2024 ANNUAL DRINKING WATER QUALITY REPORT ## TOWN OF LAWRENCEVILLE PWSID NO. 5025450 #### INTRODUCTION This Annual Drinking Water Quality Report for calendar year 2024 is designed to inform you about your drinking water quality. Our goal is to provide you with a safe and dependable supply of drinking water, and we want you to understand the efforts we make to protect your water supply. The quality of your drinking water must meet state and federal requirements administered by the Virginia Department of Health (VDH). If you have questions about this report, or if you want additional information about any aspect of your drinking water or want to know how to participate in decisions that may affect the quality of your drinking water, please contact: Randall W. Lynch, at 434-848-2414, Town Manager The times and location of regularly scheduled board meetings are as follows: Second Tuesday of each month at 7:00 PM at the Town Office building. #### **GENERAL INFORMATION** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - -Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - -Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - -Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial process and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. - -Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. All drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorder, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). ## SOURCE OF YOUR DRINKING WATER The source of your drinking water is surface water as described below. The primary raw water intake is located on Great Creek with a secondary intake on the Meherrin River. Treatment of the raw water consists of chemical addition, coagulation, flocculation, settling, filtration, fluoridation and chlorination. All of these processes work together to remove the physical, chemical, and biological contaminants to make the water safe for drinking. The Town of Lawrenceville also provides water to customers in Brunswick County, the Brunswick County IDA and the Town of Alberta. A source water assessment of our system was conducted in March 2002 by the Virginia Department of Health. The Great Creek and Meherrin River were determined to be of High susceptibility to contamination using the criteria developed by the State in its approved Source Water Assessment Program. The assessment report consists of maps showing the source water assessment area, an inventory of known land use activities of concern, and documentation of any known contamination within the last 5 years. The report is available by contacting your water system, The Town of Lawrenceville at the phone number or address given elsewhere in this drinking water quality report. #### DEFINITIONS Contaminants in your drinking water are routinely monitored according to Federal and State regulations. The table on the next page shows the results of our monitoring for calendar year 2024. In the table and elsewhere in this report you will find many terms and abbreviations you might not be familiar with. The following definitions are provided to help you better understand these terms: Non-detects (ND) - lab analysis indicates that the contaminant is not present within the detection limits of the instrument used. Parts per billion (ppb) or Micrograms per liter- one part per billion corresponds to one minute in 2000 years or a single penny in \$10,000,000. Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water. Milirems per year (mrem/year) - milirems per year is a measure of radiation absorbed by the body. Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the cloudiness of the water. Turbidity in excess of 5 NTU is just noticeable to the average person. Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water systems must follow. Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water. Maximum Contaminant Level Goal, or MCLG- the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum Contaminant Level, or MCL- the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLs as feasible using the best available treatment technology. Maximum Residual Disinfectant Level Goal or MRDLG-the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Maximum Residual Disinfectant Level or MRDL-the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Abbreviations: N/A- Not Applicable MGD- Million Gallons per Day QTR- Quarter AVG- Average DBP- Disinfection By - Products resulting through disinfection using chlorine WATER QUALITY RESULTS | Contaminant | MCLG | MCL | LEVEL
FOUND | RANGE | VIOLATION | DATE OF
SAMPLE | TYPICAL SOURCE
OF
CONTAMINATION | |---|------|---|---|-----------|-----------|---|---| | RTCR
Total coliform
and E. Coli | | | No samples
Total Coliform
Present or E.
