

RGM COLLEGE OF ENGINEERING & TECHNOLOGY

 (Autonomous)
Approved by AICTE, New Delhi.

Accredited by NAAC with A+ Grade.
Affiliated to J.N.T.University, Ananthapuram.
 Nandyal – 518501. Kurnool (dist.), A.P.

YEAR/SEMESTER: II/I REGULATIONS: R-19

PYTHON PROGRAMMING (A0503193)

 COURSE MATERIAL

PREPARED BY:

Mr. P. PRATHAP NAIDU

ASSISTANT PROFESSOR

DEPARTMENT OF CSE

RGMCET (Autonomous)

NANDYAL - 518501

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 CSE-R-2019 SYLLABUS
R G M COLLEGE OF ENGINEERING & TECHNOLOGY, NANDYAL

AUTONOMOUS

COMPUTER SCIENCE ENGINEERING

II B.Tech. I-Sem (CSE) T C

 2+1 3

PYTHON PROGRAMMING (A0503193)

(Common to all Branches)

COURSE OBJECTIVES: This course will enable students to:

 Learn Syntax and Semantics of various Operators used in Python.
 Understand about Various Input, Output and Control flow statements of Python.

 Handle Strings and Files in Python.

 Understand Lists, Tuples in Python.

 Understand Sets, Dictionaries in Python.

 Understand Functions, Modules and Regular Expressions in Python.
COURSE OUTCOMES: The students should be able to:

 Examine Python syntax and semantics and be fluent in the use of various Operators

of Python.

 Make use of flow control statements and Input / Output functions of Python.

 Demonstrate proficiency in handling Strings and File Systems.

 Create, run and manipulate Python Programs using core data structures like Lists
and Tuples.

 Apply the core data structures like Sets and Dictionaries in Python Programming.

 Demonstrate the use of functions, modules and Regular Expressions in Python.

MAPPING OF COs & POs
CO/
PO

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

PSO
1

PSO
2

PSO
3

CO1 3 1 1 1 1

CO2 2 3 1 1 1 1

CO3 1 2 1 1 1 1

CO4 2 2 1 1 1 1

CO5 2 2 1 1 1 1

CO6 2 2 1 1 1 1

UNIT – I:
Introduction: History of Python, Need of Python Programming, Applications Basics of

Python Programming Using the REPL(Shell), Running Python Scripts, Variables,

Assignment, Keywords, Input-Output, Indentation. Overview on data types: Numbers,

Strings, Lists, Set, Tuple and Dictionaries.
Operators in Python: Arithmetic Operators, Comparison (Relational) Operators,

Assignment Operators, Logical Operators, Bitwise Operators, Shift Operators, Ternary

operator, Membership Operators, Identity Operators, Expressions and order of evaluations.

Illustrative examples on all the above operators.

UNIT – II:
Input and Output statements: input() function, reading multiple values from the keyboard

in a single line, print() function, ‘sep’ and ‘end’ attributes, Printing formatted string,

replacement operator ({}). Illustrative examples on all the above topics.

Control flow statements: Conditional statements – if, if-else and if-elif-else statements.
Iterative statements – for, while. Transfer statements – break, continue and pass.

Illustrative examples on all the above topics.

UNIT – III:
Strings: Introduction to strings, Defining and Accessing strings, Operations on string -

String slicing, Mathematical Operators for String, Membership operators on string,

Removing spaces from the string, Finding Substrings, Counting substring in the given

String, Replacing a string with another string, Splitting of Strings, Joining of Strings,

Changing case of a String, Checking starting and ending part of the string, checking type of
characters present in a string. Illustrative examples on all the above topics.

Files: Opening files, Text files and lines, Reading files, Searching through a file, Using try,

except and open, Writing files, debugging.

 CSE-R-2019
R G M COLLEGE OF ENGINEERING & TECHNOLOGY, NANDYAL

AUTONOMOUS

COMPUTER SCIENCE ENGINEERING

UNIT – IV:

Lists: Creation of list objects, Accessing and traversing the elements of list. Important
functions of list – len(), count(), index(), append(), insert(), extend(), remove(), pop(),

reverse() and sort(). Basic Operations on list: Aliasing and Cloning of List objects,

Mathematical Operators for list objects, Comparing list objects, Membership operators on

list, Nested Lists, List Comprehensions. Illustrative examples on all the above topics.

Tuples: Creation of Tuple objects, Accessing elements of tuple, Mathematical operators for
tuple, Important functions of Tuple – len(),count(),index(), sorted(), min(), max(), cmp().Tuple

Packing and Unpacking. Illustrative examples on all the above topics.

UNIT – V:
Sets: Creation of set objects, Accessing the elements of set. Important functions of set –

add(), update(), copy(), pop(),remove(),discard(),clear(). Basic Operations on set -

Mathematical Operators for set objects, Membership operators on list, Set Comprehensions.

Illustrative examples on all the above topics.

Dictionaries: Creation of Dictionary objects, Accessing elements of dictionary, Basic

operations on Dictionary - Updating the Dictionary, Deleting the elements from Dictionary.
Important functions of Dictionary – dict(), len(), clear(), get(), pop(), popitem(), keys(),

values(), items(), copy(), setdefault(). Illustrative examples on all the above topics.

UNIT – VI:
Functions - Defining Functions, Calling Functions, Types of Arguments - Keyword

Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful

functions (Function Returning Values), Scope of the Variables in a Function - Global and

Local Variables. Recursive functions, Illustrative examples on all the above topics.

Modules: Creating modules, import statement, from Import statement.
Regular Expressions: Character matching in regular expressions, Extracting data using

regular expressions, Combining searching and extracting, Escape character.

TEXT BOOKS
1) Python for Everybody: Exploring Data Using Python 3, 2017 Dr. Charles R.

Severance

REFERENCE BOOKS
1) Think Python, 2 Edition, 2017 Allen Downey, Green Tea Press

2) Core Python Programming, 2016 W.Chun, Pearson.

3) Introduction to Python, 2015 Kenneth A. Lambert, Cengages

4) https://www.w3schools.com/python/python_reference.asp

1) https://www.python.org/doc/

https://www.w3schools.com/python/python_reference.asp
https://www.python.org/doc/

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 1/81

 UNIT - 1

Python Language Fundamentals

Topics Covered:
Introduction

Application areas of Python

Features of Python

Limitations of Python

Flavours of Python

Python Versions

Identifiers

Reserved Words

Datatypes

Typecasting

NOTE: If you really strong in the basics, then remaining things will become so easy

L1: What is Pyhton?

It is a Programming Language.

- We can develop applications by using this programming language.

We can say that, Python is a High-Level Programming Language. Immediately you may get doubt that,
What is the meaning of High-Level Programming Language.

- High-Level means Programmer friendly Programming Language. This means we are not
required to worry about Low-level things [i.e., Memory management, security, d
estroying the objects and so on.]

- By simply seeing the code programmer can understand the program. He can write th
e code vey easily.

- High level languages are Programmer friendly languages but not machine friendly
languages.

Let's take the following example,

 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 2/81

Let s take the following example,
a = 10

b = 20

c = 30 if a>b else 40

print(c)

Do you Know, if we can take this code, are in a position to understand this code?

You are not required to have any programming knowledge.

By observing the code you can say that, the value stored in C is 40

If you have the kid, can you please show this 4 lines code and ask what is the ouput, your kid is able to answer
without having any hesitation. This type of thing is called as High level programming.

Examples of High Level Programming Languages :

C

C++

Java

C#

Python

You may get doubt that, you are writing just 4 lines code, is it really a Python code? Is it going to Work?

Let's execute and see what happens,

In [1]:

It is perfectly Python code. This is called High level programming.

Python is a General Purpose High Level Programming Language.

Here, General Purpose means Python is not specific to a particular area, happily we can use Python for any
type of application areas. For example,

Desktop Applications

Web Applications

40

a = 10

b = 20

c = 30 if a>b else 40

print(c)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 3/81

Data Science Applications

Machine learning applications and so on.

Everywhere you can use Python.

L2: Who Developed Pyhton?

Who provides food for most of the programmers across the worldwide.

Guido Van Rossum developed Python language while working in National Research Institute (NRI) in
Netherland.

When he developed this Language?

Most of the people may think that so far we are heared about Java, C and C++ and we are recently knowing
about python (especially in our INDIA) and they may assume that Python is a new programming language and
Java is a old programming language.

Java came in 1995 and officially released in 1996.

Python came in 1989, this means that Python is Older programming language tha Java. Even it is
developed in 1989, but it is not released to the public immediately.

In 1991, Pyhton made available to the public. Officially Python rleased into the market on 21-02-1991 (i.e.,
First version).

Then, Immediately you may have a doubt that, Why Python suddenly (in 2019) became Popular?

Generally Market rquirements are keep on changing from time to time.

Current market situation is, every one talks about

- I need Simple Language (i.e., Easy to understandable)

- I have to write very less (or) concise code to fulfill my requirement.

- In these days, everyone talks about AI, Machine Learning, Deep Learning, Neural
networks, Data Science, IOT.For these trending requirements, best suitable program
ming language is Python.

That's why in these days, Python becomes more popular programming language.

For example, Suppose you have a diamond. When there is a value for that diamond is, if the market
requirement is good for that, then automatically this diamond value grows.

Date: 10-04-2020 - Day 2

L3. Easyness of Python compared to other programming languages

If you want to learn Python programming, what is the prerequisite knowledge required?

The answer for the above Question is:

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 4/81

Nothing is required, If you are in a position to read English statements, that is enough to learn Pyhton
programming.

Eg:

If you are learning any programming language, the first application which we discuss is Hello World
application.

In 'C'

1) #include <stdio.h>

2) void main()

3) {

4) printf("Hello World");

5) }

In 'Java'

1) public class HelloWorld

2) {

3) public static void main(String[] args)

4) {

5) System.out.println("Hello world");

6) }

7) }

In 'Python

In [1]:

In [3]:

Just to print 'Hello World',

C language takes 5 lines of code

Java takes 7 lines of code

But, Python takes only one line of code.

Hello World

Hello World

print("Hello World");

print("Hello World") # ';' is also optional

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 5/81

ut, yt o ta es o y o e e o code

When compared with any other prgramming language (C, C++, C## or Java), the easiest programming
langague is Python.

Let us take another example,

To print the sum of Two numbers

Java

1) public class Add

2) {

3) public static void main(String[] args)

4) {

5) int a,b;

6) a =10;

7) b=20;

8) System.out.println("The Sum:"+(a+b));

9) }

10) }

C

1) #include <stdio.h>

2) void main()

3) {

4) int a,b;

5) a =10;

6) b=20;

7) printf("The Sum:%d",(a+b));

8) }

Python

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 6/81

In [6]:

Even we can combine first two lines of the above code into a single line

In [8]:

This is the biggest advantage of python programming. We can do many things with very less code.

a=10

b=20

print("The Sum:",(a+b))

By seeing the above code, you may get one doubt that, In C & Java we declared variables 'a' and 'b' as int
type. But in Python we didn't declare 'a' and 'b' types. You may ask that, in Python we need not to declare the
type of the variables.

In Python, type concept is applicable (int,float .. types are there in Python), but we are not required to declare
type explicitly.

In Python, whenever we are assigning some value to a variable, based on the provided value, automatically
type will be considered. Such type of programming languages are known as Dynamically Typed
Programming Languages.

In [9]:

In [11]:

In [13]:

The Sum: 30

The Sum: 30

<class 'int'>

<class 'float'>

<class 'bool'>

a=10
b=20
print("The Sum:",(a+b)) # 3 line of code

a,b=10,20
print("The Sum: ",a+b) # 2 linesof code

a = 10
print(type(a))b

a = 10.5
print(type(a))

a = True
print(type(a))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 7/81

In [15]:

In python, same variable can be used with mutiple types of data.

In [17]:

Examples of Dynamically Typed Programming Languages:

Python
JavaScript etc.,

Examples of Statically Typed Programming Languages:

C
C++
Java etc.,

There is no prerequisite for learning Python programming. So, Python is recommended as first
programming language for beginners.

Key points

1. Python is a general purpose high level programming language.

2. Python was developed by Guido Van Rossam in 1989, while working at National Research Institute at
Netherlands.

3. Officially Python was made available to public in 1991. The official Date of Birth for Python is : Feb
20th 1991.

4. Python is recommended as first programming language for beginners.

5. Python is an Example of Dynamically typed programming language

Why the name 'Python'

Why Guido Van Rossum selected the name Python?

<class 'str'>

<class 'int'>
<class 'float'>
<class 'str'>

a = "Karthi"
print(type(a))

a = 10
print(type(a))
a = 10.5
print(type(a))
a="Karthi"
print(type(a))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 8/81

y y
If you are a fan of any hero or heroine or political leader, generally you are trying to use same name for
your passwords or user ids. It's a very common practice.

In The same, Guido Van Rossum also very much impressed with one fun show, The Complete Monty
Python's Flying Circus, which was broadcasted in BBC from 1969 to 1974. From this show name, he
selected the word Python to his programming language.

L4. Python as All Rounder

C --> Procedural/Functional Programming Language

C++, Java --> Object Oriented Programming Languages

Perl, Shell Script ---> Scripting Languages

C language missing the benefits of Object oriented programming features like, Encapsulation, Inheritance
and Polymorphism etc.,
Similarly OOP languages are not make use of the functional programming feactures up to the maximium
extent.
Scrpting language: Group of lines one by one will have to execute.

Every Programming language having it's own specific behaviour, that specific pradigm benefits only they are
going to get.

What about Python?

Is it Functional Programming language?

(OR)

Is it Object Oriented Programming language?

(OR)

Is it Scripting Language?

While developing Python, Guido Van Rossum borrowed -

Functional programming features from C

Object Oriented Programming features from C++ (Because, Java was not developed at that time)

Scripting language features from Perl,Shell Script.

So, Python is considerd as All Rounder. Python can enjoy the benefits of all types of programming language
paradigms.

1. Python as Scripting Language:

Scripting Language: Scripting language means a grou of lines of code will be there and they will be executed
line by line.

No functions concept, No classes concept, just a group lines will be executed one by one.

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 9/81

In [18]:

2. Python as Functional Programming Language:

In [21]:

3. Python as Object Oriented Programming Language:

In [22]:

Note:

Most of the syntax used in Python borrowed from 'C' & 'ABC' Programming Language.

L5. Where We Can Use Python

We can use Python everywhere. The most common important application areas are as follows:

1. For developing Desktop Applications

Python as Scripting language
Python as Scripting language
Python as Scripting language
Python as Scripting language
Python as Scripting language
Python as Scripting language

Python as Functional Programming language
Python as Functional Programming language
Python as Functional Programming language
Python as Functional Programming language

Python as Object Oriented Programming Language

print("Python as Scripting language")
print("Python as Scripting language")
print("Python as Scripting language")
print("Python as Scripting language")
print("Python as Scripting language")
print("Python as Scripting language")

def f1():
 print("Python as Functional Programming language")
 print("Python as Functional Programming language")
 print("Python as Functional Programming language")
 print("Python as Functional Programming language")

f1()

class Test:
 def m1(self):
 print("Python as Object Oriented Programming Language")

test = Test()
test.m1()

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 10/81

p g p pp
The Applications which are running on a single systems (i.e., Stand alone applications)

Eg: Simple Calculator application

2. For developing Web Applications

Eg: Gmail Application, Online E-commerce applications, Facebook application, Blog applications etc.,

3. For Network Applications

Eg: Chatting applications, Client-Server applictaions etc.,

4. For Games development

5. For Data Analysis Applications

6. For Machine Learning applications

7. For developing Artificial Intelligence, Deep Learning, Neural Network Applications

8. For IOT

9. For Data Sciene

That's why Python is called as General Purpose Programming Language.

