	ug/L	1	20.0		101	80 - 120%			
Chloromethane	17.2		5.00	ug/L	1	20.0		86	80 - 120%			
2-Chlorotoluene	18.9		1.00	ug/L	1	20.0		95	80 - 120%			
4-Chlorotoluene	18.2		1.00	ug/L	1	20.0		91	80 - 120%			
Dibromochloromethane	23.3		1.00	ug/L	1	20.0		117	80 - 120%			
1,2-Dibromo-3-chloropropane	18.2		5.00	ug/L	1	20.0		91	80 - 120%			
1,2-Dibromoethane (EDB)	19.5		0.500	ug/L	1	20.0		97	80 - 120%			
Dibromomethane	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
1,2-Dichlorobenzene	19.2		0.500	ug/L	1	20.0		96	80 - 120%			
1,3-Dichlorobenzene	19.9		0.500	ug/L	1	20.0		100	80 - 120%			
1,4-Dichlorobenzene	19.2		0.500	ug/L	1	20.0		96	80 - 120%			
Dichlorodifluoromethane	25.0		1.00	ug/L	1	20.0		125	80 - 120%			Q-56
1,1-Dichloroethane	17.6		0.400	ug/L	1	20.0		88	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

Portland, OR 97239

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Chris Sheridan

Volatile Organic Compounds by EPA 8260D Spike RPD Detection Reporting Source % REC Result Units Dilution Result % REC **RPD** Analyte Limits Limit Notes Limit Batch 1031184 - EPA 5030B Water LCS (1031184-BS1) Prepared: 03/30/21 18:38 Analyzed: 03/30/21 23:28 1,2-Dichloroethane (EDC) 20.2 0.400 ug/L 20.0 101 80 - 120% 1 0.400 20.0 1.1-Dichloroethene 18 1 1 90 80 - 120% --ug/L ---___ cis-1,2-Dichloroethene 18.6 0.400 ug/L 1 20.0 93 80 - 120% trans-1,2-Dichloroethene 18.3 0.400 ug/L 1 20.0 92 80 - 120% ---1,2-Dichloropropane 17.3 0.500 ug/L 1 20.0 87 80 - 120% 1 20.0 94 80 - 120% 1,3-Dichloropropane 187 1.00 ug/L ---2,2-Dichloropropane 17.1 1.00 ug/L 1 20.0 86 80 - 120% 19.2 ug/L 20.0 96 80 - 120% 1,1-Dichloropropene 1.00 1 -----cis-1,3-Dichloropropene 18.4 1.00 ug/L 1 20.0 92 80 - 120% trans-1,3-Dichloropropene 18.6 1.00 ug/L 1 20.0 93 80 - 120% Ethylbenzene 19.4 0.500 ug/L 1 20.0 97 80 - 120% 19.4 5.00 20.0 97 80 - 120% Hexachlorobutadiene ug/L 1 2-Hexanone 32.5 10.0 ug/L 1 40.0 81 80 - 120% 20.9 1.00 1 20.0 104 80 - 120% Isopropylbenzene ug/L ------4-Isopropyltoluene 19.4 1.00 ug/L 1 20.0 97 80 - 120% Methylene chloride 19.8 10.0 ug/L 1 20.0 99 80 - 120% 4-Methyl-2-pentanone (MiBK) 32.9 10.0 ug/L 1 40.0 82 80 - 120% ---Methyl tert-butyl ether (MTBE) 16.5 1.00 1 20.0 82 80 - 120% ug/L ------------Naphthalene 16.6 4.00 ug/L 1 20.0 83 80 - 120% n-Propylbenzene 18.3 0.500 ug/L 1 20.0 91 80 - 120% 20.0 80 - 120% Styrene 21.1 1.00 ug/L 1 105 1.1.1.2-Tetrachloroethane 23.0 0.400 ug/L 1 20.0 115 80 - 120% 1,1,2,2-Tetrachloroethane 17.8 0.500 ug/L 1 20.0 89 80 - 120% Tetrachloroethene (PCE) 21.2 0.400 ug/L 1 20.0 106 80 - 120% ---Toluene 20.0 91 80 - 120% 18.2 1.00 ug/L 1 1,2,3-Trichlorobenzene 21.9 2.00 ug/L 1 20.0 110 80 - 120% 2.00 20.0 80 - 120% 1,2,4-Trichlorobenzene 21.7 ug/L 1 108 1,1,1-Trichloroethane 20.5 0.400 ug/L 1 20.0 103 80 - 120% 1,1,2-Trichloroethane 20.5 ---0.500 ug/L 1 20.0 102 80 - 120% Trichloroethene (TCE) 20.7 0.400 ug/L 1 20.0 104 80 - 120% Trichlorofluoromethane 20.0 23.6 2.00 1 118 80 - 120% ug/L 1,2,3-Trichloropropane 19.0 1.00 ug/L 1 20.0 95 80 - 120% 20.0 99 1,2,4-Trimethylbenzene 19.9 1.00 1 80 - 120% --ug/L ------1.00 1,3,5-Trimethylbenzene 20.9 ug/L 1 20.0 105 80 - 120% ---