Coli Present | N/A | No | Routinely
collect five
samples per
month | Human and animal
feces | | Turbidity (NTU)
See
Foot note (3) | N/A | TT,Max= 1 NTU TT = 95% of monthly Samples <= 0.3NTU | Max= 1.33
% of monthly
samples NTU | 0.04-1.33 | | Continuous | Soil Runoff | | Fluoride
(ppm) | 4 | 4 | 1.02 | N/A | No | 12/26/2024 | Erosion of natural de-
posits; Water additive
which promotes
strong teeth;
Discharge from
fertilizer and
aluminum factories | | Barium
(mg/l) | 2 | 2 | 0.016 | N/A | No | 10/22/2024 | Erosion of natural
deposits; Discharge of
drilling wastes;
Discharge from metal
refineries | | Nitrate-Nitrite
(ppm) | 10 | 10 | 0.08 | N/A | No | 10/22/2024 | Runoff from fertilizer
use, Leaching from
septic tanks, sewage;
and erosion of natural
deposits | | Gross Alpha
(pCi/L) | 0 | 15 | 3 | N/A | No | 10/18/2022 | Erosion of natural
deposits | | Combined
Radium
(pCi/L) | 0 | 5 | 0.2 | N/A | No | 10/18/2022 | Erosion of natural
deposits | | Copper (ppm)
Footnote (A) | 1.3 | AL=1.3 | 90%=0.25 (none of 20 samples exceeded the action level) | <0.02-0.7 | No | 09/28/2022 | Corrosion of plumbing. | | Lead(ppb)
Footnote (1) | 0 | AL=15 | 90%= 2.9 (one of 20 samples exceeded the action level) | <2-162 | No | 09/28/2022 | Corrosion of plumbing | ### **DISINFECTION BYPRODUCTS** | Contaminant
SITE 1 - DBP 02 | MCLG | MCL | Level
Found | Range | Violation | Date of
Sample | Typical Source of Contamination | |---|------|--|------------------------------------|-----------|-----------|---------------------------------|--| | HAA5s(Total Haloacetic
Acids)(ppb)
Footnote (B) | N/A | 60
Running 4
qtravg | Max
4-qtr avg
82 | 21-144 | Yes | Quarterly
2024 | By-product of drinking water disinfection | | TTHMs(Total
Trihalomethanes)(ppb)
Footnote (C) | N/A | 80 | Max
4-qtr avg
92 | 24-160 | Yes | Quarterly
2024 | By-product of drinking water
disinfection | | Contaminant
SITE 2- DBP 03 | MCLG | MCL | Level
Found | Range | Violation | Date of
Sample | Typical Source of Contamination | | HAA5s(Total Haloacetic
Acids)(ppb)
Footnote (B) | N/A | 60Running 4
qtravg | Max
4 qtravg
83 | 40-128 | Yes | Quarterly
2024 | By-product of drinking water
disinfection | | TTHMs(Total
Trihalomethanes)(ppb)
Footnote (C) | N/A | 80Running 4
qtravg | Max
4 qtravg
82 | 44-128 | Yes | Quarterly
2024 | By-product of drinking water
disinfection | | TOC(Total Organic
Carbon)
Removal Ratio | N/A | IT-TOC
removal ratio
greater than
or equal to
1.00 | lowest
quarter
ratio
1.72 | 1.72-2.76 | No | Monthly | Naturally present in the environment | | Chlorine (ppm) (4) | 4 | \$ | Avg
.67 | 0.04-1.73 | No | Monthly at 5
Sites in System | Disinfection | ### **FOOTNOTES** Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Town of Lawrenceville is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Town of Lawrenceville at the Town of Lawrenceville Office, at 400 North Main Street, Lawrenceville, VA 23868 434-848-2414. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead. In 2024 the EPA required municipalities to complete a Lead Service Line Inventory. Results were submitted to the Virginia Department of Health. No lead lines were found for the Town of Lawrenceville. For a copy of the 2024 Lead Inventory assessment for the Town of Lawrenceville, contact the Town of Lawrenceville Office, at 400 North Main Street, Lawrenceville, VA 23868, 434-848-2414. It is possible that copper levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated copper levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791). - (B): Haloacetic acids-Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer. - (C): TTHMs-Some people who drink water containing trihalomethanes in excess of the MCL over many years could experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. - (2): The MCL for beta particles is 4 mrem/year. EPA considers 50 pci/L to be the level of concern for beta particles. - (3): Turbidity is a measure of the cloudiness of the water and is used because it is a good indicator of how well the filtration system is functioning. *The Max 1.53 NTU reading was related to combined filter readings from November 18th (1.28 NTU) and November 19th (1.53 NTU), 2024 and December 21, 2024 (1.53 NTU). The event in November was attributed to a clogged Delpac Line. Then event in December was attributed to high turbidity levels. - (4): Chlorine, under Disinfection Byproducts, is based on 59 samples. We regularly monitor for various contaminants in the water supply to meet regulatory requirements. The table lists only