Which Software companies are using Python

Internally Google and Youtube use Python coding

NASA and Nework Stock Exchange Applications developed by Python.

Top Software companies like Google, Microsoft, IBM, Yahoo, Dropbox, Netflix, Instagram using Python.

L6. Features of Python

1. Simple and easy to learn

Consider English Language, how many words are there in english? Crores of words are there in english
language. If you want to be perfect in english, you should aware about all these words.

If you consider Java, You should aware of 53 words. That means when compared to English, learning Java
is easy.

If you consider Python Programming language, You should aware about 33 Words (Reserved Words). The
person who can understand these 33 words, then he will become expert in Python.

So, Python is a simple programming language. When we read Python program, we can feel like reading
english statements.

For example, if you consider ternary operator in Java,

x = (10>20)?30:40; ---> Java Statement

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 11/81

If we ask any person, what this line is doing? 99% of Non-programming people are going to fail unless and
until if they know Java.

If I write the same thing in python,

x = 30 if 10>20 else 40 ----> Python Statement

If Iwe ask any person, what this line is doing? 99% of Non programming people are going to give correct
answer.

When compared with other languages, we can write programs with very less number of lines (i.e, Concise
Code) . Hence more readability and simplicity in the python code.

Because of the concise code, we can reduce development and cost of the project.

Let us take an example,

Assume that We have one file (abc.txt) with some data in it. Write a Python program to read the data
from this file and print it on the console.

If you want to write the code for the above problem in C or Java we need to make use of more lines of code.
But if you write program in Python, just 1 line is more enough.

In []:

2. Freeware and Open Source

Freeware and Open source are not same.

Freeware:

To use Python, How much Licence fee we need to paid?

We need not pay single rupee also to make use of Python. It is freeware, any person can use freely, even
for business sake also.

If you consider Java, Java is vendered by Oracle. (Commercial)

If you consider C# , C# is vendered by MicroSoft. (Commercial)

If you consider Python, who is vendor for Python? There is no vendor for Python, there is one charitable
Foundation, Python Software Foundation (PSF) is responsible for maintainane of Python. PSF is Non-Profit
oriented Organization.

To use Python, you need not pay any money to PSF. If you want to donate voluntarily for this foundation,
you can pay.

The corresponding Website for PSF is python.org, from where you have to download Python software.

But for Java, from it's 11 version onwards it is the paid version. If you want to use for your personal use or
business sake, compulsory licence must be required.

C# & .Net also requires licence to use.

Open Source:

Execution pending

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 12/81

The Source code of the Python is open to everyone, so that we can we can customize based on our
requirement. Because of this multiple flovours of Python is possible.

Eg:

1. Jython is customized version of Python to work with Java Applications.

2. Iron Python is customized version of Python to work with C## & .Net Applications.

3. Anaconda Python is customized version of Python to work with Bigdata Applications.

One main advantage of Python is for every requirement specific version is availble in the market.

We can use our specific version of python and fulfill our requirement.

3. High Level Programmimg Language

High level programming language means Programmer friendly language.

Being a programmer we are not required to concentrate low level activities like memory management and
security etc..

Any programmer can easily read and understand the code. Let's see the below example,

In [3]:

4. Platform Independent

Assume that one C program is there, We have three machines are there which are working on three platforms
(i.e., Windows,Linux, MAC). Now, we want to distribute One C application to the clients who are working on
different platforms. Then what we need to do is,

For Windows, a seperate C program must be reqired. A C program for Windows system can't run on Linux
machine or MAC machine.

For Linux, a seperate C program must be reqired. A C program for Linux system can't run on Windows
machine or MAC machine.

For MAC, a seperate C program must be reqired. A C program for MAC system can't run on Linux machine
or Windows machine.-

So, Compulsory for every platform you have to write the platform specific application. Now we have three
applications and three platforms.

So, C programming language is platform dependent language.

Assume that one Python program is there, We have three machines are there which are working on three
platforms (i.e., Windows,Linux, MAC). Now, we want to distribute One Python application to the clients who are
working on different platforms. Then what we need to do is,

50

a = 20
b = 30
print(a+b)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 13/81

Write the Python program once and run it on any machine. This is the concept of Platform Independent
nature.

So, Python programming language is Platform Independent Language.

How platform independent nature is implemented in Python?

If you want to run Python application on Windows platform, what must be required is Python Virtual Machine
(PVM) for Windows is required. If we provide Python application to the PVM for Windows, PVM is responsible
to convert the python program into Windows specific and execute it.

In the same way, If you want to run Python application on Linux platform, what must be required is Python
Virtual Machine (PVM) for Linux is required. If We provide Python application to the PVM for Linux, PVM is
responsible to convert the python program into Linux specific and execute it.

In the same way, If you want to run Python application on MAC platform, what must be required is Python
Virtual Machine (PVM) for MAC is required. If We provide Python application to the PVM for MAC, PVM is
responsible to convert the python program into MAC specific and execute it.

Platform specific conversions are taken care by PVM.

Python program is Platform independent

Python Virtual Machine is Platform dependent

5. Portability

In general poratble means movable. In our childhood days, we heard about portable TV (14 inches), which
can be moved from one place to another place very easily.

Another place where we commonly used the term Portablity is mobile number portability.

Now Python application Portability means,

- Assume that one windows machine is there, in this machine your python applicatio
n is running without any difficulty. Because of licence issue or security issue y
ou want to move to Linux machine. If you are migrating to Linux machine from Windo
ws is it possible to migrate your python application or not? Yes, because Python
application never talks about underlying platform. Without performing any changes
in your Python application, you can migrate your Python application from one platf
orm to another platform. This is called Portability.

6. Dynamically Typed

In Python we are not required to declare type for variables. Whenever we are assigning the value, based on
value, type will be allocated automatically.Hence Python is considered as dynamically typed language.

But Java, C etc are Statically Typed Languages because we have to provide type at the beginning only.

This dynamic typing nature will provide more flexibility to the programmer.

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 14/81

7. Python is both Procedure oriented and Object orieted

Python language supports both Procedure oriented (like C, pascal etc) and object oriented (like C++,Java)
features. Hence we can get benefits of both like security and reusability etc.

8. Interpretted

We are not required to compile Python code.

If you consider C program, we have to compile and execute the code.

If you consider Java program, we have to compile and execute the code.

If you consider Python program, we have execute the code. We are not required to compile. Internally
Interpretter is responsible for compilation of the Python code.

If compilation fails interpreter raised syntax errors. Once compilation success then PVM (Python Virtual
Machine) is responsible to execute.

9. Extensible

You can extend the functionality of Python application with the some other languages applications. what it
means that -

Let us assume that some C program is there, some Java program is there, can we use these applications in our
Python program or not?

yes, we can use other language programs in Python.

What is the need of that?

1. Suppose We want to develop a Python application, assume that some xyz functionality is required to
develop the Python application.

2. There is some java code is already there for this xyz functionality. It is non python code. Is it possible to
use this non-python code in side our python application.

Yes, No problem at all.

The main advantages of this approach are:

1. We can use already existing legacy non-Python code

2. We can improve performance of the application

10. Embedded

Embedded means it is same as extensible in reverse.

We can use Python programs in any other language programs. i.e., we can embedd Python programs
anywhere.

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 15/81

11. Extensive Library

In Python for every requirement, a readymade library is availbale.

Lakhs of libraries are there in Python.No other programming language has this much of librrary support.

Python has a rich inbuilt library.

Being a programmer we can use this library directly and we are not responsible to implement the
functionality.

Eg: Write a Python program to generate 6 digit OTP

In Python to generate random numbers already a library is availbale. By make use of that library we can
write the code in easy manner.

In [11]:

If dont want space between numbers, include sep = '' at the end. sep means seperator, that is assigned with
empty.

In [10]:

Suppose, if we want 10 OTPs, then Python code looks like this:

In [8]:

5 0 8 8 3 1

836593

650052
666097
558558
743920
295868
950438
319213
198749
795225
269510

from random import randint
print(randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9))

from random import randint
print(randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),sep =''

from random import randint
for i in range(1,11):
 print(randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),sep

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 16/81

In [9]:

Conclusion:

1. These are the 11 key features of Python programming language.

2. Among various features of Python discussed above, the following 3 features are specific to Python

- Dynamically Typed

- Both Procedural Oriented and Object Oriented

- Extensive Library

These 3 Features are not supported by any other programming languages like C,C++ a
nd Java etc.,

Date: 11-04-2020 - Day 3

L7: Limitations and Flavours of Python

Limitaions of Python:

Eventhough Python is effective programming language, there are some areas where Python may not work up to
the mark.

Now a days, Machine Learning (ML) is the trending word. To develop ML application, Python is the best choice.
The reason is Python contains several libraries, using those libraries we can develop ML applicatios very easily.

For example, in Python we have the following modules to perform various operations:

There is a module called as numpy, which adds mathematical functions to Python.

To import and read data set, we have another module in Python called as pandas.

587659
654352
508094
836302
761498
517296
116376
704038
937445
920345

from random import randint
for i in range(10): # another way of using 'range()'
 print(randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),sep

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 17/81

To project the data in the form of Graphs, there is an another module is available in Python called as
mathplotlib.

1.Suppose We want to develop mobile applications, Python is the worst choice. Why?

The main reason for this is, Python, as of now, not having library support to develop mobile applications.

Which programming language is the best choice for mobile applications?

Android, IOs Swift are thekings in Mobile application development domain.

2.Suppose We want to develop Enterprise applications such as Banking, Telecom applications where
multiple services are required (For ex, transaction management, Security, Messaging etc.,).

To develop these end-to-end applications Python is not best suitable, because, Python doesn't have that
much Library support to develpo these applications as of now.

3.We are already discussed that, Python is interpretted programing language, here execution can be
done line by line. That's why performance wise Python is not good. Usually Interpreted programming
languages are performance wise not up to the mark.

To improve performance, Now people are added JIT compiler to the PVM. This works in the following manner:

Instead of interpreting line by line everytime, a group of lines will be interprtted only once and everytime
that interpretted code is going to used directly. JIT compiler is responsible to do that.

JIT compiler + PVM flovour is called pypy. If you want better performance then you should go for
pypy(Python for speed) version.

Note : These 3 are the various limitations of the Python.

Flavours of Python:

As we are already discussed that Python is an Open source. That means it's source code is available to
everyone. Assume that the standard Pyhthon may not fulfill our requirement. So, what we need to do is, we
have to access the source code and make some modifications and that customized Python version can fulfill
my requirement.

For Python, multiple floavours are available, each flavour itself is a customized version tofulfill a particular
requirement.

Folowwing are the various flavours of Python:

1. CPython:

It is the standard flavor of Python. It can be used to work with C lanugage Applications

2. Jython or JPython:

It is for Java Applications. It can run on JVM

3. IronPython:

It is for C#.Net platform

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 18/81

4. PyPy:

The main advantage of PyPy is performance will be improved because JIT compiler is available inside
PVM.

5. RubyPython

For Ruby Platforms

6. AnacondaPython

It is specially designed for handling large volume of data processing.

L8: Python Identifiers

What is an Identifier?

A name in Python program is called identifier. It can be class name or function name or module name or
variable name.

Eg: a = 20

It is a valid Python statement. Here 'a' is an identifier.

Rules to define identifiers in Python:

1. The only allowed characters in Python are

alphabet symbols(either lower case or upper case)
digits(0 to 9)
underscore symbol(_)

In [5]:

In [4]:

 File "<ipython-input-4-e65405076c1e>", line 1
 cash$ = 10 # '$'is not allowed as valid identifier
 ^
SyntaxError: invalid syntax

cash =10 # it is a valid identifier

cash$ = 10 # '$'is not allowed as valid identifier

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 19/81

In [9]:

2. Identifier should not starts with digit

In [10]:

In [11]:

3. Identifiers are case sensitive. Of course Python language itself is case sensitive language.

In [12]:

4. There is no length limit for Python identifiers. But not recommended to use too lengthy identifiers.

In [13]:

In [14]:

5. We cannot use reserved words as identifiers

 File "<ipython-input-9-1d588afcae49>", line 1
 all!hands = 30 # '@'is not allowed as valid identifier
 ^
SyntaxError: invalid syntax

 File "<ipython-input-11-e0b9e967153d>", line 1
 123total = 122
 ^
SyntaxError: invalid syntax

10
999

9999

all!hands = 30 # '!'is not allowed as valid identifier

total123 = 33

123total = 122

total=10
TOTAL=999
print(total) #10
print(TOTAL) #999

xxx

print(xxx

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 20/81

In [15]:

In [16]:

Q. Which of the following are valid Python identifiers?

In [17]:

In [20]:

In [21]:

In [22]:

In [23]:

 File "<ipython-input-16-0abaf39d7bbf>", line 1
 if = 33
 ^
SyntaxError: invalid syntax

 File "<ipython-input-17-eaf314d05be5>", line 1
 123total
 ^
SyntaxError: invalid syntax

 File "<ipython-input-22-d315f9380372>", line 1
 ca$h = 33
 ^
SyntaxError: invalid syntax

x = 10 # Valid

if = 33 # 'if' is a keyword in Python

123total = 22

total1234 = 22 # Valid

java2share = 'Java' # Valid

ca$h = 33

_abc_abc_ = 22 # Valid

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 21/81

In [24]:

In [25]:

In [26]:

L9: Reserved words (or) Keywords in Python

In Python some words are reserved to represent some meaning or functionality. Such type of words are called
Reserved words.

There are 33 reserved words available in Python.

True,False,None
and, or ,not,is
if,elif,else
while,for,break,continue,return,in,yield
try,except,finally,raise,assert
import,from,as,class,def,pass,global,nonlocal,lambda,del,with

1. All 33 keywords contains only alphabets symols.

2. Except the following 3 reserved words, all contain only lower case alphabet symbols.

True
False
None

 File "<ipython-input-24-be1255e3d0b6>", line 1
 def = 44
 ^
SyntaxError: invalid syntax

 File "<ipython-input-25-c8ee3642ab3d>", line 1
 for = 3
 ^
SyntaxError: invalid syntax

def = 44

for = 3

__p__ = 33 # Valid

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 22/81

In [29]:

In [31]:

For Boolean values, compulsory you need to use capital letter 'T' in True and capital letter 'F' in False.

Key Points:

switch concept is not there in Python.

Similarly do while loop is not there in Python.

'int','float','char' and 'double' such type of words are not reserved words in python, because Python is
dynamically typed language.

Note : Learning Python language itself learning of all the keywords of Python.

In [30]:

In [31]:

L9. Data types in Python - Introduction

Data Type represent the type of data present inside a variable.

NameError Traceback (most recent call last)
<ipython-input-29-c100e6034b0a> in <module>
----> 1 a = true

NameError: name 'true' is not defined

False None True and as assert async await break class continue def del elif
else except finally for from global if import in is lambda nonlocal not or p
ass raise return try while with yield

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break',
'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'fo
r', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'no
t', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

a = true

a = True # Valid

import keyword
for kword in keyword.kwlist:
 print(kword, end = ' ') #33 keywords are displaying

import keyword
print(keyword.kwlist,end=' ')

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 23/81

In Python we are not required to specify the type explicitly. Based on value provided,the type will be assigned
automatically. Hence Python is Dynamically Typed Language.

Among the following two statements, which are correct statements?

1. In Python, 'type' concept is not applicable.
2. In Python, 'type' concept is availbale, but we are not require to declare explicitly.

statement 2 only correct.