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031184 - EPA 5030B							Wat	er				
LCS (1031184-BS1)		Prepared	: 03/30/21 18:	38 Analyz	ed: 03/30/2	1 23:28						
Vinyl chloride	19.6		0.400	ug/L	1	20.0		98	80 - 120%			
n,p-Xylene	40.2		1.00	ug/L	1	40.0		101	80 - 120%			
o-Xylene	19.0		0.500	ug/L	1	20.0		95	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 96 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			94 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
Duplicate (1031184-DUP1)		Prepared	: 03/30/21 18:	38 Analyz	red: 03/31/2	1 09:55						
QC Source Sample: SB4-GW (A1	C1055-06)											
EPA 8260D	_											
Acetone	ND		20.0	ug/L	1		ND				30%	
Acrylonitrile	ND		2.00	ug/L	1		ND				30%	
Benzene	ND		0.200	ug/L	1		ND				30%	
Bromobenzene	ND		0.500	ug/L	1		ND				30%	
Bromochloromethane	ND		1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND		1.00	ug/L	1		ND				30%	
Bromoform	ND		1.00	ug/L	1		ND				30%	
Bromomethane	ND		5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND		10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%	
Chlorobenzene	ND		0.500	ug/L	1		ND				30%	
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	ND		1.00	ug/L	1		ND				30%	
Chloromethane	ND		5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	ND		1.00	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goast Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031184 - EPA 5030B							Wat	er				
Duplicate (1031184-DUP1)		Prepared	: 03/30/21 18:3	38 Analyz	ed: 03/31/2	1 09:55						
QC Source Sample: SB4-GW (A1	C1055-06)											
1,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,3-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloropropane	ND		0.500	ug/L	1		ND				30%	
1,3-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
eis-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND		5.00	ug/L	1		ND				30%	
2-Hexanone	ND		10.0	ug/L	1		ND				30%	
Isopropylbenzene	ND		1.00	ug/L	1		ND				30%	
4-Isopropyltoluene	ND		1.00	ug/L	1		ND				30%	
Methylene chloride	ND		10.0	ug/L	1		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Naphthalene	ND		4.00	ug/L	1		ND				30%	
n-Propylbenzene	ND		0.500	ug/L	1		ND				30%	
Styrene	ND		1.00	ug/L	1		ND				30%	
,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1		ND				30%	
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1		ND				30%	
Toluene	1.41		1.00	ug/L	1		ND				30%	Q-05
,2,3-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	-
,2,4-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
,1,1-Trichloroethane	ND		0.400	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031184 - EPA 5030B							Wat	er				
Ouplicate (1031184-DUP1)		Prepared:	03/30/21 18:3	38 Analyz	ed: 03/31/2	1 09:55						
QC Source Sample: SB4-GW (A1	C1055-06)											
,1,2-Trichloroethane	ND		0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
n,p-Xylene	ND		1.00	ug/L	1		ND				30%	
o-Xylene	ND		0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E SI	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031212 - EPA 3510C	(Acid Extra	ction)					Wate	er				
Blank (1031212-BLK1)		Prepared	: 03/31/21 10:3	35 Analyz	ed: 03/31/2	1 13:47						
EPA 8270E SIM												
Acenaphthene	ND		0.0182	ug/L	1							
Acenaphthylene	ND		0.0182	ug/L	1							
Anthracene	ND		0.0182	ug/L	1							
Benz(a)anthracene	ND		0.0182	ug/L	1							
Benzo(a)pyrene	ND		0.0182	ug/L	1							
Benzo(b)fluoranthene	ND		0.0182	ug/L	1							
Benzo(k)fluoranthene	ND		0.0182	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0182	ug/L	1							
Chrysene	ND		0.0182	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0182	ug/L	1							
Fluoranthene	ND		0.0182	ug/L	1							
Fluorene	ND		0.0182	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0182	ug/L	1							
1-Methylnaphthalene	ND		0.0364	ug/L	1							Q-30
2-Methylnaphthalene	ND		0.0364	ug/L	1							Q-30
Naphthalene	ND		0.0364	ug/L	1							
Phenanthrene	ND		0.0182	ug/L	1							
Pyrene	ND		0.0182	ug/L	1							
Dibenzofuran	ND		0.0182	ug/L	1							
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 67 %	Limits: 44	1-120 %	Dilt	ution: 1x					
p-Terphenyl-d14 (Surr)			68 %	50	-134 %		"					
LCS (1031212-BS1)		Prepared	: 03/31/21 10:3	35 Analyz	red: 03/31/2	1 14:12	<u> </u>	·	·			
EPA 8270E SIM		*										
Acenaphthene	2.24		0.0200	ug/L	1	4.00		56	47 - 122%			
Acenaphthylene	2.52		0.0200	ug/L	1	4.00		63	41 - 130%			
Anthracene	2.98		0.0200	ug/L	1	4.00		74	57 - 123%			
Benz(a)anthracene	3.36		0.0200	ug/L	1	4.00		84	58 - 125%			
Benzo(a)pyrene	3.28		0.0200	ug/L	1	4.00		82	54 - 128%			
Benzo(b)fluoranthene	2.96		0.0200	ug/L	1	4.00		74	53 - 131%			
Benzo(k)fluoranthene	2.77		0.0200	ug/L	1	4.00		69	57 - 129%			
Benzo(g,h,i)perylene	3.37		0.0200	ug/L	1	4.00			50 - 134%			
Chrysene	3.46		0.0200	ug/L	1	4.00		87	59 - 123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031212 - EPA 3510C	(Acid Extra	ction)					Wat	er				
LCS (1031212-BS1)		Prepared	: 03/31/21 10:3	35 Analyz	ed: 03/31/2	1 14:12						
Dibenz(a,h)anthracene	3.69		0.0200	ug/L	1	4.00		92	51 - 134%			
Fluoranthene	2.82		0.0200	ug/L	1	4.00		70	57 - 128%			
Fluorene	2.33		0.0200	ug/L	1	4.00		58	52 - 124%			
Indeno(1,2,3-cd)pyrene	3.31		0.0200	ug/L	1	4.00		83	52 - 134%			
l-Methylnaphthalene	1.51		0.0400	ug/L	1	4.00		38	41 - 120%			Q-30
2-Methylnaphthalene	1.47		0.0400	ug/L	1	4.00		37	40 - 121%			Q-30
Naphthalene	1.61		0.0400	ug/L	1	4.00		40	40 - 121%			
Phenanthrene	2.91		0.0200	ug/L	1	4.00		73	59 - 120%			
Pyrene	2.86		0.0200	ug/L	1	4.00		71	57 - 126%			
Dibenzofuran	2.30		0.0200	ug/L	1	4.00		58	53 - 120%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 67 %	Limits: 44	1-120 %	Dili	ution: 1x					
p-Terphenyl-d14 (Surr)			63 %	50	-134 %		"					
LCS Dup (1031212-BSD1)		Prepared	: 03/31/21 10:3	35 Analyz	ed: 03/31/2	1 14:37						(
EPA 8270E SIM												
Acenaphthene	2.80		0.0200	ug/L	1	4.00		70	47 - 122%	22	30%	
Acenaphthylene	3.02		0.0200	ug/L	1	4.00		75	41 - 130%	18	30%	
Anthracene	2.95		0.0200	ug/L	1	4.00		74	57 - 123%	0.9	30%	
Benz(a)anthracene	3.27		0.0200	ug/L	1	4.00		82	58 - 125%	3	30%	
Benzo(a)pyrene	3.20		0.0200	ug/L	1	4.00		80	54 - 128%	2	30%	
Benzo(b)fluoranthene	2.78		0.0200	ug/L	1	4.00		70	53 - 131%	6	30%	
Benzo(k)fluoranthene	2.77		0.0200	ug/L	1	4.00		69	57 - 129%	0.1	30%	
Benzo(g,h,i)perylene	3.24		0.0200	ug/L	1	4.00		81	50 - 134%	4	30%	
Chrysene	3.35		0.0200	ug/L	1	4.00		84	59 - 123%	3	30%	
Dibenz(a,h)anthracene	3.55		0.0200	ug/L	1	4.00		89	51 - 134%	4	30%	
Fluoranthene	2.73		0.0200	ug/L	1	4.00		68	57 - 128%	3	30%	
Fluorene	2.53		0.0200	ug/L	1	4.00		63	52 - 124%	9	30%	
ndeno(1,2,3-cd)pyrene	3.24		0.0200	ug/L	1	4.00		81	52 - 134%	2	30%	
-Methylnaphthalene	2.20		0.0400	ug/L	1	4.00			41 - 120%	37	30%	Q-01
2-Methylnaphthalene	2.24		0.0400	ug/L	1	4.00			40 - 121%	41	30%	Q-01
Naphthalene	2.35		0.0400	ug/L	1	4.00			40 - 121%	37	30%	Q-24
Phenanthrene	2.91		0.0200	ug/L	1	4.00			59 - 120%	0.2	30%	
Pyrene	2.72		0.0200	ug/L ug/L	1	4.00			57 - 126%	5	30%	
Dibenzofuran	2.63		0.0200	ug/L ug/L	1	4.00			53 - 120%	13	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Surr: 2-Fluorobiphenyl (Surr)

p-Terphenyl-d14 (Surr)

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM RPD Spike % REC Detection Reporting Source Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 1031212 - EPA 3510C (Acid Extraction) Water Prepared: 03/31/21 10:35 Analyzed: 03/31/21 14:37 LCS Dup (1031212-BSD1) Q-19