those contaminants that were present at levels of detection. Many other contaminants have been analyzed but were not present or were below the detection limits of the lab equipment. Most of the results in the table are from testing done in 2020. However, the State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. MCL's are set at very stringent levels by the U. S. Environmental Protection Agency. In developing the standards EPA assumes that the average adult drinks 2 liters of water each day throughout a 70-year life span. EPA generally sets MCLs at levels that will result in no adverse health effects for some contaminants or a one-in-ten-thousand to one-in-a-million chance of having the described health effect for other contaminants. We are pleased to report to you that there were no detections of total coliforms or fecal coliforms in the monthly samples collected during calendar year 2024. # **Unregulated Contaminant - Sodium** The sodium concentration of 27 mg/L in the treated water is above the EPA-recommended optimal level of less than 20 mg/L of sodium in drinking water, which is established for those individuals on a "strict" sodium intake diet. #### **VIOLATION INFORMATION** The Town of Lawrenceville Water system was in violation of the MCL for DBP – TTHM level at one or both sampling points during the second, third and fourth quarters in 2024. The four quarter running average for the 4th quarter for 2024 was 92 and 82 parts per billion and the limit is 80 parts per billion. The Town of Lawrenceville is committed to reduce the TTHM levels through treatment technique improvements at the water plant and working with VDH and engineers for distribution system enhancements and improvements. The Town of Lawrenceville Water system was in violation of the MCL for DBP – HAA5 level at one or both sampling points during the first, second, third and fourth quarters in 2024. The four quarter running average for the 4th quarter for 2024 was 82 and 83 parts per billion and the limit is 80 parts per billion. The Town of Lawrenceville is committed to reducing the HAA5 levels through treatment technique improvements at the water plant and working with VDH and engineers for distribution system enhancements and improvements. The Town of Lawrenceville Water system was in violation for failure to submit an Operational Evaluation Report (OEL) within the 90-day period to the Office of Drinking Water (ODW) for the third quarter TTHM and HAA5 results of 2024. This Drinking Water Quality Report was prepared by: Randall Lynch, Town Manager Town of Lawrenceville 400 N. Main Street Lawrenceville, VA 23868 (434) 848-2414 The plant operators are required to be State certified by the Department of Professional and Occupation Regulations. The Virginia Department of Health classifies the Lawrenceville water plant as a Class 2 facility capable of producing three million gallons per day. The operators at the Lawrenceville water treatment plant strive every day of the year to produce the highest quality water for your use. The experience and dedication of the following operators is what makes that possible: David Epps, Operator, Class Two, Licensure Robert Myrick, Operator, Class Four Licensure Phil Pegram, Part-time Operator, Class One Licensure David Seward, Part-time Operator, Class Two Licensure Grayson Townsend, Part-Time Operator, Class One Licensure The Town of Lawrenceville continues to strive for efficiencies while delivering the best quality of water in Southern Virginia. We will continue to enhance the distribution system through system upgrades and maintenance of the existing system. Part of this maintenance program is an annual flushing of fire hydrants. The flushing of fire hydrants may occur this summer and will be announced in the Brunswick Times Gazette. When the fire hydrant flushing occurs, please remember to check the color of your water prior to doing any laundry. Water bills are sent out at the beginning of every month and are due on or before the 22nd of that month. The water meters are read with a lap top computer to ensure proper readings for each account. The radio read water meter replacement program reduced the labor required to read the water meters. The previous manual reading of the water meters would take three men about four days to complete the reading, or thirty-two hours of labor. The new system allows one person to read the water meters in five hours. The Town is saving twenty-seven hours of labor every time that we read the water meters.