Python contains the following in-built data types

1. int
2. float
3. complex
4. bool
5. str
6. bytes
7. bytearray
8. range
9. list

10. tuple
11. set
12. frozenset
13. dict
14. None

Almost about 14 data types we need to discuss in detail.

Before going to discuss about these data types, let us know few imporatant points now.

Note: In Python, every thing is an Object.

Let us take an example,

a = 10

In this statement 10 is an object of class 'int'.

Here, 'a' is the reference variable which is pointing to 'int' object. The vale representing in the 'int' object is
10.

How can you find the type of 'a'?

By using an in-built function type(), we can find the type of any variable.

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 24/81

In [4]:

Where the object 10 is stored in the memory? (or) What is the address of the object 'a'?

By using an in-built function id(), we can find the address of an object.

In [5]:

How can you print the value of 'a'?

By using an in-built function print(), we can print the value of a variable.

In [3]:

Note:

The most commonly used in-built functions in Python are as follows:

1. type()

It is to check the type of variable

2. id()

It is used to get address of object

3. print()

It is used to print the value

L10. Data types in Python - int data type

1. Integer type

We can use 'int' data type to represent whole numbers (integral values)

Out[4]:

int

Out[5]:

140712714015840

10

a = 10
type(a)

a = 10
id(a)

a = 10
print(a)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 25/81

In [6]:

Suppose we want to represent the following number, 1234567888897333. Is it Integral number or not? Yes, it is
not taking any fractional part, so it is an integer number.

This number is too long number. To represent too long numbers, we have long data type is there. To represent
small integer numbers, we have int data type is there.

Note:

In Python2 we have long data type to represent very large integral values. But in Python3 there is no long type
explicitly and we can represent long values also by using int type only.

In [8]:

We can represent integral values in the following ways:

1. Decimal form (base 10)
2. Binary form (base 2)
3. Octal form (base 8)
4. Hexa decimal form (base 16)

1. Decimal form(base-10):

It is the default number system in Python
The allowed digits are: 0 to 9

Eg: a =10

2. Binary form(base-2):

The allowed digits are : 0 & 1
Literal value should be prefixed with 0b or 0B

Eg:

a = 0B1111

a =0B123

a=b111

Out[6]:

int

Out[8]:

int

a=10
type(a) #int

a = 123456788897333333333333333333333333333333333333333
type(a)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 26/81

In [10]:

In [11]:

In [12]:

In [13]:

3. Octal Form(base-8):

The allowed digits are : 0 to 7
Literal value should be prefixed with 0o or 0O.

In [15]:

1111

15

NameError Traceback (most recent call last)
<ipython-input-12-08fe5f31f204> in <module>
----> 1 a = b111
 2 print(a)

NameError: name 'b111' is not defined

7

83

a = 1111 # it is ot treated as binary number, by default every number is treated as decim
print(a)

a = 0b1111
print(a)

a = b111
print(a)

a = 0b111
print(a)

a = 0o123 # 64 + 16 + 3 = 83
print(a)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 27/81

In [17]:

4. Hexa Decimal Form(base-16):

The allowed digits are : 0 to 9, a-f (both lower and upper cases are allowed)
Literal value should be prefixed with 0x or 0X

In [18]:

In [24]:

In [25]:

In [26]:

Note:

Being a programmer we can specify literal values in decimal, binary, octal and hexa decimal forms. But PVM
will always provide values only in decimal form.

L11. Data types: Base conversion functions

 File "<ipython-input-17-7f92d3a1f0b2>", line 1
 a = 0o786 # error, because 8 is not an valid octal number
 ^
SyntaxError: invalid syntax

16

64206

48879

 File "<ipython-input-26-b96cba1ff699>", line 1
 a=0xbeer # 'r' is not valid hexa decimal digit
 ^
SyntaxError: invalid syntax

a = 0o786 # error, because 8 is not an valid octal number
print(a)

a = 0x10
print(a)

a = 0xface
print(a)

a = 0xbeef
print(a)

a=0xbeer # 'r' is not valid hexa decimal digit
print(a)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 28/81

In this lecture, we will learn about how to convert integral values from one base to another base. Python provide
three in-built functions for base conversions.

1. bin():

We can use bin() to convert from any other base to binary

In [1]:

In [4]:

In [5]:

2. oct()

We can use oct() to convert from any other base to octal

In [6]:

In [7]:

Out[1]:

'0b1111'

Out[4]:

'0b1010011'

Out[5]:

'0b1111101011001110'

Out[6]:

'0o75'

Out[7]:

'0o175316'

bin(15)

bin(0o123)

bin(0xface)

oct(0b111101)

oct(0xface)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 29/81

In [8]:

3. hex()

We can use hex() to convert from any other base to hexa decimal

In [9]:

In [10]:

In [11]:

By using these base conversion functions, we can convert from one base to another base.

Note :

All these base conversion functions are applicable only for Integral numbers.

L12. Data types: float data type

We can use float data type to represent floating point values (Number with decimal values)

In [12]:

Out[8]:

'0o144'

Out[9]:

'0x3e8'

Out[10]:

'0xbf'

Out[11]:

'0xa72e'

Out[12]:

float

oct(100)

hex(1000)

hex(0b10111111)

hex(0o123456)

f=1.234
type(f)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 30/81

Note: We can represent integral values in decimal, binary, octal and hexa decimal forms. But we can
represent float values only by using decimal form.

In [13]:

In [14]:

In [15]:

In [16]:

We can also represent floating point values by using exponential form (scientific notation)

In [17]:

instead of 'e' we can use 'E'

In [18]:

 File "<ipython-input-14-ce35d4648a2f>", line 1
 f = 0b1.234
 ^
SyntaxError: invalid syntax

 File "<ipython-input-15-872cc5f22444>", line 1
 f=0o1.234
 ^
SyntaxError: invalid syntax

 File "<ipython-input-16-4e3a508aa64c>", line 1
 f=0x1.23
 ^
SyntaxError: invalid syntax

1200.0

1200.0

f=1.234

f = 0b1.234

f=0o1.234

f=0x1.23

f = 1.2e3
print(f)

f = 1.2E3
print(f)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 31/81

The main advantage of exponential form is we can represent big values in less memory.

Assume that we need to store a value (12000000000000000.0)

In [20]:

Even in our calculators also to represent bigger values, we need to go for exponential notation.

L13. Data types: complex data type

In this lecture, we'll discuss about Python specific special data type known as Complex data type.

Why Python having this special data type?

If you want to develop scientific applications, mathematics based applications and Electrical engineering
applications, thiscomplex type is very very helpful.

How can we represent a complex number?

a + bj is the syntax for representing a complex number.
Here, a** is called **real part and b** is called **imaginary part.
j** value is **square of J is -1 and j = square root of -1

you may get one doubt that in the complex number representation is it compulsory j*? In mathematics we
seen *i instead of j.

It is mandatory, it should be j only in Python.

In [38]:

In [22]:

1.2e+16

Out[38]:

complex

Out[22]:

complex

f=1.2e16
print(f)

x = 10 + 20j
type(x)

x = 10 + 20J
type(x)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 32/81

In [23]:

Key Points:

In the real part if we use int value then we can specify that either by decimal,octal,binary or hexa
decimal form.

imaginary part must be specified only by using decimal form.

In [24]:

In [25]:

In [26]:

In [28]:

In [30]:

In [31]:

 File "<ipython-input-23-f3370a6b6c4b>", line 1
 x = 10 + 20i
 ^
SyntaxError: invalid syntax

10.0

20.0

x = 10 + 20i
type(x)

x = 10 +20j
print(x.real) # prints only real part

x = 10 +20j
print(x.imag) # prints only imaginary part

x = 10.5+20j # real part is a float value; Acceptable

x = 10 + 20j # real part is a int value; Acceptable

x = 10.5 +20.6j # Both real and imaginary parts also float values; Acceptable

x = 0b1111 + 20j # Acceptable

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 33/81

In [32]:

Assume that, we have two complex numbers. Can we perform arithmetic operations between these two
complex numbers?

Yes, we can perform without any difficulty.

In [33]:

In [34]:

In [35]:

In [36]:

 File "<ipython-input-32-ac01ca58fad6>", line 1
 x = 15 + 0b1111j
 ^
SyntaxError: invalid syntax

(30+50j)

(-10-10j)

(-400+700j)

(0.6153846153846154+0.0769230769230769j)

x = 15 + 0b1111j

x = 10 + 20j
y = 20 + 30j

print(x+y)

x = 10 + 20j
y = 20 + 30j

print(x-y)

x = 10 + 20j
y = 20 + 30j

print(x*y)

x = 10 + 20j
y = 20 + 30j

print(x/y)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 34/81

In [37]:

Note :

This is about basic introduction about complex data type.
It is not that much frequently used data type in Python.
It is very specific to Scientific, Mathematical and Electrical Engineering Applications.

L14. Data types: bool data type

We can use this data type to represent boolean values.

The only allowed values for this data type are: True and False (true & false are not allowed in Python)

Internally Python represents True as 1 and False as 0

In [39]:

In [40]:

TypeError Traceback (most recent call last)
<ipython-input-37-d6bb0a6e2dfd> in <module>
 2 y = 20 + 30j
 3
----> 4 print(x//y)

TypeError: can't take floor of complex number.

Out[39]:

bool

NameError Traceback (most recent call last)
<ipython-input-40-034f4c6a9dcd> in <module>
----> 1 b = true
 2 type(b)

NameError: name 'true' is not defined

x = 10 + 20j
y = 20 + 30j

print(x//y)

b = True
type(b)

b = true
type(b)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 35/81

In [42]:

In [43]:

In [44]:

In [45]:

L15. Data types: str data type representations by using single, double and triple
quotes

str represents String data type.

It is the most commonly used data type in Python

String: A String is a sequence of characters enclosed within single quotes or double quotes.

In Python to represent a string, can we use a pair of single quotes ('') or double quotes ("")?

The answer is, We can use either single quotes or double quotes.

In [46]:

False

Out[42]:

bool

2

1

0

<class 'str'>

a = 10
b = 20
c = a>b
print(c)
type(c)

print(True + True)

print(True - False)

print(True * False)

s = 'Karthi'
print(type(s))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 36/81

In [47]:

In [48]:

In [49]:

In [51]:

In Python, we can use triple quotes also in the following 3 situations.

1.By using single quotes or double quotes we cannot represent multi line string literals.

For example,

s = "Karthi

sahasra"

For this requirement we should go for triple single quotes(''') or triple double quotes(""").

In [56]:

<class 'str'>

<class 'str'>

<class 'str'>

a
<class 'str'>

 File "<ipython-input-56-cb6a1bde203b>", line 1
 s = "Karthi
 ^
SyntaxError: EOL while scanning string literal

s = "Karthi"
print(type(s))

s = 'a'
print(type(s)) # in Python there is no 'char'data type

s = "a"
print(type(s))

s = 'a'
print(s) # value of 's'
print(type(s)) #type of 's'

s = "Karthi
sahasra"

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 37/81

In [55]:

In [54]:

In [57]:

2.We can also use triple quotes, to use single quotes or double quotes as normal characters in our
String .

In [59]:

In [61]:

 File "<ipython-input-55-ad08d7556fbe>", line 1
 s = 'Karthi
 ^
SyntaxError: EOL while scanning string literal

Karthi
sahasra

Karthi
sahasra

 File "<ipython-input-59-88963cd2f04c>", line 1
 s = 'class by 'durga' is very good'
 ^
SyntaxError: invalid syntax

Out[61]:

"class by 'durga' is very good"

s = 'Karthi
sahasra'

s = '''Karthi
sahasra'''
print(s)

s = """Karthi
sahasra"""
print(s)

s = 'class by 'durga' is very good'

s = "class by 'durga' is very good"
s # if you want to include single quotes within the string keep the string in double quo

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 38/81

In [62]:

In [63]:

Now, if we want to use both single quotes and double quotes as the normal characters in the string, then you
need to enclose the string in triple quotes.

In [65]:

In [66]:

In [67]:

3.To define doc string, triple quotations will be used. (We will discuss this later)

 File "<ipython-input-62-50981f425bf1>", line 1
 s = "class by "durga" is very good"
 ^
SyntaxError: invalid syntax

class by "durga" is very good

 File "<ipython-input-65-aa9719991cfd>", line 1
 s = "classes by 'durga' for "python" is very good"
 ^
SyntaxError: invalid syntax

 File "<ipython-input-66-94674ab79602>", line 1
 s = 'classes by 'durga' for "python" is very good'
 ^
SyntaxError: invalid syntax

classes by 'durga' for "python" is very good

s = "class by "durga" is very good"
print(s)

s = 'class by "durga" is very good'
print(s) # if you want to include double quotes within the string keep the str

s = "classes by 'durga' for "python" is very good"
print(s)

s = 'classes by 'durga' for "python" is very good'
print(s)

s = """classes by 'durga' for "python" is very good"""
print(s)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 39/81

Date: 12-04-2020 - Day 4

L16. Data types: str data type - positive and negative index

One speciality is there in Python indexing, which is not available in C orJava.

The characters of the string is accessed by using it's relative position in the string, that is called as index.

In Python, indexing starts from 0.

In [38]:

Upto this is similar in C or Java like languages. Now we will see what is the speciality regrding indexing in
Python.

Python supports both positive indexing and negative indexing.

As we are already discussed, positive indexing moves in forward direction of string and starts from 0.

Negative indexing moves in reverse direction of string and starts from -1.

k
t

IndexError Traceback (most recent call last)
<ipython-input-38-dc4df5484ca1> in <module>
 2 print(s[0]) # The character locationg at 0 index is dis

played
 3 print(s[3])

----> 4 print(s[100])

IndexError: string index out of range

s = "karthi"
print(s[0]) # The character locationg at 0 index is displayed
print(s[3])
print(s[100])

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 40/81

In [42]:

L17. Data types: str data type - Slice operator

In this lecture, we are going to learn one very important Python specific special operator known as Slice
operator.

What is Slice?

Suppose, if you have an apple and if you cut it into multiple pieces. Each piece is called as a slice.

Similarly, string slice means a part of the string. You will get the part of the string by using slice operator.

In [43]:

Now, If we wnat to get which character is locating at specific index position, simply writing s[index] will
automaticlly get that character.

If we want to get slice or piece of the string, for example we want the piece of the string from index position 3 to
index position 7 (i.e., total 5 characters). You can get this piece of the string by using slice operator.

Syntax of slice operator:

stringName [beginIndex:endIndex]

This operator returns the substring (slice) from beginIndex to endIndex - 1.

i
k

IndexError Traceback (most recent call last)
<ipython-input-42-2c0d90d443f9> in <module>
 1 print(s[-1]) # it won't give index error, that is the speciality o
f Python. It prints the last character of the string.
 2 print(s[-6])
----> 3 print(s[-7])

IndexError: string index out of range

print(s[-1]) # it won't give index error, that is the speciality of Python. It prints the
print(s[-6])
print(s[-7])

s = 'abcdefghijklmnopqrstuvwxyz'

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 41/81

In [46]:

Suppose, If you are not specifying the begin index, then the default value of the begin index is starting index of
the string [i.e,. 0].

In [47]:

Suppose, If you are not specifying the end index, then the default value of the end index is ending index of the
string [i.e,. -1].

In [48]:

Suppose, If we are not specifying begin index and end index. What happens?