50-134 %

Dilution: 1x

Limits: 44-120 %

Recovery: 74 %

64 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E SI	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040016 - EPA 3510C	(Acid Extra	ction)					Wate	er				
Blank (1040016-BLK1)		Prepared	: 04/01/21 10:5	3 Analyz	ed: 04/01/2	1 15:41						
EPA 8270E SIM												
Acenaphthene	ND		0.0364	ug/L	1							
Acenaphthylene	ND		0.0364	ug/L	1							
Anthracene	ND		0.0364	ug/L	1							
Benz(a)anthracene	ND		0.0364	ug/L	1							
Benzo(a)pyrene	ND		0.0364	ug/L	1							
Benzo(b)fluoranthene	ND		0.0364	ug/L	1							
Benzo(k)fluoranthene	ND		0.0364	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0364	ug/L	1							
Chrysene	ND		0.0364	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0364	ug/L	1							
Fluoranthene	ND		0.0364	ug/L	1							
Fluorene	ND		0.0364	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0364	ug/L	1							
l-Methylnaphthalene	ND		0.0727	ug/L	1							
2-Methylnaphthalene	ND		0.0727	ug/L	1							
Naphthalene	ND		0.0727	ug/L	1							
Phenanthrene	ND		0.0364	ug/L	1							
Pyrene	ND		0.0364	ug/L	1							
Dibenzofuran	ND		0.0364	ug/L	1							
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 90 %	Limits: 44	<i>4-120 %</i>	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			75 %		1-134 %		"					
LCS (1040016-BS1)		Prepared	: 04/01/21 10:5	3 Analvz	red: 04/01/2	1 16:07						
EPA 8270E SIM		1										
Acenaphthene	7.13		0.0400	ug/L	1	8.00		89	47 - 122%			
Acenaphthylene	7.49		0.0400	ug/L	1	8.00		94	41 - 130%			
Anthracene	7.20		0.0400	ug/L	1	8.00		90	57 - 123%			
Benz(a)anthracene	7.63		0.0400	ug/L	1	8.00		95	58 - 125%			
Benzo(a)pyrene	7.60		0.0400	ug/L	1	8.00		95	54 - 128%			
Benzo(b)fluoranthene	6.60		0.0400	ug/L	1	8.00			53 - 131%			
Benzo(k)fluoranthene	6.83		0.0400	ug/L	1	8.00			57 - 129%			
Benzo(g,h,i)perylene	7.52		0.0400	ug/L	1	8.00			50 - 134%			
Chrysene	8.04		0.0400	ug/L	1	8.00			59 - 123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000

Portland, OR 97239 Project Manager: Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040016 - EPA 3510C ((Acid Extra	ction)					Wate	er				
LCS (1040016-BS1)		Prepared	: 04/01/21 10:5	3 Analyz	ed: 04/01/2	1 16:07						
Dibenz(a,h)anthracene	8.38		0.0400	ug/L	1	8.00		105	51 - 134%			
Fluoranthene	6.25		0.0400	ug/L	1	8.00		78	57 - 128%			
Fluorene	6.62		0.0400	ug/L	1	8.00		83	52 - 124%			
Indeno(1,2,3-cd)pyrene	7.26		0.0400	ug/L	1	8.00		91	52 - 134%			
1-Methylnaphthalene	5.52		0.0800	ug/L	1	8.00		69	41 - 120%			
2-Methylnaphthalene	5.48		0.0800	ug/L	1	8.00		69	40 - 121%			
Naphthalene	5.63		0.0800	ug/L	1	8.00		70	40 - 121%			
Phenanthrene	7.13		0.0400	ug/L	1	8.00		89	59 - 120%			
Pyrene	6.11		0.0400	ug/L	1	8.00		76	57 - 126%			
Dibenzofuran	6.70		0.0400	ug/L	1	8.00		84	53 - 120%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 94 %	Limits: 44	-120 %	Dilı	ıtion: 1x					
p-Terphenyl-d14 (Surr)			89 %	50	-134 %		"					
LCS Dup (1040016-BSD1)		Prepared	: 04/01/21 10:5	3 Analyz	ed: 04/01/2	1 16:32						Q-1
EPA 8270E SIM		Ттеригеи	. 04/01/21 10.5	75 Tilluly 2	Cd. 04/01/2	1 10.52						Q-1
Acenaphthene	7.14		0.0400	ug/L	1	8.00		89	47 - 122%	0.2	30%	
Acenaphthylene	7.39		0.0400	ug/L	1	8.00		92	41 - 130%	1	30%	
Anthracene	7.17		0.0400	ug/L	1	8.00		90	57 - 123%	0.5	30%	
Benz(a)anthracene	7.66		0.0400	ug/L ug/L	1	8.00		96	58 - 125%	0.3	30%	
Benzo(a)pyrene	7.61		0.0400	ug/L	1	8.00		95	54 - 128%	0.1	30%	
Benzo(b)fluoranthene	6.66		0.0400	ug/L ug/L	1	8.00		83	53 - 131%	0.9	30%	
Benzo(k)fluoranthene	6.86		0.0400	ug/L	1	8.00		86	57 - 129%	0.4	30%	
Benzo(g,h,i)perylene	7.39		0.0400	ug/L	1	8.00		92	50 - 134%	2	30%	
Chrysene	7.97		0.0400	ug/L ug/L	1	8.00		100	59 - 123%	0.9	30%	
Dibenz(a,h)anthracene	8.38		0.0400	ug/L ug/L	1	8.00		105	51 - 134%	0.05	30%	
Fluoranthene	6.45		0.0400	ug/L ug/L	1	8.00		81	57 - 128%	3	30%	
Fluorene	6.45		0.0400	ug/L ug/L	1	8.00		81	52 - 124%	3	30%	
Indeno(1,2,3-cd)pyrene	7.34		0.0400	ug/L ug/L	1	8.00		92	52 - 134%	1	30%	
1-Methylnaphthalene	5.38		0.0400	ug/L ug/L	1	8.00		67	41 - 120%	3	30%	
2-Methylnaphthalene	5.37		0.0800	ug/L ug/L	1	8.00		67	40 - 121%	2	30%	
Naphthalene	5.63		0.0800	ug/L	1	8.00		70	40 - 121%	0.08	30%	
Phenanthrene	7.15		0.0400	ug/L ug/L	1	8.00		89	59 - 120%	0.08	30%	
Pyrene	6.43		0.0400	ug/L ug/L	1	8.00		80	57 - 126%	5	30%	
1 710110	0.43		0.0700	ug/L	1	0.00		00	21 - 120/0	5	20/0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goast Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM Spike % REC RPD Detection Reporting Source Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 1040016 - EPA 3510C (Acid Extraction) Water

LCS Dup (1040016-BSD1)	Prepared: 04/01/21 10:53 Analyzed: 04/01/21 16:32	Q-19
Surr: 2-Fluorobiphenyl (Surr)	Recovery: 95 % Limits: 44-120 % Dilution: 1	x
p-Terphenyl-d14 (Surr)	73 % 50-134 %	,

