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Australasian researchers, including those from Australia

and New Zealand, have a rich history of medical

innovation which has helped shape the world as we

know it today. Between the textbook discoveries of

penicillin by Sir Howard Florey, T-cell immunity by

Professor Peter Doherty (together with Rolf Zinkernagel)

and telomere functionality by Professor Elizabeth

Blackburn, Australasian scientists have cemented their

place as global leaders in health and medical research.

Importantly, research aimed at understanding cell survival

and cell death has long been integral to many of

Australasia’s most notable scientific breakthroughs. This

Editorial, composed by members of the Australasian Cell

Death Society (ACDS) committee, aims to celebrate the

long and storied history of cell death research within

Australia and New Zealand.

It was Australian pathologist John Kerr who first

coined the term “apoptosis” (Greek for “falling off,” in

reference to the falling leaves from trees in autumn) to

describe the unusual phenomenon of ordered cell death

during acute liver injury in rats.1,2 In a series of electron

microscopy images, Kerr laid out the unique

morphological features of apoptosis that are still

referenced half a century later. These described an

ordered process of cellular dismantlement that begins

with nuclear and cytoplasmic condensation, and ends

with the engulfment of apoptotic bodies by surrounding

cells (Figure 1a).2 While first considered a somewhat

esoteric field of study, today the search term “apoptosis”

generates nearly half a million hits in PubMed, an

impressive accolade owing to its vital role in organism

development, homeostasis and immune function, as well

as its important influence in human disease.3 Since John

Kerr’s landmark publication, the cell death field has

expanded to now recognize at least twelve distinct forms

of programmed cell death, including both intrinsic and

extrinsic apoptosis, necroptosis, pyroptosis, ferroptosis,

NETosis and autophagy-dependent cell death, to name a

few.4 To this day, Australasian researchers continue to

make pivotal discoveries that define the complex

biochemical processes of programmed cell death.

Since the late 1980s, researchers at the Walter and Eliza

Hall Institute of Medical Research (WEHI) in Melbourne

have investigated the proteins that regulate intrinsic

apoptosis. Beginning with the breakthrough discovery of

B-cell lymphoma (BCL)-2 as a novel oncogene promoting

survival of B-cell leukemia,5 WEHI researchers have

continued to perform fundamental research aimed at

understanding the molecular mechanisms of apoptosis.

This includes studies on the prodeath apoptotic effectors,
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BAX and BAK,6–8 including key structural biology

insights,9–12 identification of the oncogenic transcription

factor MYC,13 therapeutic targeting of BCL-2 proteins in

cancer14–16 and the discovery of the BH3-only protein

BIM,17–20 including identifying its essential role in

deleting self-antigen reactive lymphocytes.21 Notably,

deletion of self-antigen reactive lymphocytes is the

cornerstone of the clonal selection theory that earned

Australian Sir MacFarlane Burnet the Nobel Prize in

Medicine and Physiology in 1960. This extensive portfolio
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Figure 1. Examples of cell death studied in Australasia. (a) TEM of UV-irradiated apoptotic A431 cells (provided by Satoko Arakawa, Tokyo

Medical and Dental University). (b) Lattice light sheet image of necroptotic HT29 cells following TSI treatment (yellow: Annexin V; magenta:

mTagRFP–membrane fusion protein; cyan: TO-PRO-3; provided by Andre Samson, WEHI). (c) Confocal microscopy image of pyroptotic

macrophages after LPS/nigericin treatment (gray: DAPI; yellow: ASC; red: alpha-tubulin; cyan: vimentin; provided by Caroline Holley, University of

Queensland). (d) TEM of UV-irradiated Bax/Bak DKO MEFs undergoing autophagy-dependent cell death (provided by Satoko Arakawa). ASC,

Apoptosis-associated speck-like protein containing a CARD; DAPI, 40,6-diamidino-2-phenylindole; DKO, double-knockout; LPS, lipopolysaccharide;

MEF, murine embryonic fibroblast; TEM, transmission electron microscopy; TSI, TNF, Smac mimetic and IDN-6556; UV, ultraviolet; WEHI, the

Walter and Eliza Hall Institute of Medical Research.
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has paved the way for subsequent research that further