In [50]:

In [51]:

slice opertaor never goes to raise index error

defgh

abcdefgh

defghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

defghijklmnopqrstuvwxyz

s = 'abcdefghijklmnopqrstuvwxyz'
slice = s[3:8] # returns characters from 3 to 7 index
print(slice)

s = 'abcdefghijklmnopqrstuvwxyz'
slice = s[:8] # returns characters from 3 to 7 index
print(slice)

s = 'abcdefghijklmnopqrstuvwxyz'
slice = s[3:] # returns characters from 3 to 7 index
print(slice)

s = 'abcdefghijklmnopqrstuvwxyz'
slice = s[:] # returns characters from 3 to 7 index
print(slice)

s = 'abcdefghijklmnopqrstuvwxyz'
slice = s[3:1000]
print(slice)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 42/81

In [54]:

Note : In this lecture, we discussed briefly about slice operator. We will discuss indetail in later.

L17. Data types: str data type - Slice operator Applications

1. Convert the first letter of the string into uppercase letter

In [56]:

2. Convert the last letter of the string into uppercase letter

In [59]:

3. Convert the first and last letter of the string into uppercase letter

In [61]:

L18. Data types: + and * operators for str data type

Related to strings there are two important points we want to discuss with respect to mathematical operations.

1. '+' operator for the string:

Karthi

karthI

KarthisahasrA

s = 'abcdefghijklmnopqrstuvwxyz'
slice = s[5:1] # it starts from 5 and goes in farward direction and never gets en
print(slice) # Empty string will be displayed

s = 'karthi'
output = s[0].upper() + s[1:]
print(output)

s = 'karthi'
output = s[0:len(s)-1] + s[-1].upper()
print(output)

s = 'karthisahasra'
output = s[0].upper() + s[1:len(s)-1] + s[-1].upper()
print(output)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 43/81

In [62]:

In [63]:

In python, if you are performing concatenation operation (i.e., '+' operation on strings), then both
operands must be string type.

2. '*' operator [String repetetion operator] for the string:

This speciality is not there in other programming languages.

In [64]:

In [65]:

In python, if you are performing string repetetion operation (i.e., '*' operation on strings), one operand
should be an integer type and another one is string type.

In [67]:

karthisahasra

TypeError Traceback (most recent call last)
<ipython-input-63-8225e0d23012> in <module>
----> 1 s = 'karthi' + 10

TypeError: can only concatenate str (not "int") to str

karthikarthikarthi

karthikarthikarthi

TypeError Traceback (most recent call last)
<ipython-input-67-bd21e5426aca> in <module>
----> 1 s = 'karthi'*'sahasra'

TypeError: can't multiply sequence by non-int of type 'str'

s = 'karthi' + 'sahasra' # concatenation
print(s)

s = 'karthi' + 10 # in Java, ouput is karthi10, but in python it gives error

s = 'karthi' * 3 #string repetetion operator
print(s)

s = 3 * 'karthi'
print(s)

s = 'karthi'*'sahasra'

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 44/81

In [68]:

In [73]:

In [74]:

Important Conclusions :

1. So far, we covered the following datatypes of Python:

1. int

2. float

3. complex

4. bool

5. str

These 5 datatypes are called as fundamental datatypes of Python.

2. long datatype is available in Python-2, but not in Python-3. long values also you can represent by using
int type in Python-3.

3. There is no char datatype in Python, char values also you can represent by using str type.

L19. Type casting : Introduction and int() function

Type casting or Type Coersion:

In this lecture, we will learn about how to convert one type value to another type value. The process of

##########
karthi
##########

##########karthi##########

########## karthi ##########

print('#' * 10)
print("karthi")
print('#' * 10)

print('#' * 10,end = '')
print("karthi",end='')
print('#' * 10)

print('#' * 10,end = ' ')
print("karthi",end=' ')
print('#' * 10)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 45/81

converting the value from one type to another type is known as Type casting or Type Coersion.

Python provides 5 in-built functions, which are used to convert the values from one type to another type. These
are listed as below:

1. int()

2. float()

3. complex()

4. bool()

5. str()

1.int() :

We can use this function to convert values from other types to int

In [1]:

In [2]:

In [3]:

In [4]:

Out[1]:

10

TypeError Traceback (most recent call last)
<ipython-input-2-aeeb86d69c41> in <module>
----> 1 int(10+5j)

TypeError: can't convert complex to int

Out[3]:

1

Out[4]:

0

int(10.989)

int(10+5j)

int(True)

int(False)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 46/81

In [5]:

In [7]:

In [8]:

In [10]:

Note:

1. We can convert from any type to int except complex type.

2. If we want to convert str type to int type, compulsary str should contain only integral value and should be
specified in base-10

L20. Type casting :float() and complex() functions

2. float() :

Out[5]:

10

ValueError Traceback (most recent call last)
<ipython-input-7-afa2914aea61> in <module>
----> 1 int('0b1111')

ValueError: invalid literal for int() with base 10: '0b1111'

ValueError Traceback (most recent call last)
<ipython-input-8-54dd49a25c21> in <module>
----> 1 int("10.5")

ValueError: invalid literal for int() with base 10: '10.5'

ValueError Traceback (most recent call last)
<ipython-input-10-2eb201668cfb> in <module>
----> 1 int("ten") # string should contain only integral value and specifi
ed with base 10

ValueError: invalid literal for int() with base 10: 'ten'

int('10') # string internally contains only integral value and should be specified in dec

int('0b1111')

int("10.5")

int("ten") # string should contain only integral value and specified with base 10

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 47/81

We can use float() function to convert other type values to float type.

In [11]:

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:

Out[11]:

10.0

TypeError Traceback (most recent call last)
<ipython-input-12-d2f956539d9b> in <module>
----> 1 float(10+5j)

TypeError: can't convert complex to float

Out[13]:

1.0

Out[14]:

0.0

Out[15]:

10.0

Out[16]:

10.5

float(10)

float(10+5j)

float(True)

float(False)

float('10')

float('10.5')

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 48/81

In [17]:

In [18]:

Note:

1. We can convert any type value to float type except complex type.

2. Whenever we are trying to convert str type to float type compulsary str should be either integral or floating
point literal and should be specified only in base-10.

3.complex() :

We can use complex() function to convert other types to complex type.

There are two forms of complex() function is there.

Form 1 : complex(x)

We can use this function to convert x into complex number with real part x and imaginary part 0.

In [19]:

ValueError Traceback (most recent call last)
<ipython-input-17-8a00d88b4550> in <module>
----> 1 float('0b1111')

ValueError: could not convert string to float: '0b1111'

ValueError Traceback (most recent call last)
<ipython-input-18-c8abde1341af> in <module>
----> 1 float("ten")

ValueError: could not convert string to float: 'ten'

Out[19]:

(10+0j)

float('0b1111')

float("ten")

complex(10)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 49/81

In [27]:

In [20]:

In [21]:

In [22]:

In [23]:

In [24]:

In [25]:

Form 2: complex(x,y)

Out[27]:

(15+0j)

Out[20]:

(10.5+0j)

Out[21]:

(1+0j)

Out[22]:

0j

Out[23]:

(10+0j)

Out[24]:

(10.5+0j)

ValueError Traceback (most recent call last)
<ipython-input-25-b7bf9859d3d9> in <module>
----> 1 complex("ten")

ValueError: complex() arg is a malformed string

complex(0b1111)

complex(10.5)

complex(True)

complex(False)

complex("10")

complex("10.5")

complex("ten")

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 50/81

We can use this method to convert x and y into complex number such that x will be real part and y will be
imaginary part.

In [28]:

In [29]:

In [32]:

In [33]:

L21. Type casting :bool() and str() functions

4. bool():

We can use this function to convert other type values to bool type.

If we pass integer arguments

Out[28]:

(10+20j)

Out[29]:

(10.5+20.6j)

TypeError Traceback (most recent call last)
<ipython-input-32-2223b6237325> in <module>
----> 1 complex("10","20") # Rule 1 is, If you want to pass string in the re
al part, then second argument you can't pass

TypeError: complex() can't take second arg if first is a string

TypeError Traceback (most recent call last)
<ipython-input-33-a8404f72f6be> in <module>
----> 1 complex(10,"20") #Rule 2 is second argument can't be a string

TypeError: complex() second arg can't be a string

complex(10,20)

complex(10.5,20.6)

complex("10","20") # Rule 1 is, If you want to pass string in the real part, then second ar

complex(10,"20") #Rule 2 is second argument can't be a string

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 51/81

In [35]:

In [36]:

In [37]:

If we pass float arguments

In [38]:

In [39]:

In [40]:

In [41]:

If we pass complex type arguments

Out[35]:

True

Out[36]:

False

Out[37]:

True

Out[38]:

False

Out[39]:

True

Out[40]:

True

Out[41]:

True

bool(10)

bool(0)

bool(-10)

bool(0.0)

bool(0.1)

bool(0.000000000001)

bool(-0.00000000000001)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 52/81

In [42]:

In [43]:

In [44]:

If we pass string type arguments

In [45]:

In [46]:

In [47]:

In [48]:

Out[42]:

False

Out[43]:

True

Out[44]:

True

Out[45]:

True

Out[46]:

True

Out[47]:

True

Out[48]:

True

bool(0+0j)

bool(0+0.5j)

bool(1+0j)

bool("True")

bool("False")

bool("yes")

bool('no')

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 53/81

In [52]:

In [51]:

5. str():

We can use this method to convert other type values to str type

In [53]:

In [59]:

In [54]:

In [55]:

In [56]:

Out[52]:

True

Out[51]:

False

Out[53]:

'10'

Out[59]:

'15'

Out[54]:

'10.7'

Out[55]:

'(10+34j)'

Out[56]:

'True'

bool(" ") #space is there, not empty

bool('') # empty string

str(10)

str(0b1111)

str(10.7)

str(10+34j)

str(True)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 54/81

In [57]:

In [58]:

L22. Fundamental Data Types vs Immutablity

All Fundamental Data types are immutable. i.e once we creates an object,we cannot perform any
changes in that object.

If we are trying to change then with those changes a new object will be created. This non-chageable
behaviour is called immutability.

In [67]:

In [69]:

Out[57]:

'False'

NameError Traceback (most recent call last)
<ipython-input-58-0bd3ca74295a> in <module>
----> 1 str(true)

NameError: name 'true' is not defined

140714560754784
140714560754816

140714560754784
140714560754784
10
11
140714560754784
140714560754816

str(False)

str(true)

x = 10
print(id(x))
x = x+1
print(id(x))

x = 10
y = x
print(id(x))
print(id(y))
y = y + 1
print(x)
print(y)
print(id(x))
print(id(y))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 55/81

L23. Fundamental Data Types vs Immutablity : Need of Immutability

Why Immutability?

Who is responsible for creating an Object in Python?

Python Virtual Machine (PVM) is responsible for creating an object in Python.

In Python if a new object is required, then PVM wont create object immediately. First it will check is any
object available with the required content or not.

If available then existing object will be reused. If it is not available then only a new object will be created.

The advantage of this approach is memory utilization and performance will be improved.

In [75]:

In the last example, we have proved that all the reference variables are pointing to single object, we are
used id() function to compare their addresses.

Instead of comparing the addresses, we can use a short-cut approach also. i.e., we can make use of is
operator.

In [18]:

In [81]:

140714560754784
140714560754784
140714560754784

False
2270650549472
2270650549688

True

a = 10
b = 10 # How many objects created? Only one (i.e.,10) with three reference varia
c = 10
print(id(a))
print(id(b))
print(id(c))

x =15.6
y =15.6
print(x is y) # actually it should return True, BUt this editor is not able to sup
print(id(x)) # If we try same in some standard editor like, 'atom', we will get t
print(id(y))

a = True
b = True
print(a is b)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 56/81

In [84]:

But the problem in this approach is,several references pointing to the same object,by using one reference if
we are allowed to change the content in the existing object then the remaining references will be effected.
To prevent this immutability concept is required.

According to this, once creates an object we are not allowed to change content. If we are trying to change
with those changes a new object will be created.

Reference-video-31: Go through with Voter Registration application example to demonstrate the need of
Immutability concept.

Date: 13-04-2020 Day-5

L24. Immutablity vs Mutablity

Object reusability concept is not applicable for complex type.

In [3]:

We can execute Python program or script form Python IDLE console or Python console also. These things
are called as REPL (Read Evolve Print under Loop) tools. These tools are not standard editors for executing
the Python programs. thesr are used to test small code only.

In [9]:

In [14]:

True

False

True

True

a = 'karthi'
b = 'karthi'
print(a is b)

a=10+20j
b=10+20j
print(a is b)

a = 100
b = 100
print(a is b)

a = 256
b = 256
print(a is b) # may be this editor range is restricted to 0 ==> 256 only

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 57/81

In [19]:

So far, we have discussed about immutability, now we will discuss about mutability with a small example.

After fundamental data types, next we need to discuss about advanced data types such as lists,
tuples,dictionaries etc.,

Eg 1:

In [20]:

If we consider list, multiple values can be represented.

List means group of objects.

In [21]:

How you can access these elements in the list?

By using it's index [starts from 0]

In [26]:

List is mutable, that means, in existing object only you can perform any modifications. This changeable
behaviour is known as Mutability.

False

10
20

a = 257
b = 257
print(a is b) # editor specific result

a = 10 # it represents only one value.

l = [10,20,30,40] # group of values represented by a list'l'

l = [10,20,30,40]
print(l[0])
print(l[1])

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 58/81

In [31]:

Here, we are getting modified content, but address is not changed. It means, all changes are being performed
in existing object only, this changeable behaviour is called as Mutability.

Eg 2:

In [32]:

If any refernce variable make some changes to the object, then it affects on the all reference variables pointing
to the object.

In [33]:

In [34]:

[10, 20, 30]
2270650144264
[7777, 20, 30]
2270650144264

[10, 20, 30, 40]
[10, 20, 30, 40]

[10, 20, 30, 40]
[10, 20, 30, 40]
[7777, 20, 30, 40]
[7777, 20, 30, 40]

l = [10,20,30]
print(l)
print(id(l))
l[0]=7777 # now object 10 will replaced with 7777
print(l)
print(id(l))

l1 =[10,20,30,40]
l2 = l1 # Now, l1 and l2 are pointing to same object.

l1 =[10,20,30,40]
l2 = l1
print(l1)
print(l2)

l1 =[10,20,30,40]
l2 = l1
print(l1)
print(l2)
l1[0] = 7777 # this change will be reflected in l2 also
print(l1)
print(l2)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 59/81

In [35]:

L25. Python Data Types : List data type

In fundamental data types every variable can hold only single value.
If we want to represent a group of values (i.e., Names of all students, roll numbers of all students or mobile
numbers of all students etc.,) as a single entity where insertion order required to preserve and
duplicates are allowed then we should go for list data type.

lists can be represented by using square brackets ([]).

For example,

In [1]:

How to represent list?

In [3]:

In list, in which order you specified the values in the list, in the same order the data will be stored in the memory
and displayed in that order only.

[10, 20, 30, 40]
[10, 20, 30, 40]
[7777, 20, 30, 40]
[7777, 20, 30, 40]
[7777, 8888, 30, 40]
[7777, 8888, 30, 40]

<class 'list'>
[10, 'karthi', 10.5, 30]

l1 =[10,20,30,40]
l2 = l1
print(l1)
print(l2)
l1[0] = 7777 # this change will be reflected in l2 also
print(l1)
print(l2)
l2[1] = 8888 ## this change will be reflected in l1 also
print(l1)
print(l2)

list1 = [10,20,30,45] # list representation

tuple1 = (10,20,30) # tuple representation

set1 = {10,20,30} # set representation

dictionary1 = {100:'karthi',200:'sahasra',300:'sri'} # dictionary representation

l = [10,'karthi',10.5,30]
print(type(l))
print(l)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 60/81

a d d sp ayed t at o de o y

Important conclusions observed with respect to list data type :

1. insertion order is preserved.