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1031151 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (1031151-DUP3)		Prepared	: 03/30/21 08:	13 Analy	zed: 03/31/2	1 07:38						
QC Source Sample: SB5-27 (A10 EPA 8000D	C1055-08)											
% Solids	78.8		1.00	%	1		78.2			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3510C (F	uels/Acid Ext.)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1031156			•				
A1C1055-01	Water	NWTPH-Dx	03/25/21 11:45	03/30/21 12:55	910mL/5mL	1000mL/5mL	1.10
A1C1055-06	Water	NWTPH-Dx	03/25/21 15:45	03/30/21 12:55	980mL/5mL	1000mL/5mL	1.02
A1C1055-09	Water	NWTPH-Dx	03/25/21 17:15	03/30/21 12:55	990mL/5mL	1000mL/5mL	1.01
Prep: EPA 3546 (Fu	ıels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1031166			1	1			
A1C1055-02	Soil	NWTPH-Dx	03/25/21 12:45	03/30/21 13:10	10.3g/5mL	10g/5mL	0.97
A1C1055-03	Soil	NWTPH-Dx	03/25/21 13:45	03/30/21 13:10	10.5g/5mL	10g/5mL	0.95
A1C1055-04	Soil	NWTPH-Dx	03/25/21 14:15	03/30/21 13:10	10.46g/5mL	10g/5mL	0.96
A1C1055-05	Soil	NWTPH-Dx	03/25/21 15:15	03/30/21 13:10	10.13g/5mL	10g/5mL	0.99
A1C1055-07	Soil	NWTPH-Dx	03/25/21 16:15	03/30/21 13:10	10.15g/5mL	10g/5mL	0.99
A1C1055-08	Soil	NWTPH-Dx	03/25/21 16:55	03/30/21 13:10	10.06g/5mL	10g/5mL	0.99
	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Nanhthalene) b	v NWTPH-Gx		
Drop: EDA 5020B				<u> </u>	Sample	Default	RL Prep
Prep: EPA 5030B					Initial/Final	Initial/Final	1
Lab Number	Matrix	Method	Sampled	Prepared	IIIItiai/Filiai	Illitiai/Filiai	Factor
Batch: 1031184		AMAZERAL G. GAGO			,		
A1C1055-06	Water	NWTPH-Gx (MS)	03/25/21 15:45	03/30/21 18:38	5mL/5mL	5mL/5mL	1.00
A1C1055-09	Water	NWTPH-Gx (MS)	03/25/21 17:15	03/30/21 18:38	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1031108							
A1C1055-02	Soil	NWTPH-Gx (MS)	03/25/21 12:45	03/25/21 12:45	5.66g/5mL	5g/5mL	0.88
A1C1055-03	Soil	NWTPH-Gx (MS)	03/25/21 13:45	03/25/21 13:45	6.09g/5mL	5g/5mL	0.82
A1C1055-04	Soil	NWTPH-Gx (MS)	03/25/21 14:15	03/25/21 14:15	5.41g/5mL	5g/5mL	0.92
A1C1055-05	Soil	NWTPH-Gx (MS)	03/25/21 15:15	03/25/21 15:15	6.28g/5mL	5g/5mL	0.80
A1C1055-07	Soil	NWTPH-Gx (MS)	03/25/21 16:15	03/25/21 16:15	5.2g/5mL	5g/5mL	0.96
A1C1055-08	Soil	NWTPH-Gx (MS)	03/25/21 16:55	03/25/21 16:55	7.32g/5mL	5g/5mL	0.68
		Volatile (Organic Compounds	s by EPA 8260D			
Prep: EPA 5030B			· ·	-	Sample	Default	RL Prep
·	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Facto

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Portland, OR 97239Project Manager:Chris Sheridan

Report ID: A1C1055 - 04 06 21 1017

SAMPLE PREPARATION INFORMATION

Volatile Organic Compounds by EPA 8260D										
Prep: EPA 5030B					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 1031184			-	-						
A1C1055-10	Water	EPA 8260D	03/25/21 16:00	03/30/21 18:38	5mL/5mL	5mL/5mL	1.00			
		Polyaromatic	Hydrocarbons (PAH:	s) by EPA 8270E SI	M					
Prep: EPA 3510C (Acid Extraction)				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 1040016										
A1C1055-01RE1	Water	EPA 8270E SIM	03/25/21 11:45	04/01/21 10:53	1030mL/2mL	1000mL/2mL	0.97			
			Percent Dry We	ight						
Prep: Total Solids (Dry Weight)				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 1031151										
A1C1055-02	Soil	EPA 8000D	03/25/21 12:45	03/30/21 08:13			NA			
A1C1055-03	Soil	EPA 8000D	03/25/21 13:45	03/30/21 08:13			NA			
A1C1055-04	Soil	EPA 8000D	03/25/21 14:15	03/30/21 08:13			NA			
A1C1055-05	Soil	EPA 8000D	03/25/21 15:15	03/30/21 08:13			NA			
A1C1055-07	Soil	EPA 8000D	03/25/21 16:15	03/30/21 08:13			NA			
A1C1055-08	Soil	EPA 8000D	03/25/21 16:55	03/30/21 08:13			NA			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Report ID:Portland, OR 97239Project Manager:Chris SheridanA1C1055 - 04 06 21 1017

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
PRES	Incomplete field preservation. Additional preservative was added to adjust the pH within the appropriate range for this analysis.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-24	The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
S-06	Surrogate recovery is outside of established control limits.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Report ID:Portland, OR 97239Project Manager:Chris SheridanA1C1055 - 04 06 21 1017

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anev	Lahor	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Jomenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Report ID:Portland, OR 97239Project Manager:Chris SheridanA1C1055 - 04 06 21 1017

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PBS Engineering and EnvironmentalProject:Mill Pond4412 SW Corbett AveProject Number:24159.000Report ID:Portland, OR 97239Project Manager:Chris SheridanA1C1055 - 04 06 21 1017

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Mill Pond

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID:

A1C1055 - 04 06 21 1017

780		Jord Jakon	7		Chowday	3	Г	900	Designet Mornes		S.		O. M. O.	-				Project #-	24159.000	000	
POPLAND	afora a	Zi migir	<i>(</i>)		Phone:	3		110]0	<u> </u>				\$	V)				PO#			
Sampled by: S. ECKLS													ANA	CYSIE	ANALYSIS REQUEST	UEST					
ion:				s				s		351	18i.I H				(1	Ca, Ca, Hg, Mg, L, Na, Ti	crь			***************************************	
ON WA CA														(8) sl	(1) ste	Be, C , Pb, 1 , A .9S		(8) s			
AK ID	E ID#	Е	TRIX	CONTA	трн-пот	TPH-Gx	NATE O	о вврм	V olaH 0	O SIM BY	V-imaS 0	5 bCBs	1 Pest	RA Meta	ority Met	b, As, Ba, Co, Cu, Fo Mo, Ni, K,		Ig Metal			əvir
SAMPLEID	EAB TAG	MIT	LAM	-			978		_		_			ВС	prio	Al, Si Cr, C	nZ ,V ∧TOT:	ЭŢ			43.4
581-GW	3/25/21	21145	J.	-	×						Ţ										
583-2		1245	1245 poil	'n		' ×			4	H											
583-27		1345	line ShEl	~																	
SR4-2		1415	1415 Sil	\sim																	
12-485		15.15	1515 Snil	3																	
SB4-GW		15%	1545 HZB	~									1 2 2 2								
585-2		1 615	115 SIN	ķ									and the second								
585-27		145/571	Still	~							_										
SRT G W		Ę	15 F.D.	=	~	2			-		\Rightarrow	_									
TrioBlank-032521	>	QOM/	1400 H20	_																	-
Normal Turn Around Time (TAT) TU Business Days	Around Ti	me (TAT)	E Bus	iness Da	1				1	PECL	SPECIAL INSTRUCTIONS	STRU	CTIO	NS				, , ,			
	1 Day	2 Day		3 Day						ķ	=		- Z	_	NN	Z	E	ident	will run dependent on results	ジェーナ	
TAT Requested (circle)	4 DAY	5 DAY		Other:	ij.			į.		*	(h10H)								<i>*</i> .		
SAMPL	SAMPLES ARE HELD FOR 30 DAYS	LD FOR 36	DAYS						Т												
RELINQUISHED BY:	Date: 5/25/2	RECEIVED Signature:	RECEIVED BY: Signature:	1	١ ،	Date	12	Date: 3/20/2.1		RELIN.	RELINQUISHED BY: Signature:	ED BY	ت			Date:		RECEIVED BY: Signature:	BY:	Date:	
S. ECKes 19	7.me. 440	Printed Name	1 2	Solve	3	Time:		1026		Printed Name	Name:					Time:	je:	Printed Name	23	Time:	
mpany:		Company:	[_* 英		142	X			0	Company	35							Company:			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