delineates the mechanisms and downstream functions of

intrinsic apoptosis, such as the release of cytochrome-c22

and mitochondrial DNA,23 the formation of apoptotic

bodies24 and crosstalk that enables proinflammatory

cytokine release.25

In parallel to this significant body of work detailing the

regulation of intrinsic apoptosis, Australasian researchers

have also made an impressive contribution to our

understanding of extrinsic death receptor signaling. After

the international discovery of the death-inducing ligands,

Fas ligand (FASL) and tumor necrosis factor (TNF),

Australasian findings indicated that two distinct apoptotic

pathways existed, as Fas-induced death was found to be

independent of BCL-2.26 Since this discovery, Australasian

research has continued to expand our knowledge of

extrinsic apoptosis. Key studies include those on TNF

receptor signaling,27,28 TNF receptor-associated protein

with a death domain (TRADD),29 Mind Bomb-2 (MIB2),30

and inhibitor of apoptosis proteins,31–33 including the

crucial discovery of the inhibitor of apoptosis protein

antagonist Smac/DIABLO.34 Australasian researchers

have also detailed the intersecting apoptotic pathways

during T- and natural killer-cell killing,35,36 and discovered

the novel apoptotic effector protein, caspase-2,37 among

many other ground-breaking publications on extrinsic cell

death.38–42

In addition to apoptosis, Australasian researchers have

also pioneered our understanding of alternative cell death

modalities. In Adelaide, fundamental research

investigating cell death mechanisms in Drosophila43–46

uncovered a unique caspase-independent pathway known

as autophagy-dependent cell death (Figure 1d).47,48 At

WEHI, the pseudokinase mixed-lineage kinase domain-

like (MLKL) was shown to form pores in the plasma

membrane and cause another caspase-independent form

of cell death called necroptosis (Figure 1b).49,50 Recent

studies have now detailed important structural and

functional insights into the regulation of MLKL activity

and processes that drive cell death.51,52 Australasian

research has also focused on other key necroptotic

regulators, including receptor-interacting protein kinase 1

and 3 (RIPK1 and RIPK3), and highlighted their critical

roles in inflammation and human disease.53–55 In

addition, Australasian researchers working internationally

have uncovered extensive plasticity and crosstalk between

apoptotic and lytic modes of cell death such as

necroptosis.54,56–59

At the University of Queensland, Australasian

researchers have made seminal contributions to the field

of inflammasomes and pyroptotic cell death (Figure 1c).

These include detailing how the pyroptotic effector

caspase-1 is regulated,60 inflammasome-mediated

crosstalk between pyroptosis and apoptosis,61 and the

discovery of inflammasome-driven NETosis.62 Crucially,

many studies have now highlighted the critical role of

inflammasome signaling and pyroptosis in disease.63–66

Broadening the implications of dysregulated cell death in

disease, work performed in Melbourne has also revealed

the novel connection between extrinsic apoptotic and

necroptotic cell death and inflammasome signaling.42,67

These discoveries have revolutionized our understanding of

basic cell biology, revealing the complex interlocking

mechanisms controlling cell survival and death. In addition to

maintaining homeostasis, cell death is also implicated in a

wide number of conditions, including cancer, autoimmune,

neurodegenerative, inflammatory and infectious diseases.68–70

Given this close association between cell death and

disease, Australasian cell death research has also had an

immense impact on human health. The most notable

example showcasing the translation from basic cell death

research to the clinic is the development of Venetoclax.

Building on their foundational studies from the

1980s,5,71,72 researchers at WEHI, in collaboration with

industry partners AbbVie and Genentech (Roche),

designed and developed the first “BH3 mimetic” to

target the prosurvival protein BCL-2.14 Also known by

the moniker ABT-199, the drug Venetoclax is now

approved for the treatment of chronic lymphocytic

leukemia and acute myeloid leukemia73–75 in the

European Union, the United States and Australia.

Furthermore, teams at WEHI, The Alfred Hospital and

the Australian Centre for Blood Diseases were involved

in the identification of the anti-apoptotic BCL-2 family

member, MCL-1, as an attractive target for cancer

therapy.76 As such, the French pharmaceutical company

Servier has developed the first specific MCL-1 inhibitor

that is in clinical trials for acute myeloid leukemia and

other blood cell–derived malignancies in Melbourne and

many other parts of the world.15 These are just some of

the many Australasian success stories where basic

research has led to drug development and improvement

of patient outcomes on a global scale. With the

abundance of Australasian cell death groups currently

investigating models of disease and therapeutic

development,77–81 we can expect to see many more

pioneering Australasian studies being translated into the

clinic.

The ACDS was established in 2021 to harness the long

history of Australasian cell death research illustrated in

this Editorial, and to support the next generation of

upcoming scientists. The overriding goal of the ACDS is

to create a supportive cell death community where

national and international collaboration can flourish. By

facilitating connectivity and communication between

early, mid- and senior career researchers, the ACDS aims
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to build upon the Australasian reputation as global

leaders in cell death research. The ACDS recognizes the

barriers that upcoming scientists face, such as scarce and

highly competitive funding, and strives to support the

professional development of its junior members through

Career Development Awards, networking and seminar

opportunities as well as exposure through the easily

accessible Cell Death Researcher Database. The ACDS was

the vision of postdoctoral scientist Dr Georgia Atkin-

Smith (ACDS President) and is led by a committee of

enthusiastic PhD students and postdocs from across

Australasia. The society pays tribute to the Pioneers of

Australasian cell death research, Professor Andreas

Strasser, Professor Sharad Kumar, Professor Suzanne

Cory, Associate Professor Ruth Kluck, Professor Jerry

Adams, Professor Peter Colman, Professor David Vaux

and Dr Kim Newton, who have been appointed as

Honorary Members to provide strategic oversight. Many

of Australasia’s most notable cell death findings were

made possible through strong collaborations with

international researchers. As such, the ACDS is honored

to welcome Professor Shigekazu Nagata to its Pioneer

Board, as the society strives to further strengthen its ties

between Australasia and Japan. In addition to its

Pioneers, the ACDS showcases inspirational leaders in the

cell death field as Luminaries, who hail from the WEHI,

Peter MacCallum Cancer Centre, Monash University, the

Hudson Institute of Medical Research, La Trobe

University, the Olivia Newton John Cancer Research

Institute, The University of Adelaide, The University of

Queensland, The University of Otago (Te Whare

W�ananga o �Ot�akou) and Genentech.

Given the long and distinguished history of cell death

research in Australasia, the ACDS is excited to celebrate

its 1-year anniversary by endorsing a Virtual Australasian

Cell Death Issue of Immunology & Cell Biology (ICB) that

includes works by Pioneers, Luminaries and emerging

leaders in the field.
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