2. heterogeneous objects are allowed.

3. duplicates are allowed.

4. Growable in nature. i.e., based on our requirement you can add or remove the elements of the list.

5. values should be enclosed within square brackets.

6. Indexing concept is applicable.

7. slicing concept is applicable.

8. List is mutable (i.e., we can chnage the content of the list. It is acceptable).

In [7]:

In [9]:

In [10]:

L26. Python Data Types : Tuple data type

10
30
['karthi', 10.5, 30]

[10, 20, 30, 40]
[10, 20, 40]

[7777, 20, 30, 40]

l = [10,'karthi',10.5,30]
print(l[0])
print(l[-1])
print(l[1:4]) # It prints the elements of list from 1 index to 4-1 (i.e.,3) index.

l = [] # we are creating an empty list

add an element to the list using append() method.

l.append(10)
l.append(20)
l.append(30)
l.append(40)
print(l) # prints based on insertion order
l.remove(30)
print(l)

l = [10,20,30,40]
l[0] = 7777
print(l)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 61/81

Tuple data type is exactly same as list data type except that it is immutable, i.e., once we create a
tuple object, we cannot perform any changes in that object.

Read-only version of list is tuple.

Tuple elements can be represented within parenthesis.

In [6]:

In [7]:

<class 'tuple'>
(10, 20, 30, 10, 'karthi')
10
karthi
(20, 30, 10)

TypeError Traceback (most recent call last)
<ipython-input-6-e04948b6d213> in <module>
 5 print(t[-1])
 6 print(t[1:4])
----> 7 t[0] = 7777

TypeError: 'tuple' object does not support item assignment

<class 'tuple'>
(10, 20, 30, 10)

AttributeError Traceback (most recent call last)
<ipython-input-7-39d64c0f6c0f> in <module>
 2 print(type(t))
 3 print(t)

----> 4 t.append(80)
 5 t.remove(10)

AttributeError: 'tuple' object has no attribute 'append'

t=(10,20,30,10,"karthi") # tuple representation
print(type(t))
print(t)
print(t[0])
print(t[-1])
print(t[1:4])
t[0] = 7777

t=(10,20,30,10)
print(type(t))
print(t)
t.append(80)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 62/81

In [8]:

Note: tuple is the read only version of list

Note : Single valued tuple should compulsory ends with ','(comma).

In [10]:

In [11]:

In [14]:

What is the difference between list and tuple?

1. List is mutable and tuple is non-mutable.

2. List elements are represented by using square brackets. Tuple elements are represented by using
paranthesis.

3. To store tuple elements, Python Virtual Memory requires less memory. To store list elements, Python
Virtual Memory requires more memory.

<class 'tuple'>
(10, 20, 30, 10)

AttributeError Traceback (most recent call last)
<ipython-input-8-bb416c549150> in <module>
 2 print(type(t))
 3 print(t)

----> 4 t.remove(10)

AttributeError: 'tuple' object has no attribute 'remove'

<class 'tuple'>

<class 'int'>

<class 'tuple'>

t=(10,20,30,10)
print(type(t))
print(t)
t.remove(10)

t = () # Empty tuple
print(type(t))

t = (10) # if tuple is assigned with single value, it treats as integer type.
print(type(t)) # because, in normal mathematical operations, we may specify integer va
 # such as, 10 + 20, (10)+ (20) and ((10)+(20))

t = (10,) # if you keep ',' after value, PVM considers it as a tuple type, not i
print(type(t))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 63/81

4. Tuple elements can be access within less time, because they are fixed (Performance is more).
Performance is less compared with tuples.

Note :

If the content is keep on changing, better to opt list type. For example, Youtube comments or facebook
comments or Udemy reviews (which are keep on changing day by day).

If the content is fixed, better to opt tuple type. For example, In Banks, account type - Only 2 values are
there,

1. Savings

2. Current

At runtime account types never going to change through out Bank Project. So, to represent bank account
types, better to go for tuple concept.

Some other Examples, Where allowed inputs are fixed (Best suitable type is tuple):

1. Vendor machines (Only accept 2/-,5/- coins only)

2. In the Metro stations also, If you want to get the tickets, you have to insert either 10/- note or 20/- note only.

L27. Python Data Types : Set data type

If we want to represent a group of values without duplicates and where order is not important then we
should go for set Data Type.

For example, we want to send one SMS to all the students of a class. In this duplicate numbers are not allowed
and in any order we can send SMS. At last all the students should receive the message. if you have such type
of requirement, then it is better to go for set data type.

In general mathematics also, if the sets are like shown below

a = {1,2,3}

b = {2,3,1}

c = {1,3,2}

all these 3 sets are equal.

In [1]:

<class 'set'>

s = {10,20,30,40}
print(type(s))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 64/81

In [5]:

In [6]:

In [8]:

In [10]:

In [12]:

Important conclusions observed with respect to set data type :

1. insertion order is not preserved.

2. duplicates are not allowed.

3. heterogeneous objects are allowed.

{'karthi', 40, 10, 20, 30}

TypeError Traceback (most recent call last)
<ipython-input-6-02c4a3e6686e> in <module>
 1 s = {10,20,10,'karthi',30,40}
----> 2 print(s[0]) # index concept not applicable

TypeError: 'set' object is not subscriptable

TypeError Traceback (most recent call last)
<ipython-input-8-dabe25494ee6> in <module>
 1 s = {10,20,10,'karthi',30,40}
----> 2 print(s[2:6]) # slicing concept not applicable

TypeError: 'set' object is not subscriptable

{40, 10, 50, 20, 30}

{40, 10, 50, 20}

s = {10,20,10,'karthi',30,40} # in 'set' duplicate element will be ignored, which order we
print(s)

s = {10,20,10,'karthi',30,40}
print(s[0]) # index concept not applicable

s = {10,20,10,'karthi',30,40}
print(s[2:6]) # slicing concept not applicable

s = {10,20,30,40}
s.add(50) # append() method applicable in list, add method applicable to set
print(s)

s = {10,20,30,40,50}
s.remove(30) # remove() method applicable fro list and set to remove an elem
print(s)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 65/81

4. index concept is not applicable.

5. It is mutable collection.

6. Growable in nature.

append() method vs add() method

In case of list, to add an element, we use append() method and in case of set, to add an element, we use
add() method, Why the names are different?

Suppose, if you want to add 50 to the given list, where it will be added in the list?

It will be added at last position of the list.

If you are adding something at last, that operation is called as append operation. (i.e., existing + new content)

In [14]:

Suppose, if you want to add 50 to the given set, where it will be added in the list?

We can't say exactly where 50 will be added.

If you are adding something , if it is not guaranteed to add at end, then we can't say that it is an append
operation. That's why when you are adding an element to a set, we use add() method.

In [15]:

One more important point regarding set data type

In [16]:

Why it is considered as 'dict' type?

Among set and dictionary, dictionary is the most frequently used data type compared with set data type.
That's why Python gave the priority to the dictionary type.

[10, 20, 30, 40, 50]

{40, 10, 50, 20, 30}

<class 'dict'>

l = [10,20,30,40]
l.append(50)
print(l)

s = {10,20,30,40}
s.add(50)
print(s)

s = {} # it is not empty set, it is empty dictionary
print(type(s))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 66/81

How can we create empty set ?

In [18]:

What is the difference between set and list data types?

1. In list, order is preserved, but in set order is not preserved.

2. Duplicate elements are allowed in list, but duplicate elements are not allowed in set.

3. List can be represented by using square brackets and set can be represented by using curly braces.

Date: 14-04-2020 - Day 6

L28. Python Data Types : Frozen set

In general, meaning of frozen is freezing, i.e, No one going to change, can't move, fixed ets.,

Frozen set is exactly same as set except that it is immutable. Hence we cannot use add or remove
functions.

In [3]:

<class 'set'>
set()

<class 'frozenset'>

s = set() # we required to use set() function to create an empty set.
print(type(s))
print(s)

s = {10,20,30,40}
fs = frozenset(s)
print(type(fs))

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 67/81

In [2]:

In [4]:

What is the difference between Frozen set and tup;e data types?

1. In tuple, order is preserved, but in frozen set order is not applicable.

2. In tuple duplicate elements are allowed, but in frozen set duplicates are not allowed.

3. Index, slice concepts are applicable, but in frozen set index,slice concepts are not applicable.

Note : The only similarity between tuple and frozen set is, both are immutable.

L29. Python Data Types : Dictonary (Dict)

So far, we have discussed about list,tuple,set,frozen set. All these data types are having some common
point is,

<class 'set'>

AttributeError Traceback (most recent call last)
<ipython-input-2-8ccea297b8d2> in <module>
 2 fs = frozenset(s)
 3 print(type(s))

----> 4 fs.add(50)
 5 fs.remove(30)

AttributeError: 'frozenset' object has no attribute 'add'

<class 'set'>

AttributeError Traceback (most recent call last)
<ipython-input-4-6114db23b7ef> in <module>
 2 fs = frozenset(s)
 3 print(type(s))

----> 4 fs.remove(30)

AttributeError: 'frozenset' object has no attribute 'remove'

s = {10,20,30,40}
fs = frozenset(s)
print(type(s))
fs.add(50)

s = {10,20,30,40}
fs = frozenset(s)
print(type(s))
fs.remove(30)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 68/81

 - list [10,20,30,40]

 - tuple (10,20,30,40)

 - set {10,20,30,40}

 -forzen set frozenset({10,20,30,40})

If you observed this, all thase data types are talks about a group of individual values.

Some times, If we want to represent a group of values as key-value pairs then we should go for dict data
type.

-Eg:

 - roll Number - name

 - mobile number - address

In general, In our english dictionary we found,

Word : Meaning

The same thing will happensin Python dictionary also.

How can you represent dictionary in Python?

d = {key1 : value1, key2 : value2, key3 : value3}

You van take any number of key-value pairs

In [5]:

We can create an empty dictionary, and later we can add key-value pairs into that dictionary.

If you want to add key-value pair into a dictionary, the following syntax is used in Python:

dictionaryName[key] = value

<class 'dict'>
{100: 'karthi', 101: 'sahasra', 150: 'guido'}

d = {100:"karthi", 101:'sahasra', 150:'guido'}
print(type(d))
print(d)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 69/81

In [8]:

Key points with respect to Dictionary:

1. Duplicate keys are not allowed but values can be duplicated.

2. If we are trying to insert an entry with duplicate key then old value will be replaced with new value.

In [10]:

In [11]:

In [14]:

In [15]:

<class 'dict'>
{100: 'karthi', 200: 'ravi'}

{10: 'karthi', 20: 'karthi', 30: 'karthi'}

{10: 'karthi', 30: 'karthi'}

{10: 'sahasra', 30: 'ravi'}

{10: 'karthi', 30: 'ravi'}

d = {} # Empty dictionary
print(type(d))
d[100] = 'karthi'
d[200] = 'ravi'
print(d) # No guarantee for order wise printing in the dictionary

d={10:'karthi',20:'karthi',30:'karthi'}
print(d)

d={10:'karthi',10:'karthi',30:'karthi'}
print(d)

d={10:'karthi',10:'sahasra',30:'ravi'}
print(d)

d={10:'sahasra',10:'karthi',30:'ravi'}
print(d)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 70/81

In [9]:

Important conclusions observed with respect to dict data type :

1. If you want to represent a group of values as key-value pairs then we should go for dict data type.

2. Order is not applicable.

3. Duplicate keys are not allowed but values can be duplicated.

4. If we are trying to insert an entry with duplicate key then old value will be replaced with new value.

5. Heterogeneous objects are allowed.

6. It is mutable.

7. Indexing, slicing is not applicable.

L30. Python Data Types : range

range Data Type represents a sequence of numbers.

range() is the in-built function of Python.

The elements present in range Data type are not modifiable. i.e range Data type is immutable.

In [3]:

How you can print the values present in the given range?

We have to make use of loops, such as for, while etc., to display the elements in the given range.

<class 'dict'>
{100: 'karthi', 200: 'ravi'}
{100: 'shiva', 200: 'ravi'}

<class 'range'>
range(0, 10)

d = {} # Empty dictionary
print(type(d))
d[100] = 'karthi'
d[200] = 'ravi'
print(d)
d[100] = 'shiva'
print(d)

r = range(10) # it represents the sequence of values from 0 to 9
print(type(r))
print(r)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 71/81

In [4]:

In [6]:

How to create range object? what are the various options are available?

Option 1:

range(n) => It represents the sequence of numbers from 0 to n-1

In [9]:

Option 2:

Sometimes, our requirement is, We don't want from 0,we want to print the numbers from any specific number.

<class 'range'>
range(0, 10)
0
1
2
3
4
5
6
7
8
9

<class 'range'>
range(0, 10)
0 1 2 3 4 5 6 7 8 9

range(0, 10)

Out[9]:

range(0, 100)

r = range(10) # it represents the sequence of values from 0 to 9
print(type(r))
print(r)

for x in r:
 print(x)

r = range(10) # it represents the sequence of values from 0 to 9
print(type(r))
print(r)

for x in r:
 print(x,end =' ') # to print the values horizantally

print(range(10)) # it represnts the sequence of numbers from 0 to 9

range(100) # it represnts the sequence of numbers from 0 to 99

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 72/81

range(begin,end) ==> it represents thesequence of numbers from begin to end-1.

In [11]:

Option 3:

range(begin,end,increment/decrement value) ==> It represents the sequence of numbers from begin to end
by increment/decrement value

In [12]:

In [13]:

In [14]:

In [15]:

In [18]:

We can access elements present in the range Data Type by using index.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 5 7 9 11 13 15 17 19

1 4 7 10 13 16 19

1 5 9 13 17

20 15 10 5

r = range(1,11)
for x in r:
 print(x,end = ' ')

r = range(1,21,1)
for x in r:
 print(x,end = ' ')

r = range(1,21,2)
for x in r:
 print(x,end = ' ')

r = range(1,21,3)
for x in r:
 print(x,end = ' ')

r = range(1,21,4)
for x in r:
 print(x,end = ' ')

r = range(20,1,-5)
for x in r:
 print(x,end = ' ')

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 73/81

In [22]:

Once order is important, obviously indexing, slicing concepts are also applicable.

range object is immutable.

In [23]:

We can create a list of values with range data type

10
20
range(11, 15)
11
12
13
14

10
20
range(11, 15)
11
12
13
14

TypeError Traceback (most recent call last)
<ipython-input-23-980d29ad463b> in <module>
 6 for x in r1:
 7 print(x)
----> 8 r[1] = 100

TypeError: 'range' object does not support item assignment

r = range(10,21)
print(r[0])
print(r[-1])
r1 = r[1:5]
print(r1)
for x in r1:
 print(x)

r = range(10,21)
print(r[0])
print(r[-1])
r1 = r[1:5]
print(r1)
for x in r1:
 print(x)
r[1] = 100

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 74/81

In [24]:

Important conclusions observed with respect to range data type :

1. range Data Type represents a sequence of numbers.

2. Different forms of ragne data type are as follows:

1. range with one argument - range(10)

2. range with Two arguments - range(10,21)

3. range with three arguments - range(10,21,2)

3. Once order is important, obviously indexing, slicing concepts are also applicable.

4. range object is immutable.

L31. Python Data Types : bytes and bytearray

1. bytes data type:

It's not that much frequently used data type in Python.

bytes data type represents a group of byte numbers just like an array.

In [25]:

Now, we want to print all values present inside 'b'.

In [26]:

Where this type of data type is helpful?