PBS Engineering and Environmental

4412 SW Corbett Ave Portland, OR 97239 Project: Mill Pond

Project Number: **24159.000**Project Manager: **Chris Sheridan**

Report ID: A1C1055 - 04 06 21 1017

Client:	<i>1</i> 5	Element WO#: A1_C1065
Project/Project #:	Mill Porch	24159.000
Delivery Info: Date/time received:		
	Client ESS FedEx	UPSSwiftSenvoySDSOther
Cooler Inspection		
Chain of Custody in		Custody seals? Yes No
Signed/dated by clie		_
Signed/dated by Ape	ex? Yes X No	_
Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/C) Condition: Cooler out of temp?	Other) Real Real Good Good	
Green dots applied to Out of temperature se Sample Inspection:	o out of temperature samples? Yes	@ 15:55 By: THY
Green dots applied to Out of temperature s. Sample Inspection: All samples intact?	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2047	@ 16:56 By: THU
Green dots applied to Out of temperature s Sample Inspection: All samples intact?	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	@ 16:55 By: THU nts18# 2655
Green dots applied to Out of temperature s Sample Inspection: All samples intact? Bottle labels/COCs a	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	@ 16:55 By: THU nts18# 2655 No \(\sum_{\text{No}} \sum
Green dots applied to Out of temperature s Sample Inspection: All samples intact? Bottle labels/COCs a	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	@ 16:55 By: THU nts18# 2655
Green dots applied to Out of temperature's Sample Inspection: All samples intact? Bottle labels/COCs a COC/container discrete Containers/volumes in the Comments 3/3 4 Water samples: pH cl	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/20/7/ Yes No Comments: agree? Yes No Commented: Yes received appropriate for analysis? Visible headspace? Yes No Share Share Company Share Company Share Share Company Share	@ 16.55 By: THU nts16# 21.55 No
Green dots applied to Out of temperature's Sample Inspection: All samples intact? Bottle labels/COCs a COC/container discrece Containers/volumes in the Comments of the Comments of the Comments of the Comments: Water samples: pH classical comments:	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	@ 15:55 By: THU nts[B# 2655 No
Green dots applied to Out of temperature's Sample Inspection: All samples intact? Bottle labels/COCs a COC/container discrete Containers/volumes in the Comments 3/3 & Comments 2/3 & Comments: Mater samples: pH cl	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	@ 15:55 By: THU nts[B# 2655 No
Green dots applied to Out of temperature's Sample Inspection: All samples intact? Bottle labels/COCs a COC/container discrece Containers/volumes in the Comments of the Comments of the Comments of the Comments: Water samples: pH classical comments:	o out of temperature samples? Yes amples form initiated? Yes No Date/time inspected: 3/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	@ 15:55 By: THU nts[B# 2655 No

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

STATE OF OREGON WATER WELL REPORT (as required by ORS 537.765)

AUG 1 6 1994

RECEIVED

63853 (START CARD)(#

Instructions for completing this report are on the last page of this form. RESOURCES DEPT. SALEM REGON LOCATION OF WELL by legal description: Well Number GILBERT L FAXON BENTON Name Latitude County 125 2018 CHAPEL DR. Address Township N or S Range E or W. WM. PHILOMATH State ORA Section 1/4 (2) TYPE OF WORK Tax Lot Block Subdivision SAME New Well Deepening Alteration (repair/recondition) Abandonment Street Address of Well (or nearest address) (3) DRILL METHOD: (10) STATIC WATER LEVEL: Rotary Air Rotary Mud Cable Auger Date 7-22-94 Other ft. below land surface. (4) PROPOSED USE: Artesian pressure lb. per square inch. Date Domestic Community (11) WATER BEARING ZONES: Industrial ☐ Irrigation Thermal ☐ Injection Livestock Other (5) BORE HOLE CONSTRUCTION: Depth at which water was first found Special Construction approval Yes No Depth of Completed Well 115 ft. Explosives used Yes No Type Amount <u>SWL</u> 45 From 107 Estimated Flow Rate 109 HOLE 15 Diameter Material From Sacks or pounds To 10 431 CEMENT 0 43112 W/BENT 431115 (12) WELL LOG: How was seal placed: Method \Box A □В ΠXC $\square D$ E Ground Elevation Other Backfill placed from ft. to ft. Material WAS RIEMOVEID Gravel placed from Size of gravel ft. to FROM WELL. THE HOLE WAS RECONSTRUCTED (6) CASING/LINER: TO A 6 WELL WITH CASING SEALED Diameter To Gauge Steel **Plastic** Welded Threaded FEET IN TO THE GREY BASALT FROM 6 43 1 250 X Casing:__ 43½ FEET. THE GREY BASALT INCOUNTERED \Box TO 115 FEET. Liner: 4½ 1151160 X431 Final location of shoe(s) (7) PERFORATIONS/SCREENS: X Perforations Method DRILL Material Screens Slot Tele/pipe Number Diameter Casing Liner 160 \mathbf{K} П (8) WELL TESTS: Minimum testing time is 1 hour 7-21-94 7-22-94 Completed (unbonded) Water Well Constructor Certification: Flowing I certify that the work I performed on the construction, alteration, or abandonment Pump Bailer Air Artesian of this well is in compliance with Oregon water supply well construction standards. Yield gal/min Drill stem at Drawdown Time Materials used and information reported above are true to the best of my knowledge 15 115 1 hr. and belief. WWC Number Signed Date Temperature of water Depth Artesian Flow Found (bonded) Water Well Constructor Certification: Was a water analysis done? Yes By whom I accept responsibility for the construction, alteration, or abandonment work performed on this well during the construction dates reported above. All work Did any strata contain water not suitable for intended use? performed during this time is in compliance with Oregon water supply well Salty Muddy Odor Colored Other construction standards. This report is true to the best of my knowledge and belief. Depth of strata: Signed

NOTICE TO WATER WELL CONTRA The original and first copy TER WELL REPORT of this report are to be STATE ENGINEER, SALEM, OREST 77210

