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Ultra-high-performance fiber-
reinforced concrete (UHP-FRC) 

 High compressive strength
 High compressive ductility
 High cracking resistance 
 High shear strength

Fiber-reinforced 
polymer (FRP) rebars

 High tensile strength
 Noncorrosive 

Structural Members
 High durability (highly corrosion resistant)
 High flexural/shear strength
 High stiffness
 High ductility
 High resilience 

§High strength, 
ductility, durability, and 
resilience cannot 
happen simultaneously 
in conventional RC 
members design by 
current design 
approach
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Fiber-Reinforced Polymer (FRP) reinforcing bars

 High-strength FRP bars can reduce 
reinforcement congestion.

 Corrosion resistant – exposure to 
deicing salts, seawater

 Lighter than steel (~ 75% lighter ).

Stress-strain relationship of various FRP bars,
Wu et al. 2012
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RC #2 beam (Plain Concrete + BFRP bar)

Low rebar axial stiffness  large crack width (lower flexural stiffness) and reduced 
shear resistance (due to reduced aggregate interlock, compression zone, and 
dowel strength)



FRP rebars with conventional concrete
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 The maximum usable compressive strain of plain concrete (at a post-peak stress 
of approximately 80% of the peak stress), εcu, is 0.003 (ACI 318-19 and 2017 
AASHTO LRFD).

 ACI 440 (2015) uses a conservative design for concrete members reinforced with 
FRP bars because both concrete and FRP bars are brittle materials.



Properties of Concrete Conventional Concrete UHP-FRC

Ultimate Compressive 
Strength < 8,000 psi (55 MPa) 18,000 to 30,000 psi (124 to 207 

MPa)

Early (24-hour) 
compressive strength < 3000 psi (21 MPa) 10,000 – 12,000 psi (69 to 83 

MPa)

Flexural Strength < 670 psi (4.6 MPa) 2,500 to 6,000 psi (17 to 41 MPa)

Shear strength < 180 psi (1.2 MPa)  > 600 psi (4.1 MPa)
Direct Tension < 350 psi (2.5 MPa) up to 1,450 psi (10 MPa)

Rapid Chloride Penetration 
Test 2000-4000 Coulombs passed Negligible (< 100 Coulombs 

passed)

Ductility Negligible High ductility 

Ultimate Compressive 
Strain, εcu

0.003 0.015 to 0.03

Confining Negligible High confining capability 

Comparison of typical conventional concrete and UHP-FRC

9



Traditional Design Concept for Reinforced ConcreteTraditional Design Concept for Reinforced Concrete
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Compressive Ductility of UHP-FRC

Aghdasi, P., Heid A. E., and Chao, S.-H. (2016). “Developing Ultra-High-Performance Fiber-
Reinforced Concrete for Large-Scale Structural Applications,” ACI Materials Journal, V. 113, No. 
5, September-October 2016, pp. 559-570.

0.3%

Plain 
concrete

0.003 0.015
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Full-field concrete longitudinal strain (εx) along moment region for UHP-
FRC#1 at an applied load of 317.7 kips (peak load)

Strains of UHP-FRC beam measured by high 
resolution digital image correlation (DIC) technology 



1
3 εcu of Plain Concrete, FRC, and UHP-FRC
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Plain concrete UHP-FRC

Ultra-High-Performance Fiber-Reinforced Concrete 
(UHP-FRC): High Compressive Strength & Ductility
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Note: The conventional RC column was designed based on ACI 318-14’s seismic provisions.

Full-scale Column Experimental Results (NSF Award No. 1041633) 
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εcu is approximately 0.015, five times of plain concrete’s εcu

s
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cu= cu= cu=
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Effect of UHP-FRC’s High Compressive Strain and Strength on A 
Flexural Member's Curvature Ductility



UHP-FRC (ductile element) + FRP bars (elastic element) 

Steel bars (yielding element) + concrete (brittle element, crushed) 

Opposite to conventional RC members
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New Design Concept : Ductile-Concrete Strong-
Reinforcement concept (DCSR design concept)



 Using high reinforcement ratio of high-strength FRP bars can 
achieve high structural efficiency (i.e., high flexural strength with a 
relatively smaller cross-section). 

 Keeping rebars elastic can minimize deterioration of bond strength, 
limit the crack width (thereby maintaining the shear strength and 
stiffness), and provide restoring force for reducing residual 
deformation (i.e., self-centering capability). 

 The high shear strength of UHP-FRC allows partial or total 
elimination of shear reinforcement.