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

<class 'bytes'>

10
20
30
40

l = list(range(10))
print(l)

l = [10,20,30,40]
b = bytes(l) # If you wnat to create bytes object, you have to use in-built function '
print(type(b))

l = [10,20,30,40]
b = bytes(l)
for x in b:
 print(x)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 75/81

If you want to handle binary data, like images, video files and audio files, we need to make use of byte and
bytearray data types.

Two important conclusions about bytes data type:

Conclusion 1:

The only allowed values for byte data type are 0 to 255. By mistake if we are trying to provide any other
values then we will get value error.

In [27]:

In [29]:

Conclusion 2:

Once we creates bytes data type value, we cannot change its values,otherwise we will get TypeError. i.e.,
Immutable

In [30]:

ValueError Traceback (most recent call last)
<ipython-input-27-735598b68758> in <module>
 1 l = [10,20,30,40,256]

----> 2 b = bytes(l)

ValueError: bytes must be in range(0, 256)

10

TypeError Traceback (most recent call last)
<ipython-input-30-1ccbd30578fd> in <module>
 2 b = bytes(l)
 3 print(b[0])
----> 4 b[0] = 100

TypeError: 'bytes' object does not support item assignment

l = [10,20,30,40,256]
b = bytes(l)

l = [10,20,30,40,255]
b = bytes(l)

l = [10,20,30,40]
b = bytes(l)
print(b[0])
b[0] = 100

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 76/81

2. bytearray data type:

bytearray is exactly same as bytes data type except that its elements can be modified. i.e.,Mutable

In [35]:

In [36]:

<class 'bytearray'>
10
20
30
40

10
20
30
40
10

ValueError Traceback (most recent call last)
<ipython-input-36-3a54375d30ae> in <module>
 4 print(i)
 5 print(b[0])

----> 6 b[0] = 288
 7 print(b[0])

ValueError: byte must be in range(0, 256)

l = [10,20,30,40]
b = bytearray(l)
print(type(b))
for i in b:
 print(i)

l = [10,20,30,40]
b = bytearray(l)
for i in b:
 print(i)
print(b[0])
b[0] = 288
print(b[0])

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 77/81

In [37]:

In [38]:

L32. Python Data Types : None

None means Nothing or No value associated.

In Python, there are some situations, where, if the value is not available,then to handle such type of cases
None introduced.

It is something like null value in Java.

To make an object eligible for garbage collection, we can use None type.

In [1]:

In [2]:

10
20
30
40
10
188

77
20
30
40

10

l = [10,20,30,40]
b = bytearray(l)
for i in b:
 print(i)
print(b[0])
b[0] = 188
print(b[0])

l = [10,20,30,40]
b = bytearray(l)
b[0]= 77
for i in b:
 print(i)

a = 10 # 'a' is pointing to object 10
a = None # 'a' is not pointing to object 10, it is pointing to none or nothing

def f1():
 return 10

x = f1()
print(x)

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 78/81

The above code is clear.

In [3]:

In the above code, If the function won't return any statement, then how you can handle such situation is,
internally it is going to represent None.

None is also an object in Python.

In [5]:

How many None objects are there in Python?

Throuhg out Python, only one None object is avilable. If you are using any number of references to
None,all the references are pointing to the same object only.

In [6]:

Hello
None

140721283812576
<class 'NoneType'>

140721283812576
140721283812576
140721283812576
140721283812576

def f1():
 print("Hello") # Here, 'f1()' function is not going to return any value

x = f1()
print(x)

a = None # 'a' is not pointing any value
print(id(a))
print(type(a))

a = None
b = None
c = None

def f1():
 pass # empty body of a function represented using 'pass' statement
d = f1() # 'd' internally contains None only.
print(id(a))
print(id(b))
print(id(c))
print(id(d))

Above code in another way.

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 79/81

In [7]:

L33. Escape characters, Comments and Constants

Escape Characters:

In String literals we can use esacpe characters to associate a special meaning.

The following are various important escape characters in Python:

1. \n==>New Line

2. \t===>Horizontal tab

3. \r ==>Carriage Return (suppose, in a line currentlycursor is locating at some place, i want to move it to the
beginning of the same line, we go for carriage return)

4. \b===>Back space

5. \f===>Form Feed (to go to next page)

6. \v==>Vertical tab

7. '===>Single quote

8. "===>Double quote

9. \===>back slash symbol

In [12]:

140721283812576 140721283812576 140721283812576 140721283812576

 File "<ipython-input-12-48bc15eca10a>", line 4
 print('This is ' symbol')
 ^
SyntaxError: invalid syntax

a = None
b = None
c = None

def f1():
 pass # empty body of a function represented using 'pass' statement
d = f1() # 'd' internally contains None only.
print(id(a),id(b),id(c),id(d))

print("RGMcollege")
print("RGM\tcollege")
print("RGM\ncollege")
print('This is ' symbol')

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 80/81

In [13]:

In [17]:

In [19]:

Comments

// single line comment in java

/* abc def

-------- Multiline comments in Java or C

*/

single line comment in Python

'#' used for single line comments in python programming

RGMcollege
RGM college
RGM
college
This is ' symbol

RGMcollege
RGM college
RGM
college
This is ' symbol
This is " symbol

RGMcollege
RGM college
RGM
college
This is ' symbol
This is " symbol
This is \ symbol

print("RGMcollege")
print("RGM\tcollege")
print("RGM\ncollege")
print('This is \' symbol')

print("RGMcollege")
print("RGM\tcollege")
print("RGM\ncollege")
print('This is \' symbol')
print('This is \" symbol')

print("RGMcollege")
print("RGM\tcollege")
print("RGM\ncollege")
print('This is \' symbol')
print('This is \" symbol')
print('This is \\ symbol')

14/04/2020 Python Language Fundamentals

localhost:8888/notebooks/Desktop/PythonCourse/Python Language Fundamentals.ipynb 81/81

Multiline comments:

Multi line comments are not available in Python.

If you have multiple lines are there to comment, use '#' at every line.

In [21]:

In [22]:

Constants in Python:

Constants concept is not applicable in Python.

But it is convention to use only uppercase characters if we don’t want to change value.

MAX_VALUE=10

It is just convention but we can change the value.

In []:

This is \ symbol

#print('This a comment, it won't be executed by PVM)
print('This is \\ symbol')

#print('This a comment, it won't be executed by PVM)
#print('This is \\ symbol')

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 1/35

Python Operators

Date: 16-04-2020 Day 1

Introduction
In this lecture, we will discuss about various Python Operators. In general, the person who is doing some
operation is known as operator, such as Telephone operator, Camera operator etc.,. In same way, the Python
symbol, which is used to perform certain activity is known as operator.

The following topics we are going to discuss as part of this lecture:

1. Arithmetic Operators

2. Relational or Comparison Operators

3. Equality OPerators

4. Logical Operators

5. Bitwise Operators

6. Shift Operators

7. Assignment Operator

8. Ternary Operator (or) Conditional Operator

9. Special Operators

i) Identity Operators

ii) Membership Operators

10. Operator Precedence

11. Mathematical functions using math module

These are the 11 topics, we are going to discuss as part of the Python Operators concept.

1. Arithmetic Operators

Following are the arithmetic operators (7) used in Python:

1. Addition ==> +

2. Subtraction ==> -

3. Multiplication ==> *

4. Normal Division ==> /

5. Modulo Division ==> %

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 2/35

In addition to these common arithmetic operators, Python supports two more special arithmetic operators:

6. Floor Division ==> //

7. Exponential Operator (or) Power Operator ==> **

In [1]:

In [2]:

Floor Division

suppose 10.3 is there, what is the floor value of 10.3?

Answer is 10

What is the ceil value of 10.3?

Answer is 11

Eg:1

In [3]:

12
8
20
0

13
7
30
1

5.0

a = 10
b = 2
print(a+b)
print(a-b)
print(a*b)
print(a%b)

a = 10
b = 3
print(a+b)
print(a-b)
print(a*b)
print(a%b)

print(10/2) # In Python division operation always meant for floating point arithmetic an
 # gives floating point value as it's result.
 # This is Python 3 specific behavior, In Python 2 you are going to get 5 as

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 3/35

In [4]:

If you want to get integer value as result of division operation, you need to make use of floor division(//)
operator.

floor division(//) operator meant for integral arithmetic operations as well as floating point arithmetic
operations.

The result of floor division(//) operator can be always floor value of either integer value or float
value based on your arguments.

If both arguments are 'int' type, then the result is 'int' type.

If atleast one of the argument is float type, then the result is also float type.

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

Eg 2:

3.3333333333333335

5

3.3333333333333335

3.3333333333333335

3.0

3

3.0

print(10/3)

print(10//2)

print(10/3)

print(10.0/3)

print(10.0//3)

print(10//3)

print(10.0//3.0)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 4/35

NOTE:

Floor integer value of 3.33333 is 3

Floor float value of 3.33333 is 3.0

Floor integer value of 5.9997777 is 5

Floor float value of 5.9997777 is 5.0

In [11]:

Power Operator or Exponential Operaor :

In [12]:

Note:

We can use +,* operators for str type also.

If we want to use + operator for str type then compulsory both arguments should be str type only
otherwise we will get error.

10.0
10.25
10
10.0
15
15.0

100
27

print(20/2)
print(20.5/2)
print(20//2)
print(20.5//2)
print(30//2)
print(30.0//2)

print(10**2) # meaning of this is 10 to the power 2
print(3**3)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 5/35

In [13]:

- If we use * operator for str type then compulsory one argument should be 'int' and other argument
should be 'str' type.

In [19]:

In [20]:

30
karthisahasra
karthi10

TypeError Traceback (most recent call last)
<ipython-input-13-f0ce7b898dfa> in <module>
 2 print("karthi" + "sahasra")
 3 print("karthi" + "10")
----> 4 print("sahasra" + 10)

TypeError: can only concatenate str (not "int") to str

karthikarthikarthi
karthikarthikarthi

TypeError Traceback (most recent call last)
<ipython-input-19-8c0cbe6387f0> in <module>
 1 print("karthi" * 3)
 2 print(3 * "karthi")
----> 3 print(2.5 * 'karthi')

TypeError: can't multiply sequence by non-int of type 'float'

TypeError Traceback (most recent call last)
<ipython-input-20-f72e4a5aef05> in <module>
----> 1 print('karthi' * 'sahasra')

TypeError: can't multiply sequence by non-int of type 'str'

print(10 + 20)
print("karthi" + "sahasra")
print("karthi" + "10")
print("sahasra" + 10)

print("karthi" * 3)
print(3 * "karthi")
print(2.5 * 'karthi')

print('karthi' * 'sahasra')

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 6/35

In [21]:

In [22]:

Note :

====> '+' operotor for String (Concatenation Operator)

====> '*' Operator for String (String Multiplication Operator (or) String Repetetion Operator)

Date: 17-04-2020 Day-2

For any number x,

x/0 or x//0 or x%0 always raises "ZeroDivisionError"

In [23]:

In [24]:

TypeError Traceback (most recent call last)
<ipython-input-21-49b3a25e7226> in <module>
----> 1 print('karthi' * '3')

TypeError: can't multiply sequence by non-int of type 'str'

karthikarthikarthi

ZeroDivisionError Traceback (most recent call last)
<ipython-input-23-e574edb36883> in <module>
----> 1 10/0

ZeroDivisionError: division by zero

ZeroDivisionError Traceback (most recent call last)
<ipython-input-24-e796260e48b5> in <module>
----> 1 10.0/0

ZeroDivisionError: float division by zero

print('karthi' * '3')

print('karthi' * int('3'))

10/0

10.0/0

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 7/35

In [25]:

In [26]:

In [27]:

In [28]:

Arithmetic Operators with bool type

Internally Boolean values are represented as integer values only.

ZeroDivisionError Traceback (most recent call last)
<ipython-input-25-adb5753def1b> in <module>
----> 1 10//0

ZeroDivisionError: integer division or modulo by zero

ZeroDivisionError Traceback (most recent call last)
<ipython-input-26-2ac47ac31328> in <module>
----> 1 10.0//0

ZeroDivisionError: float divmod()

ZeroDivisionError Traceback (most recent call last)
<ipython-input-27-3e1bfe6920c0> in <module>
----> 1 10%0

ZeroDivisionError: integer division or modulo by zero

ZeroDivisionError Traceback (most recent call last)
<ipython-input-28-8864e72cec86> in <module>
----> 1 10.0%0

ZeroDivisionError: float modulo

10//0

10.0//0

10%0

10.0%0

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 8/35

In [29]:

In [30]:

2. Relational Operators (or) Comparison Operators

Following are the relational operators usedin Python:

1. Less than (<)

2. Greater than (>)

3. Leass than or Equal to (<=)

4. Greater than or Equal to (>=)

i) We can apply relational operators for number types,

Eg 1:

In [31]:

ii) We can apply relational operators for **'str' type also, here comparison is performed based on ASCII or
Unicode values.**

Eg 2:

How to know the Unicode or ASCII value of any character?

By using ord() function, we can get the ASCII value of any character.

karthi

a < b is True
a <= b is True
a > b is False
a >= b is False

print("karthi" * True) #True => 1

print("karthi" * False) #False => 0, Output is an empty string

a = 10
b = 20
print('a < b is', a<b)
print('a <= b is', a<=b)
print('a > b is', a>b)
print('a >= b is', a>=b)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 9/35

In [32]:

If you know the ASCII value and to find the corresponding character, you need to use the chr() function.

In [33]:

In [34]:

In [35]:

97
65

a
A

True
True
False
False

False
True
False
True

print(ord('a'))
print(ord('A'))

print(chr(97))
print(chr(65))

s1 = 'karthi' # ASCII value of 'a' is 97
s2 = 'sahasra' # ASCII value of 'b' is 98
print(s1<s2)
print(s1<=s2)
print(s1>s2)
print(s1>=s2)

s1 = 'karthi'
s2 = 'karthi'
print(s1<s2)
print(s1<=s2)
print(s1>s2)
print(s1>=s2)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 10/35

In [36]:

iii) We can apply relational operators evevn for boolean types also.

Eg 3:

In [37]:

In [38]:

Eg 4:

In [39]:

iv) Chaining of relational operatrs:

Chaining of relational operators is possible.

False
False
True
True

True
True
False
False

TypeError Traceback (most recent call last)
<ipython-input-38-e2ae37134b58> in <module>
----> 1 print(10 > 'karthi')

TypeError: '>' not supported between instances of 'int' and 'str'

a is not greater than b

s1 = 'karthi'
s2 = 'Karthi'
print(s1<s2)
print(s1<=s2)
print(s1>s2)
print(s1>=s2)

print(True > False)
print(True >= False) # True ==> 1
print(True < False) # False ==> 0
print(True <= False)

print(10 > 'karthi')

a = 10
b = 20
if a>b:
 print('a is greater than b')
else:
 print('a is not greater than b')

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 11/35

In the chaining, if all comparisons returns True then only result is True.

If atleast one comparison returns False then the result is False.

Eg 5:

In [40]:

3. Equality Operators:

Equality operators are used to check whether the given two values are equal or not. The following are the
equality operators used in Python.

1. Equal to (==)

2. Not Equal to (!=)

In [41]:

In [42]:

We can apply these operators for any type even for incompatible types also.

In [43]:

True
True
True
False

False
True

True
True
True

False

print(10<20) # ==>True
print(10<20<30) # ==>True
print(10<20<30<40) # ==>True
print(10<20<30<40>50) # ==>False

print(10==20)
print(10!=20)

print(1==True)
print(10==10.0)
print('karthi'=='karthi')

print(10=='karthi')

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 12/35

In [44]:

Note:

Chaining concept is applicable for equality operators.

If atleast one comparison returns False then the result is False. otherwise the result is True.