Within 30 days from the date SALEM, OREST SALEM, ORES SALEM, State Well No. State Permit No. (10) LOCATION OF WELL: Name Hobin Lumber Company County Benton Driller's well number Address Philomath. Oregon 14 Section 13 T. 12 R. 6W Bearing and distance from section or subdivision corner (2) TYPE OF WORK (check): New Well Ki Deepening [If abandonment, describe material and procedure in Item 12. (11) WATER LEVEL: Completed well. (3) TYPE OF WELL: (4) PROPOSED USE (check): Depth at which water was first found 35 Rotary Driven 🔲 Domestic | Industrial | Municipal | ft. below land surface. Date 6-22-70 Static level Cable Jettèd 🗍 Bored Irrigation Test Well Other Artesian pressure lbs. per square inch. Date CASING INSTALLED: Threaded [(12) WELL LOG: Diameter of well below casing .. ___ft. to 169 ft. Gage •2 169 Depth drilled ft. Depth of completed well 169 ..." Diam. from _____ ft. to ____ ft. Gage Formation: Describe color, texture, grain size and structure of materials; .." Diam. from ft. to ft. Gage and show thickness and nature of each stratum and aquifer penetrated, with at least one entry for each change of formation. Report each change in PERFORATIONS: position of Static Water Level and indicate principal water-bearing strata. Perforated? Yes No. acetylene torch of perforator used MATERIAL 3/16 Size of perforations in. by rock & gravel fill 0 2 ____ ft. to 168 brown clay perforations from ... 11 brown clay & gravel perforations from ft. to 30 perforations from ft. to ... grey clay 30 39 grey sand & gravel 39 48 (7) SCREENS: Well screen installed? ☐ Yes 🔼 No blue clay & wood 48 70 Manufacturer's Name gravel & sand 70 75 brown clay 75 87 Diam. Slot size Set from ft. to ft. grey clay 87 135 Diam. Slot size Set from ft. to ft. brown clay & sand & fine gravel 135 (8) WELL TESTS: Drawdown is amount water level is lowered below static level gravel & sand, fine to 2" 145 155 gravel & sand, cemented Was a pump test made? ☒ Yes ☐ No If yes, by whom? 24 ft. drawdown after 1 grey clay Yield: 30 gal./min. with hrs. 60 87 " ,, Bailer test gal./min. with ft. drawdown after Artesian flow g.p.m. Temperature of water 55 Depth artesian flow encountered Work started Completed Date well drilling machine moved off of well 6-23-70 CONSTRUCTION: Bentonite and puddled clay Well seal-Material used .. Drilling Machine Operator's Certification: This well was constructed under my direct supervision. Materials used and information reported above are true to my Well sealed from land surface to Diameter of well bore to bottom of seal best knowledge and belief, [Signed No Jon no C Diameter of well bore below seal ... 8 (Drilling Machine Operator) Number of sacks of cement used in well seal _____none ____ sacks Drilling Machine Operator's License No.76 Number of sacks of bentonite used in well seal Brand name of bentonite _____Yellowstone Water Well Contractor's Certification: Number of pounds of bentonite per 100 gallons of water Approx ratio 2 parts Bentonite lbs./100 gals. This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief. Was a drive shoe used? 🗌 Yes ृ No Plugs Size: location ft. Name Ray Gellatly and Ron Witham Did any strata confain unusable water? 🗌 Yes 🕱 No (Person, firm or corporation) (Type or print) Address Box 1, Philomath, Oregon 97370 Type of water? depth of strata

Contractor's License No. 77 Date 7-20-70

Method of sealing strata off

Gravel placed from

Was well gravel packed? Tyes No Size of gravel: ...

... ft. to

STATE OF OREGON WATER SUPPLY WELL REPORT

(ORS 537.765 & OAR 690-205-0210)