 FRP bars + UHP-FRC  a highly durable structural member. 
18

Ductile-Concrete Strong-Reinforcement concept (Summary)



Strain profile and Design Sections 

UHP‐FRC #5 (8‐#8 BFRP bars)

RC #1 (9‐#5 Gr. 60 mild steel rebars) RC #2 (3‐#7 BFRP bars)

The BFRP (baslt) bars had an ultimate tensile strength of approximately 125 ~ 150 ksi and an 
ultimate tensile strain of 0.017 to 0.025.
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Previous test results : Monotonic Loading 

Geometry and reinforcement details

Beam RC #2 (plain concrete + BFRP longitudinal rebar)

Beam RC #1 (plain concrete +Grade 60 longitudinal rebar)
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Beam UHP-FRC #4 (BFRP longitudinal rebar)

Previous test results : Monotonic Loading
Geometry and reinforcement details

Beam UHP-FRC #5 (BFRP longitudinal rebar)
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Cracking patterns at the end of test

RC #1 beam (Grade 60 steel) UHP-FRC #5 beam (UHP-FRC+ BFRP bar)

RC #2 beam (Plain Concrete + BFRP bar)



Specimen Effective 
depth (d), 
in. (mm)

Width of 
compressio
n face (b), 
in. (mm)

 (%) Reinforceme
nt type

Fiber type Effective 
span, 
in. (mm)

UHP-FRC #1 4.311 (109) 6 (152) 15.5 MMFX Steel 49.5 (1257)
UHP-FRC #2 6.375 (162) 6 (152) 13.9 GFRP Steel 49.5 (1257)
UHP-FRC #3 5.35 (136) 8 (203) 14.8 BFRP UHMW-PE 34 (864)
UHP-FRC #4 5.35 (136) 8 (203) 14.8 BFRP Steel 34 (864)

Reinforcement type Diameter
in. (mm)

Tensile strength
ksi (MPa)

MMFX (Micro Composite Steel)  Grade 100 (ASTM 
1035)

1.125 (29) 100 (690)

GFRP (Glass Fiber-Reinforced Polymer) 0.75 (19) 90 (620)

BFRP (Basalt Fiber-Reinforced Polymer) 1.00 (25) 147 (1014)

Reinforcement Details

24

Design Summary

Ductile-Concrete Strong-Reinforcement concept – Cyclic Testing
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Length (mm) Diameter (mm) Tensile Strength  (ksi)
Micro Steel Fibers 13 0.12 313
UHMW Polyethylene Fibers 13 0.0015 375

Ductile-Concrete Strong-Reinforcement concept – Cyclic Testing : Fibers used
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UHP-FRC Beam #3 and #4

Detailed side view of the specimen showing specimens UHP-FRC #3 and UHP-FRC #4

Cross section of beam UHP-FRC #3 and UHP-FRC #4 (BFRP)



Loading Protocol
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Moment vs Drift ratio for UHP-FRC #3 with UHMW PE fibers (BFRP) Moment vs Drift ratio for UHP-FRC #4 with steel fibers (BFRP)

UHP-FRC #3
Shear span-depth ratio = 4.25
8 - #8 BFRP bars
Total reinforcement ratio = 14.8 %
UHMW PE fiber
(Vf = 0.75%)

UHP-FRC #4
Shear span-depth ratio = 4.25
8 - #8 BFRP bars
Total reinforcement ratio = 14.8%
Micro steel fiber
(Vf = 3%)
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BFRP 1% drift ratio (PE)

BFRP 3.5% drift ratio (PE)
BFRP 3.5% drift ratio (Steel)

BFRP 1% drift ratio (Steel)
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UHP-FRC #3
Shear span-depth ratio = 4.25
8 - #8 BFRP bars
Total reinforcement ratio = 14.8 %
UHMW PE fiber
(Vf = 0.75%)
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UHP-FRC #4
Shear span-depth ratio 
= 4.25
8 - #8 BFRP bars
Total reinforcement 
ratio = 14.8 %
Micro steel fiber
(Vf = 3%)
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Ultra-high-performance fiber-
reinforced concrete (UHP-FRC) 
 High compressive strength
 High compressive ductility
 High crack resistance 
 High shear strength

Fiber-reinforced 
polymer (FRP) rebars

 High tensile strength
 Noncorrosive

Structural Members can Simultaneously Achieve All Functions:  
 High durability (highly corrosion resistant)  material properties of FRP and 

UHP-FRC
 High flexural/shear strength  through DCSR design
 High stiffness/ through DCSR design
 High ductility  through DCSR design (reminder: FRP is a brittle material)
 High resilience (small residual deformation)  through DCSR design