Eg:

In [45]:

Date: 18-04-2020 Day 3
Q) What is the Difference between '==' and 'is' operators?

is Operator:

'is' operator meant for reference or address comparison.
When a is b returns true?

Ans: Whenever 'a' and 'b' pointing to the same object, then only 'a is b' returns true, which is nothing but
reference comparison (or) Address comparison.

== Operator :

'==' is meant for content comparison.

False

False
True

print(10=='10')

print(10==20==30==40)
print(10==10==10==10)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 13/35

In [46]:

4. Logical operators

Following are the various logical operators used in Python.

1. and

2. or

3. not

You can apply these operators for boolean types and non-boolean types, butthe behavior is different.

For boolean types:

and ==>If both arguments are True then only result is True

or ====>If atleast one arugemnt is True then result is True

not ==>complement

i) 'and' Operator for boolean type:

If both arguments are True then only result is True

2689910878664
2689910921864
False
True
2689910878664
True
True

l1 = [10,20,30]
l2 = [10,20,30]
print(id(l1))
print(id(l2))
print(l1 is l2) # False
print(l1 == l2) # True
l3 = l1 # l3 is also pointing to l1
print(id(l3))
print(l1 is l3) # True
print(l1 == l3) # True

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 14/35

In [14]:

ii) 'or' Operator for boolean type:

If both arguments are True then only result is True.

In [15]:

iii) 'not' Operator for boolean type:

Complement (or) Reverse

In [16]:

Eg :

Now we will try to develop a small authentication application with this knowledge.

we will read user name and password from the keyboard.

if the user name is karthi and password is sahasra, then that user is valid user otherwise invalid user.

True
False
False
False

True
True
True
False

False
True

print(True and True)
print(True and False)
print(False and True)
print(False and False)

print(True or True)
print(True or False)
print(False or True)
print(False or False)

print(not True)
print(not False)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 15/35

In [17]:

In [18]:

For non-boolean types behaviour:

Note :

0 means False

non-zero means True

empty strings, list,tuple, set,dict is always treated as False

i) X and Y

Here, X and Y are non boolean types and the result may be either X or Y but not boolean type (i.e., The result
is always non boolean type only).

if 'X' is evaluates to false then the result is 'X'.

If 'X' is evaluates to true then the result is 'Y'.

Enter User Name : karthi
Enter Password : rgm
invalid user

Enter User Name : karthi
Enter Password : sahasra
valid User

userName = input('Enter User Name : ')
password = input('Enter Password : ')

if userName == 'karthi' and password == 'sahasra':
 print('valid User')
else:
 print('invalid user')

userName = input('Enter User Name : ')
password = input('Enter Password : ')

if userName == 'karthi' and password == 'sahasra':
 print('valid User')
else:
 print('invalid user')

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 16/35

In [53]:

ii) X or Y

Here, X and Y are non boolean types and the result may be either X or Y but not boolean type (i.e., The result
is always non boolean type only).

if 'X' is evaluates to true then the result is 'X'.

If 'X' is evaluates to false then the result is 'Y'.

In [54]:

iii) not X:

Even you apply not operator for non boolean type, the result is always boolean type only.

If X is evalutates to False then result is True otherwise False

20
0
sahasra

karthi

10
20
karthi
karthi

karthi
karthi

print(10 and 20)
print(0 and 20)
print('karthi' and 'sahasra')
print('' and 'karthi') # first argument is empty string
print(' ' and 'karthi') # first argument contains space character, so it is not empty
print('karthi' and '') # second argument is empty string
print('karthi' and ' ') # second argument contains space character, so it is not empty

print(10 or 20)
print(0 or 20)
print('karthi' or 'sahasra')
print('' or 'karthi') # first argument is empty string
print(' ' or 'karthi') # first argument contains space character, so it is not empty
print('karthi' or '') # second argument is empty string
print('karthi' or ' ') # second argument contains space character, so it is not empty

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 17/35

In [55]:

5. Bitwise Operators

We can apply these operators bit by bit.

These operators are applicable only for int and boolean types. By mistake if we are trying to apply for any
other type then we will get Error.

Following are the various bitwise operators used in Python:

1. Bitwise and (&)

2. Bitwise or (|)

3. Bitwise ex-or (^)

4. Bitwise complement (~)

5. Bitwise leftshift Operator (<<)

6. Bitwise rightshift Operator(>>)

In [56]:

In [57]:

False
True
True
False

TypeError Traceback (most recent call last)
<ipython-input-56-d0942894908d> in <module>
----> 1 print(10.5 & 20.6)

TypeError: unsupported operand type(s) for &: 'float' and 'float'

TypeError Traceback (most recent call last)
<ipython-input-57-482742ac27fc> in <module>
----> 1 print('karthi' | 'karthi')

TypeError: unsupported operand type(s) for |: 'str' and 'str'

print(not 'karthi')
print(not '')
print(not 0)
print(not 10)

print(10.5 & 20.6)

print('karthi' | 'karthi')

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 18/35

In [61]:

In [62]:

In [63]:

Behavior of Bitwise Operators

& ==> If both bits are 1 then only result is 1 otherwise result is 0

| ==> If atleast one bit is 1 then result is 1 otherwise result is 0

^ ==>If bits are different then only result is 1 otherwise result is 0

~ ==> bitwise complement operator, i.e 1 means 0 and 0 means 1

<< ==> Bitwise Left shift Operataor

Bitwise Right Shift Operator ==> >>

In [66]:

0b1010
0b10100
0

TypeError Traceback (most recent call last)
<ipython-input-61-0123c653392c> in <module>
 3
 4 print(10 & 20) # Valid
----> 5 print(10.0 & 20.0) # In valid

TypeError: unsupported operand type(s) for &: 'float' and 'float'

False

True

4
5
1

print(bin(10))
print(bin(20))

print(10 & 20) # Valid
print(10.0 & 20.0) # In valid

print(True & False)

print(True | False)

print(4 & 5) # 100 & 101
print(4 | 5) # 100 | 101
print(4 ^ 5) # 100 ^ 101

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 19/35

Bitwise Complement Operator (~):

We have to apply complement for total bits.

In [67]:

Here, we have to apply complement for total bits, not for three bits (in case of 4). In Python minimum 32 bits
required to represent an integer.

Note:

The most significant bit acts as sign bit. 0 value represents +ve number where as 1 represents -ve value.

Positive numbers will be repesented directly in the memory where as Negative numbers will be
represented indirectly in 2's complement form.

How you can find two's complement of a number?

To find Two's complement of a number, first you need to find One's complement of that number and add 1
to it.

One's complement ==> Interchange of 0's and 1's

Eg.

In [68]:

In [69]:

6. Shift Operators

Following are the various shift operators used in Python:

1. Left Shift Operator (<<)

2. Right Shift Operator (<<)

1. Left Shift Operator (<<):

After shifting the bits from left side, empty cells to be filled with zero.

-5

-6

3

print(~4) # 4 ==> 100

print(~5)

print(~-4) # negative values are stored in the memory in 2's complement form.

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 20/35

In [1]:

2. Right Shift Operator (<<)

After shifting the empty cells we have to fill with sign bit.(0 for +ve and 1 for -ve)

In [2]:

We can apply bitwise operators for boolean types also.

In [7]:

7. Assignment Operator

We can use assignment operator to assign value to the variable.

Eg :

In [8]:

We can combine asignment operator with some other operator to form compound assignment operator.

Eg :

x+=10 ====> x = x+10

40

2

False
True
True
-2
-1
4
0

print(10<<2)

print(10>>2)

print(True & False)
print(True | False)
print(True ^ False)
print(~True)
print(~False)
print(True<<2)
print(True>>2)

x = 2

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 21/35

In [10]:

The following is the list of all possible compound assignment operators in Python:

+=

-=

*=

/=

%=

//=

**=

&=

|=

^=

<<= and >>=

In [12]:

In [15]:

Now, we want to discuss abou one loop hole in Python Operators. Let us consider the following example,

Case 1:

30

0

100

x = 10
x += 20 # x = x + 20
print(x)

x = 10 # 1010
x &= 5 # 0101
print(x)

x = 10
x **= 2 # x = x**2
print(x)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 22/35

In [16]:

Case 2:

In [17]:

In both the cases, we are getting syntax error, because in Python increment/decrement operators
concept is not there.

Let us see the following code

In [21]:

8. Ternary Operator (or) Conditional Operator

Note:

 File "<ipython-input-16-60ef4d605145>", line 2
 x++
 ^
SyntaxError: invalid syntax

 File "<ipython-input-17-b058e79bff01>", line 2
 x--
 ^
SyntaxError: invalid syntax

10
10
-10
10
-10
-10

x = 10
x++
print(x)

x = 10
x--
print(x)

x = 10
print(++x)
print(++++x) # Here, + and - are sign bits, not increment and decrement operators
print(-x)
print(--x)
print(++++++++++++-x)
print(-------------+x)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 23/35

1. If the operator operates on only one operand, we will call such operator as unary operator. For eg:, ~a.

2. If the operator operates on Two operands, we will call such operator as binary operator. For eg:, a + b.

3. If the operator operates on Three operands, we will call such operator as Ternary operator.

Syntax:

x = firstValue if condition else secondValue

If condition is True then firstValue will be considered else secondValue will be considered.

Eg 1:

In [22]:

Eg 2: Read two integer numbers from the keyboard and print minimum value using ternary operator.

In [26]:

Nesting of ternary operator is possible.

Eg 3: Program for finding minimum of 3 numbers using nesting of ternary operators

In [27]:

100

Enter First Number:255
Enter Second Number:22
Minimum Value: 22

Enter First Number:10
Enter Second Number:20
Enter Third Number:30
Minimum Value: 10

a,b=23,43 # a =23 b = 43
c = 50 if a>b else 100
print(c)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))

min=a if a<b else b

print("Minimum Value:",min)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

min= a if a<b and a<c else b if b<c else c

print("Minimum Value:",min)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 24/35

In [28]:

In [29]:

Now, We will write the above program with some small modification.

In [30]:

But,the above logic fails for some test data, which is taken below:

Enter First Number:-10
Enter Second Number:-20
Enter Third Number:-30
Minimum Value: -30

Enter First Number:30
Enter Second Number:10
Enter Third Number:20
Minimum Value: 10

Enter First Number:10
Enter Second Number:20
Enter Third Number:30
Minimum Value: 10

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

min= a if a<b and a<c else b if b<c else c

print("Minimum Value:",min)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

min= a if a<b and a<c else b if b<c else c

print("Minimum Value:",min)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

min= a if a<b and a<c else b if b<c else c

min = a if a<b<c else b if b<c else c

print("Minimum Value:",min)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 25/35

In [31]:

Eg 4: Program for finding maximum of 3 numbers

In [32]:

In [33]:

Enter First Number:5
Enter Second Number:35
Enter Third Number:30
Minimum Value: 30

Enter First Number:34
Enter Second Number:22
Enter Third Number:55
Maximum Value: 55

Enter First Number:-10
Enter Second Number:-20
Enter Third Number:-30
Maximum Value: -10

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

min= a if a<b and a<c else b if b<c else c

min = a if a<b<c else b if b<c else c

print("Minimum Value:",min)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

max=a if a>b and a>c else b if b>c else c

print("Maximum Value:",max)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

max=a if a>b and a>c else b if b>c else c

print("Maximum Value:",max)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 26/35

In [34]:

Eg 5: Assume that there are two numbers, x and y, whose values to be read from the keyboard, and
print the following outputs based on the values of x and y.

case 1: If both are equal, then the output is : Both numbers are equal

case 2: If first number is smaller than second one, then the output is: First Number is Less than Second
Number

case 3: If the firts number is greater than second number, then the output is : First Number Greater than
Second Number

In [46]:

In [47]:

Enter First Number:10
Enter Second Number:30
Enter Third Number:20
Maximum Value: 30

Enter First Number:10
Enter Second Number:10
Both numbers are equal

Enter First Number:10
Enter Second Number:20
First Number is Less than Second Number

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))
c=int(input("Enter Third Number:"))

max=a if a>b and a>c else b if b>c else c

print("Maximum Value:",max)

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))

print("Both numbers are equal" if a==b else "First Number is Less than Second Number"
if a<b else "First Number Greater than Second Number")

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))

print("Both numbers are equal" if a==b else "First Number is Less than Second Number"
if a<b else "First Number Greater than Second Number")

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 27/35

In [48]:

Date: 19-04-2020 Day 4

9. Special Operators

There are two types of special operators are there in Python:

1. Identity Operators

2. Membership Operators

1. Identity Operators

We can use identity operators for address comparison. There are two identity operators used in Python:

i) is

ii) is not

r1 is r2 returns True if both r1 and r2 are pointing to the same object.

r1 is not r2 returns True if both r1 and r2 are not pointing to the same object.

Eg :

In [2]:

Enter First Number:20
Enter Second Number:12
First Number Greater than Second Number

True
True

a=int(input("Enter First Number:"))
b=int(input("Enter Second Number:"))

print("Both numbers are equal" if a==b else "First Number is Less than Second Number"
if a<b else "First Number Greater than Second Number")

a=10
b=10
print(a is b)
x=True
y=True
print(x is y)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 28/35

In [3]:

In [5]:

Note:

We can use is operator for address comparison where as == operator for content comparison.

2. Membership Operators

We can use Membership operators to check whether the given object present in the given collection.(It may
be String,List,Set,Tuple or Dict)

There are two types of membership operators used in Python:

i) in

ii) not in

in returns True if the given object present in the specified Collection.

not in retruns True if the given object not present in the specified Collection.

Eg :

2730506434688
2730506434688
True

2730505561800
2730505562120
False
True
True

a="durga"
b="durga"
print(id(a))
print(id(b))
print(a is b)

list1=["one","two","three"]
list2=["one","two","three"]
print(id(list1))
print(id(list2))
print(list1 is list2)
print(list1 is not list2) # reference comaprison (is & is not)
print(list1 == list2) # content comparison (==)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 29/35

In [9]:

In [7]:

10. Operator Precedence

If multiple operators present then which operator will be evaluated first is decided by operator precedence.

Eg :

In [11]:

The following list describes operator precedence in Python:

() ==> Parenthesis

** ==> exponential operator

~,- ==> Bitwise complement operator,unary minus operator

*,/,%,// ==> multiplication,division,modulo,floor division

+,- ==> addition,subtraction

<<,>> ==> Left and Right Shift

& ==> bitwise And

True
False
True
False
True

True
False
True

23
26

x="hello learning Python is very easy!!!"
print('h' in x)
print('d' in x)
print('d' not in x)
print('python' in x) # case sensitivity
print('Python' in x)

list1=["sunny","bunny","chinny","pinny"]

print("sunny" in list1)
print("tunny" in list1)
print("tunny" not in list1)

print(3+10*2)
print((3+10)*2)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 30/35

^ ==> Bitwise X-OR

| ==> Bitwise OR
<,<=,>,>=,==, != ==> Relational or Comparison operators

=,+=,-=,*=... ==> Assignment operators

is , is not ==> Identity Operators

in , not in ==> Membership operators

not ==> Logical not

and ==> Logical and
or ==> Logical or

Eg 1:

In [1]:

Eg 2:

In [3]:

11. Mathematical functions using 'math' module

Basic Idea about Python Module

A Module is collection of functions, variables and classes etc. In simple words, module is nothing but a
Python file.

100.0
100.0
70.0

15.0
15.0
15.0
15.0
15.0

a=30
b=20
c=10
d=5
print((a+b)*c/d) # division operoator in Python always going to provide float value as
print((a+b)*(c/d))
print(a+(b*c)/d)

print(3/2*4+3+(10/5)**3-2)
print(3/2*4+3+2.0**3-2)
print(3/2*4+3+8.0-2)
print(1.5*4+3+8.0-2)
print(6.0+3+8.0-2)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 31/35

Python contains many in-built libraries.