BENT 54885

TER SUPPLY WELL REPORT

WELL LABEL # L	113640
START CARD#_	210475
ODICINAL LOC#	

Instructions			nis report						ORIGINAL LOG#	
(1) LANDO					Well I.D.		,		(9) LOCATION OF WELL (legal description)	
First Name _	EO		Las	t Name	STAT	teu			County Benden Twp 12 No Range 6 E or W) W.M.
`ompany ■Address	800	5+	4 1994	Street					Sec 12 55 1/4 of the 56 1/4 Tax Lot 4900	
	vilone			State	R	Zip_	7737	0	Tax Map Number Lot	
		-							Lat DMS	or DD
(2) TYPE (☐ New				-	: 5-1		or DD
Alteration								ion 5a)	Street Address of Well (or nearest address)	
(2a) PRE-A				V	veli Dep	oth	20	n.		
Seal Materia			-						SAME	
Casing Type	•	•	☐ Pla						(10) STATIC WATER LEVEL	
Casing Gaug	ge , 2	50	Cas	sing Diam	eter	6		-	Date SWL(psi) + SWL	(ft)
									Existing Well/Pre-Alteration 4-3-14 /3	,
(3) DRILL	METH	OD	Rotary .	Air 🔲 R	otary Mi	ud 🔲	Auger		Completed Well	
Cable	☐ Cable	Mud [Reverse I	Rotary 🗀	Other _				Flowing Artesian? Yes Dry Hole? Yes	
(4) BBOBO	CED II	CF 4	7 D		4	Пс			WATER BEARING ZONES Depth water was first found	
(4) PROPO	/Comme	rcial [1 Livestock	: Irri			mmunity	/	SWL Date From To Est Flow SWL (psi) + SWL	(fi)
☐ Thermal	Comme		Other	. 🗆 🖰 🖰	, atering	,,、			4-3-14 10 13	7 (11)
(5) BORE I	HOLE	_		N						
Depth of Con					tandard:	- □ Ves	(attach o	conv)		
•			10.	. Брески с			(anaen e	ору,		
	RE HOL	-	Mate	ا دا	SEA		mount	6\n.	RECEIVE	
44	rom	To - Z	RevA				1/2	SCK910	(11) WELL LOG	
75				WATE .			1/6		Material From To	0
									APR 1 4 2014	
How was sea	l placed:	Meth	od \square A	В	□ C	□ D	☐ E			
Other									SOLEM, OR	
Backfill place	ed from _	0	ft. to 2						SALEM, OR	
	ed from _	0	ft. to 2					8	SALEM, OR	
Backfill place ilter pack fro	ed from _ om	ft. to	ft. to <u> Z</u>	. Material		Siz		8	SALEM, OR	
Backfill place Tilter pack fro (5a) ABANE	ed from om OONME	ft. to	ft. to Z	Material DRATED	BENTO	Siz	ze 3/		SALEM, OR	
Backfill place ilter pack fro (5a) ABANE Calculated An	ed from om DONME mount Pr	ft. to	ft. to Z ft. NG UNHY o be Used:	Material DRATED	BENTO	Siz	sacl	ks/lbs	SALEM, OFF	
Backfill place Tilter pack fro (5a) ABANE	ed from om DONME mount Pr	ft. to	ft. to Z ft. NG UNHY o be Used:	Material DRATED	BENTO	Siz	sacl		SALEM, OFF	
Backfill place filter pack fro (5a) ABANE Calculated Ar Actual Amou	omOONME mount Print Used:	ft. to	ft. to Z ft. NG UNHY o be Used:	Material DRATED	BENTO	Siz	sacl	ks/lbs	SALEM, OFF	
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou	DONME mount Print Used:	ft. to	ft. to Z ft. NG UNHY o be Used:	Material DRATED	BENTO	Siz	sacl	ks/lbs ks/lbs	SALEM, OFF	
Backfill place filter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Lint	om DONME mount Print Used: G/LINE Dia +	ft. to NT USI roposed t	ft. to Z ft. NG UNHY o be Used:	DRATED	BENTO	Siz	sack	ks/lbs ks/lbs	SOLEM, OFF	
Backfill place filter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Lint	om DONME mount Print Used: G/LINE Dia +	ft. to ft. to NT USI roposed to	ft. to Z ft. NG UNHY o be Used:	DRATED Gauge	BENTO Steel	Siz	sack	ks/lbs ks/lbs	Xeo /	
Backfill place filter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Lint	om DONME mount Print Used: G/LINE Dia +	ft. to ft. to NT USI roposed to	ft. to Z ft. NG UNHY o be Used:	DRATED Gauge	BENTO Steel	Siz	sack	ks/lbs ks/lbs	Date Started 4-3-2014	
Backfill place Tilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csngl Lint	DONME mount Print Used: G/LINE Dia +	ft. to ft. to ft. to NT USI roposed to	ft. to -2 ft. NG UNHY o be Used:	DRATED Gauge .250	BENTO	Siz ONITE: Plastic	sack sack	ks/lbs ks/lbs	Date Started 4-3-2014	
Backfill place ilter pack fro (5a) ABANI Calculated Ar Actual Amou (6) CASING Csng Linr Shoe Insi	DONME mount Print Used: G/LINE Dia +	ft. to ft. to ft. to NT USI roposed to ER From t l	ft. to -2 ft. NG UNHY o be Used: To -2 Other Lo	Gauge .250	Steel hoe(s) _	Siz ONITE:	sack sack	ks/lbs ks/lbs	Xeo /	ation, or
Backfill place Tilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csngl Lint	DONME mount Print Used: G/LINE Dia +	ft. to ft. to ft. to NT USI roposed to ER From t l	ft. to -2 ft. NG UNHY o be Used: To -2 Other Lo	Gauge .250	Steel hoe(s) _	Siz ONITE:	sack sack	ks/lbs ks/lbs	Date Started 4-3-30-4 Completed 9-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well	
Backfill place Tilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csngl inr Shoe Insi Temporary ca	DONME mount Print Used: G/LINE Dia + dide C C cassing C	ft. to ft. to INT USE roposed to CR From C I Outside [] Yes E	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter	Gauge .250	Steel hoe(s) _	Siz ONITE:	sack sack	ks/lbs ks/lbs	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to	
Backfill place ilter pack fro (5a) ABANI Calculated Ar Actual Amou (6) CASING Csngl inr Shoe Insi Temporary ca (7) PERFO	DONME mount Print Used: G/LINE Dia + A print Dia	ft. to ft. to ft. to INT USI roposed to CR From C I Yes D DNS/SC	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter	Gauge .250	Steel hoe(s) _	Siz ONITE:	sack sack	ks/lbs ks/lbs	Date Started 4-3-30-4 Completed 9-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well	
Backfill place Tilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csngl inr Shoe Insi Temporary ca	DONME mount Print Used: G/LINE Dia + dide C C cassing C	ft. to ft. to INT USI roposed to CR From C I Outside [] Yes D ONS/SC rod	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter	Gauge .250 ocation of s	Steel hoe(s) _	Siz ONITE: Plastic	sacl sac	ks/lbs ks/lbs	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to	rue to
Backfill place Tilter pack fro (5a) ABANE Calculated At Actual Amou (6) CASING Csng Linr Shoe Insi Temporary ca (7) PERFO Perforations	DONME mount Print Used: G/LINE Dia + Gasing Company RATIO	ft. to ft. to INT USI roposed to CR From C I Outside [] Yes D ONS/SC rod	ft. to -2 ft. NG UNHY o be Used: To -2 Other Lotiameter REENS	Gauge .250 ocation of s	Steel hoe(s)	Siz ONITE: Plastic	sacl sac	ks/lbs ks/lbs	Date Started 4-3-2014 Completed 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date	rue to
Backfill place Tilter pack fro (5a) ABANE Calculated At Actual Amou (6) CASING Csng Linr Shoe Insi Temporary ca (7) PERFO Perforations	DONME mount Print Used: G/LINE Dia + Gasing Company RATIO	ft. to In the second of the s	ft. to -2 ft. NG UNHY o be Used: To -2 Other Lotiameter REENS	Gauge .250 ocation of s	Steel hoe(s) om laterial _ Screen/	Siz ONITE: Plastic	sacl sac	ks/lbs ks/lbs	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief.	rue to
Backfill place Tilter pack fro (5a) ABANE Calculated At Actual Amou (6) CASING Csng Linr Shoe Insi Temporary ca (7) PERFO Perforations	DONME mount Print Used: G/LINE Dia 4 2 2 2 2 2 2 2 2 2	ft. to ft. to NT USI roposed to From I Outside [] Yes ONS/SC	ft. to -2 ft. NG UNHY o be Used: To -2 Other Lotiameter REENS	Gauge .250 ocation of s	Steel hoe(s)	Siz ONITE: Plastic T	sacl sac sac welded # of	ks/lbs ks/lbs	Date Started 4-3-2014 Completed 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date	rue to
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens	DONME mount Print Used: G/LINE Dia 4 2 2 2 2 2 2 2 2 2	ft. to ft. to NT USI roposed to From I Outside [] Yes ONS/SC	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter REENS	Gauge .250 ocation of s	Steel hoe(s) _om _ laterial _ Screen/slot	Siz ONITE: Plastic T	sacl sac sac welded # of	ks/lbs ks/lbs	Date Started	rue to
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens	DONME mount Print Used: G/LINE Dia 4 2 2 2 2 2 2 2 2 2	ft. to ft. to NT USI roposed to From I Outside [] Yes ONS/SC	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter REENS	Gauge .250 ocation of s	Steel hoe(s) _om _ laterial _ Screen/slot	Siz ONITE: Plastic T	sacl sac sac welded # of	ks/lbs ks/lbs	Date Started	rue to
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens	DONME mount Print Used: G/LINE Dia 4 2 2 2 2 2 2 2 2 2	ft. to ft. to NT USI roposed to From I Outside [] Yes ONS/SC	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter REENS	Gauge .250 ocation of s	Steel hoe(s) _om _ laterial _ Screen/slot	Siz ONITE: Plastic T	sacl sac sac welded # of	ks/lbs ks/lbs	Date Started 4-3-30-4 Completed 9-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number	orted
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens	DONME mount Print Used: G/LINE Dia 4 2 2 2 2 2 2 2 2 2	ft. to ft. to NT USI roposed to From I Outside [] Yes ONS/SC	ft. to -2 ft. NG UNHY o be Used: To -2 Other Letiameter REENS	Gauge .250 ocation of s	Steel hoe(s) _om _ laterial _ Screen/slot	Siz ONITE: Plastic T	sacl sac sac welded # of	ks/lbs ks/lbs	Date Started	orted
Backfill place ilter pack fro (5a) ABANE Calculated Ai Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens Perf Scrn Cs	ed from om on	ft. to In the second of the s	ft. to -2 ft. NG UNHY o be Used: To -2 Other Le itameter REENS	Gauge .250 ocation of s	Steel	Siz NITE: Plastic Slot length	sack sack sack sack sack sack sack sack	ks/lbs ks/lbs	Date Started	orted
Backfill place Tilter pack fro (5a) ABANE Calculated Ai Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens	ed from om on	ER From t I Substitute [] Yes D DNS/SC Cood Screen Dia	fi. to -2 fi. NG UNHY o be Used: To -2 Other Letiameter REENS	Gauge .250 ocation of s	Steel	Siz ONITE: Plastic T	sack sack sack sack sack sack sack sack	ks/lbs ks/lbs	Date Started 4-3-20-4 Completed 4-3-20-14 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date Signed (bonded) Water Well Constructor Certification I accept responsibility for the construction, deepening, alteration, or abandonment work performed on this well during the construction dates repeabove. All work performed during this time is in compliance with Oregon w supply well construction standards. This report is true to the best of my known and belief. License Number 1753 Date 4-3:2014	orted vater
Backfill place ilter pack fro (5a) ABANE Calculated Ai Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens Perf Scrn Cs	om ONME mount Print Used: G/LINE Dia +	ft. to In the second of the s	fit. toZ fit. NG UNHY o be Used: ToZ Other Le biameter REENS From	Gauge .250 ocation of s	Steel Steel	Siz ONITE: Plastic Plastic I the state of the state o	sack sack sack sack sack sack sack sack	ks/lbs ks/lbs Thrd	Date Started 4-3-20-4 Completed 4-3-20-14 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date Signed (bonded) Water Well Constructor Certification I accept responsibility for the construction, deepening, alteration, or abandonment work performed on this well during the construction dates repeabove. All work performed during this time is in compliance with Oregon w supply well construction standards. This report is true to the best of my known and belief. License Number 1753 Date 4-3:2014	orted vater
Backfill place Tilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens Perf Scrn Cs	om ONME mount Print Used: G/LINE Dia +	ft. to ft. to NT USI roposed to CR From C I Outside [] Yes D ONS/SC od Screen Dia : Minin] Bailer	fit. toZ fit. NG UNHY o be Used: ToZ Other Le biameter REENS From	Gauge .250 ocation of s Fro	Steel Steel	Siz ONITE: Plastic Plastic I the state of the state o	sack_sack_sack_sack_sack_sack_sack_sack_	ks/lbs ks/lbs Thrd	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date Signed (bonded) Water Well Constructor Certification I accept responsibility for the construction, deepening, alteration, or abandonment work performed on this well during the construction dates repeabove. All work performed during this time is in compliance with Oregon w supply well construction standards. This report is true to the best of my know and belief. License Number 1753 Date 4-3-2014 Signed	orted vater
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr Formorary ca (7) PERFO Perforations Screens Perf Scrn Csng Ling (8) WELL Pump Yield gal	ed from om on	ft. to ft. to NT USI roposed to ER From t Ves Screen Dia Screen Dia Hini Bailer Drawdo	ft. to -2 ft. to -2 ft. to -2 NG UNHY o be Used: To -2 Other Letiameter _ REENS From mum testi	Gauge .250 ocation of s From M To ing time is in listem/Pun //o	Steel Steel Steel Som Screen/ slot width Flow Flow Game Flow Ga	Siz NITE: Plastic Slot length D	sack sac sac welded # of slots	ks/lbs ks/lbs Thrd	Date Started	orted vater
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens Perf Scrn Cs (8) WELL Pump Yield galu /6	DONME mount Print Used: G/LINE Dia 4 2 2 GRATIC Meth Type Sing Line TESTS	ft. to NT USI roposed to ER From C t Outside [] Yes E ONS/SC cod Screen Dia : Mini] Bailer Drawdo °F Lab	ft. to -2 ft. to -2 ft. to -2 NG UNHY o be Used: To -2 Other Leviameter _ REENS From anulysis _	Gauge .250 Deation of s From M To Ing time is in firstem/Pun //O Yes By	Steel Steel	Siz NITE: Plastic Slot length D	sack sac sac welded # of slots	ks/lbs ks/lbs Thrd	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date Signed (bonded) Water Well Constructor Certification I accept responsibility for the construction, deepening, alteration, or abandonment work performed on this well during the construction dates repeabove. All work performed during this time is in compliance with Oregon w supply well construction standards. This report is true to the best of my know and belief. License Number 1753 Date 4-3-2014 Signed	orted vater
Backfill place ilter pack fro (5a) ABANE Calculated Ar Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary cc (7) PERFO Perforations Screens Perf Scrn Cs (8) WELL Pump Yield galv emperature	DONME mount Print Used: G/LINE Dia 4 2 2 GRATIC Meth Type Sing Line TESTS	ft. to NT USI roposed to CR From C t Outside [Yes D ONS/SC od Screen Dia : Minin Bailer Drawdo °F Lab as? Yes	ft. to -2 ft. to -2 ft. to -2 NG UNHY o be Used: To -2 Other Lotiameter REENS From mum testi A wn Dri analysis as (describe	Gauge .250 ocation of s From M To ing time is ir ll stem/Pun //o] Yes By	Steel hoe(s) _ om _ laterial _ Screen/ slot width laterial Flow pdepth	Siz NITE: Plastic Slot length D	sack sac sac welded # of slots	ks/lbs ks/lbs Thrd Tele/ pipe size hr)	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date Signed (bonded) Water Well Constructor Certification I accept responsibility for the construction, deepening, alteration, or abandonment work performed on this well during the construction dates repeabove. All work performed during this time is in compliance with Oregon w supply well construction standards. This report is true to the best of my know and belief. License Number 1753 Date 4-3-2014 Signed	orted vater
Backfill place ilter pack fro (5a) ABANE Calculated Ai Actual Amou (6) CASING Csng Linr V Shoe Insi Temporary ca (7) PERFO Perforations Screens Perf Scrn Cs (8) WELL Pump Yield gal oemperature Water quality	ed from om o	ft. to NT USI roposed to CR From C t Outside [Yes D ONS/SC od Screen Dia : Minin Bailer Drawdo °F Lab as? Y	ft. to -2 ft. to -2 ft. to -2 NG UNHY o be Used: To -2 Other Lotiameter REENS From mum testi A wn Dri analysis as (describe	Gauge Cocation of s From M To Ing time is in the stem / Pun // O Yes By to below) TI	Steel hoe(s) _ om _ laterial _ Screen/ slot width laterial Flow pdepth	Siz NITE: Plastic T Slot length r ving Arte	sacl sac	ks/lbs ks/lbs Thrd Tele/ pipe size hr)	Date Started 4-3-2014 (unbonded) Water Well Constructor Certification I certify that the work I performed on the construction, deepening, altera abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are to the best of my knowledge and belief. License Number Date Signed (bonded) Water Well Constructor Certification I accept responsibility for the construction, deepening, alteration, or abandonment work performed on this well during the construction dates repeabove. All work performed during this time is in compliance with Oregon w supply well construction standards. This report is true to the best of my know and belief. License Number 1753 Date 4-3-2014 Signed	orted vater