Being a developer, we can use these modules, but we are not responsible for developing the functionalities
about these modules.

For example, math is a module that contains several functions to perform mathematical operations.

If we want to use any module in Python, first we have to import that module.

 import math

Once we import a module then we can call any function of that module.

The biggest advantage of using modules is Code Reusability.

Eg :

In [4]:

In [5]:

How can youfoind which functions are available in 'math' module?

In [7]:

Eg :

Performing Add operation :
Sum is : 30
Performing Mul operation :
Product is : 200

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'ac
osh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos',
'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial',
'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'l
og2', 'modf', 'nan', 'pi', 'pow', 'radians', 'remainder', 'sin', 'sinh', 'sq
rt', 'tan', 'tanh', 'tau', 'trunc']

a = 888
b = 999

def add(x,y):
 print('Performing Add operation :')
 print('Sum is : ',x + y)

def mul(x,y):
 print('Performing Mul operation :')
 print('Product is : ',x * y) # Assume that We are saving this cell as pmat

use pmath.py module using import statement. In jupyter notebook file we need not to impo

add(10,20)
mul(10,20)

import math
print(dir(math)) # provides the list of functions names, variables, constants available i

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 32/35

In [1]:

Module Aliasing:

Whenever we are importing math module, so any variable or function we can use within that module by
specifying with the name of that module(For example, math.sqrt and math.py etc).

If the module name is bigger then there is a problem of every time make using of that bigger module name
when you are calling the function within that module. As result of this length of the code increases. To avoid
this, we can create alias name by using as keyword.

import math as m

Once we create alias name, by using that we can access functions and variables of that module.

In [5]:

We can import a particular member of a module explicitly as follows

Eg :

from math import sqrt

from math import sqrt,pi

If we import a member explicitly then it is not required to use module name while accessing.

4.0
3.141592653589793
2.718281828459045
3
4
9.0

4.0
3.141592653589793
3

import math
print(math.sqrt(16))
print(math.pi)
print(math.e)
print(math.floor(3.98))
print(math.ceil(3.98))
print(math.pow(3,2))

import math as m
print(m.sqrt(16))
print(m.pi)
print(math.floor(3.9))

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 33/35

In [7]:

Member Aliasing

We can create alias name for member of module also.

In [8]:

In [9]:

Important functions and variables of math module

Note :

In [10]:

Important functions present in math module:

ceil(x)

4.0
3.141592653589793
3.141592653589793

4.0

4.0
3.141592653589793

f1 new function

from math import sqrt,pi

print(sqrt(16))
print(pi)

print(math.pi)

from math import sqrt as s

print(s(16))

from math import sqrt as s, pi as p

print(s(16))
print(p)

def f1():
 print('f1 old function')

def f1():
 print('f1 new function')

f1() # Most recent function will execute, if the function with same name diffrent fu

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 34/35

floor(x)

pow(x,y)

factorial(x)

trunc(x)

gcd(x,y)

sin(x)

cos(x)

tan(x)

Important variables of math module:

pi ==> 3.14

e ==> 2.71

inf ==> infinity

nan ==> not a number

Eg : Q. Write a Python program to find area of circle.

In [14]:

Another Way

In [18]:

Another Way

Enter radius Value : 5
Area of the circle for the given radius is : 78.53981633974483

Area of Circle is : 78.53981633974483

Find the area of circle for the given radius

from math import pi

radius = int(input("Enter radius Value : "))
area = pi * (radius**2)

print("Area of the circle for the given radius is : ",area)

import math
r=5
print("Area of Circle is :",pi*r**2)

19/04/2020 Python Operators

localhost:8888/notebooks/Desktop/PythonCourse/Python Operators.ipynb 35/35

In [19]:

In []:

Area of Circle is : 78.53981633974483

from math import *
r=5
print("Area of Circle is :",pi*pow(r,2))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 1/19

 UNIT - 2

Input and Output Statements in Python

Date: 20-04-2020 Day 1

Introduction
In this lecture we will learn about how to read the user provided input and print ouput to the end user.

The following topics we are going to discuss as part of this lecture:

1. raw_input() vs input()

2. Python-3 input() function

3. How to read multiple values from the keyboard in a single line

4. Command line arguments

5. Output statement : print() function

6. sep attribute

7. end attribute

8. Printing formatted string

9. Replacement Operator : { }

1. raw_input() vs input()

Reading dynamic input from the keyboard:

In Python 2 the following 2 functions are available to read dynamic input from the keyboard.

1. raw_input()

2. input()

1. raw_input():

This function always reads the data from the keyboard in the form of String Format. We have to convert
that string type to our required type by using the corresponding type casting methods.

Eg :

In []:

x = raw_input("Enter First Number : ")
print(type(x)) # It will always print str type only for any input type

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 2/19

2. input():
input() function can be used to read data directly in our required format.We are not required to perform type
casting.

In []:

Note:

But in Python3 we have only input() method and raw_input() method is not available.

Python3 input() function behaviour exactly same as raw_input() method of Python2. i.e every input value is
treated as str type only.

raw_input() function of Python 2 is renamed as input() function in Python3.

Eg :

In [5]:

In [6]:

In [7]:

Enter value:10

Out[5]:

str

Enter value:22.8

Out[6]:

str

Enter value:True

Out[7]:

str

x=input("Enter Value)
type(x)

10 ===> int

"durga"===>str

10.5===>float

True==>bool

type(input("Enter value:"))

type(input("Enter value:"))

type(input("Enter value:"))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 3/19

Note :

Why input() in Python 3 gave the priority for string type as return type?

Reason: The most commonly used type in any programming language is str type , that's why they gave the
priority for str type as default return type of input() function.

Demo Program 1: Read input data from the Keyboard

In [1]:

above code in simplified form:

In [2]:

We can write the above code in single line also.

In [3]:

Demo Program 2: Write a program to read Employee data from the keyboard and print that data.

Enter First Number:100
Enter Second Number:200
The Sum: 300

Enter First Number:100
Enter Second Number:200
The Sum: 300

Enter First Number:100
Enter Second Number:200
The Sum: 300

x=input("Enter First Number:")
y=input("Enter Second Number:")

i = int(x)
j = int(y)

print("The Sum:",i+j)

x=int(input("Enter First Number:"))
y=int(input("Enter Second Number:"))
print("The Sum:",x+y)

print("The Sum:",int(input("Enter First Number:"))+int(input("Enter Second Number:")))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 4/19

In [8]:

In [9]:

Enter Employee No:874578
Enter Employee Name:Karthi
Enter Employee Salary:23500
Enter Employee Address:Nandyal
Employee Married ?[True|False]:T
Please Confirm your provided Information
Employee No : 874578
Employee Name : Karthi
Employee Salary : 23500.0
Employee Address : Nandyal
Employee Married ? : True

Enter Employee No:245784
Enter Employee Name:Karthi
Enter Employee Salary:34566
Enter Employee Address:Nandyal
Employee Married ?[True|False]:False
Please Confirm your provided Information
Employee No : 245784
Employee Name : Karthi
Employee Salary : 34566.0
Employee Address : Nandyal
Employee Married ? : True

eno=int(input("Enter Employee No:"))
ename=input("Enter Employee Name:")
esal=float(input("Enter Employee Salary:"))
eaddr=input("Enter Employee Address:")
married=bool(input("Employee Married ?[True|False]:"))

print("Please Confirm your provided Information")
print("Employee No :",eno)
print("Employee Name :",ename)
print("Employee Salary :",esal)
print("Employee Address :",eaddr)
print("Employee Married ? :",married)

eno=int(input("Enter Employee No:"))
ename=input("Enter Employee Name:")
esal=float(input("Enter Employee Salary:"))
eaddr=input("Enter Employee Address:")
married=bool(input("Employee Married ?[True|False]:"))

print("Please Confirm your provided Information")
print("Employee No :",eno)
print("Employee Name :",ename)
print("Employee Salary :",esal)
print("Employee Address :",eaddr)
print("Employee Married ? :",married)

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 5/19

In [10]:

When you are not providing any value to the married (Just press Enter), then only it considers empty string and
gives the False value. In the above example, to read the boolean data, we need to follow the above process.

But it is not our logic requirement. If you want to convert string to Boolean type, instead of using bool() function
we need to use eval() function.

Enter Employee No:245784
Enter Employee Name:Karthi
Enter Employee Salary:34566
Enter Employee Address:Nandyal
Employee Married ?[True|False]:
Please Confirm your provided Information
Employee No : 245784
Employee Name : Karthi
Employee Salary : 34566.0
Employee Address : Nandyal
Employee Married ? : False

eno=int(input("Enter Employee No:"))
ename=input("Enter Employee Name:")
esal=float(input("Enter Employee Salary:"))
eaddr=input("Enter Employee Address:")
married=bool(input("Employee Married ?[True|False]:"))

print("Please Confirm your provided Information")
print("Employee No :",eno)
print("Employee Name :",ename)
print("Employee Salary :",esal)
print("Employee Address :",eaddr)
print("Employee Married ? :",married)

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 6/19

In [11]:

Date: 21-04-2020 Day-2

3. Reading multiple values from the keyboard in a single line

In [12]:

Explanation :

Here, we are using only one input function (i.e., input("Enter 2 numbers :")). So what ever you provide it
is treated as only one string.

Suppose, you are provinding input as 10 20, this is treated as single string.

If you want to split that string into multiple values, then we required to use split() function .

If we want to split the given string (i.e., 10 20) with respect to space, then the code will be as follows:

 input('Enter 2 numbers :").split()

Here, we are not passing any argument to split() function, then it takes default parameter (i.e., space) as
seperator.

Now this single string(i.e.,10 20) is splitted into list of two string values.

Enter Employee No:245784
Enter Employee Name:Karthi
Enter Employee Salary:34566
Enter Employee Address:Nandyal
Employee Married ?[True|False]:False
Please Confirm your provided Information
Employee No : 245784
Employee Name : Karthi
Employee Salary : 34566.0
Employee Address : Nandyal
Employee Married ? : False

Enter 2 numbers :10 20
The Sum is : 30

eno=int(input("Enter Employee No:"))
ename=input("Enter Employee Name:")
esal=float(input("Enter Employee Salary:"))
eaddr=input("Enter Employee Address:")
married=eval(input("Employee Married ?[True|False]:"))

print("Please Confirm your provided Information")
print("Employee No :",eno)
print("Employee Name :",ename)
print("Employee Salary :",esal)
print("Employee Address :",eaddr)
print("Employee Married ? :",married)

a,b= [int(x) for x in input("Enter 2 numbers :").split()]

print("The Sum is :", a + b)

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 7/19

Now the statement : input('Enter 2 numbers :").split() returns ['10','20']

Now, in the list every number is available in string form.

So, what we will do here is, each value present in this list is typecast to 'int' value.

 [int(x) for x in input('Enter 2 numbers :").split()] ===> it retrns [10,2
0]

This concept is known as list comprehension.

a,b = [int(x) for x in input('Enter 2 numbers :").split()] ===> it assigns 10 to a and 20 to b. This concept is
called as list unpacking.

a,b = [int(x) for x in input('Enter 2 numbers :").split()]
print('Sum is : ',a + b) ====> Gives the sum of two values as the result.

Note:

split() function can take space as seperator by default .But we can pass anything as seperator.

In [13]:

In [14]:

Enter 2 numbers :10 20
10 20 <class 'str'>

Enter 2 numbers :10 20
['10', '20'] <class 'list'>

a,b= [int(x) for x in input("Enter 2 numbers :").split()]

s = input("Enter 2 numbers :")
print(s,type(s))

s = input("Enter 2 numbers :")
print(s,type(s)) # s holds single value '10 20'
l=s.split() # After split, single string will be divided into list of two values of
print(l,type(l))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 8/19

In [18]:

By substituting the elements of the above code, we will get the below code (same as above code):

In [19]:

In [20]:

In [22]:

Enter 2 numbers :10 20
10 20 <class 'str'>
['10', '20']
[10, 20]
10
20
Sum is : 30

Enter 2 numbers :10 20
Sum is : 30

Enter 2 numbers :10,20
Sum is : 30

Enter 2 numbers :10 20

ValueError Traceback (most recent call last)
<ipython-input-22-d2adfb9ab442> in <module>
----> 1 a,b = [int(x) for x in input("Enter 2 numbers :").split(',')]
 2 print('Sum is :', a+b)

<ipython-input-22-d2adfb9ab442> in <listcomp>(.0)
----> 1 a,b = [int(x) for x in input("Enter 2 numbers :").split(',')]
 2 print('Sum is :', a+b)

ValueError: invalid literal for int() with base 10: '10 20'

s = input("Enter 2 numbers :")
print(s,type(s)) # s holds single value '10 20'
l = s.split() # After split, single string will be divided into list of two values
print(l)
l1 = [int(x) for x in l] # This new list contains two int values after typecastig of each
print(l1)
a,b = l1 # in this list wahtever the values are there, assigns first value to 'a' and sec
 #This is called 'list unpacking'.
print(a)
print(b)
print('Sum is :', a+b)

a,b = [int(x) for x in input("Enter 2 numbers :").split()]
print('Sum is :', a+b)

a,b = [int(x) for x in input("Enter 2 numbers :").split(',')]
print('Sum is :', a+b)

a,b = [int(x) for x in input("Enter 2 numbers :").split(',')]
print('Sum is :', a+b)

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 9/19

Date: 22-04-2020 Day 3
Demo Program 3: Q. Write a program to read 3 float numbers from the keyboard with , seperator and
print their sum.

In [3]:

eval() Function:

eval() Function is a single function which is the replacement of all the typecasting functions in Python.

In [7]:

In [8]:

In [9]:

In [18]:

Enter 3 float numbers with , seperation :10.5,20.6,30.7
The Sum is : 61.8

Enter Something : karthi
<class 'str'>

Enter Something : 10
<class 'str'>

Enter Something :10.5
<class 'str'>

Enter Something : 'karthi'
<class 'str'>

a,b,c= [float(x) for x in input("Enter 3 float numbers with , seperation :").split(',')]
print("The Sum is :", a+b+c)

x = (input('Enter Something : '))
print(type(x))

x = (input('Enter Something : '))
print(type(x))

x = (input('Enter Something :'))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 10/19

In [11]:

In [13]:

In [16]:

In [19]:

In [20]:

In [21]:

In [22]:

-If you provide an expression as a string type, eval() function evaluates that expression and provide the
result.

Enter Something : 10
<class 'int'>

Enter Something : 10.5
<class 'float'>

Enter Something : True
<class 'bool'>

Enter Something : [10,20,30]
<class 'list'>

Enter Something : (10,20,30)
<class 'tuple'>

Enter Something : (10)
<class 'int'>

Enter Something : (10,)
<class 'tuple'>

x = eval((input('Enter Something : ')))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

x = eval((input('Enter Something : ')))
print(type(x))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 11/19

In [24]:

In [25]:

In [26]:

4. Command Line Arguments

Command line arguments is another way to read the user provided input.

The Argument which are passing at the time of execution are called Command Line Arguments.

argv is not Array it is a List. It is available sys Module.

Eg: D:\Python_classes py test.py 10 20 30 (Command Line Arguments).

Within the Python Program this Command Line Arguments are available in argv. Which is present in sys
Module.

 test.py 10 20 30

Note:

argv[0] represents Name of Program. But not first Command Line Argument.

argv[1] represent First Command Line Argument.

In [28]:

Eg 1: (Executed in Atom Editor)

60 <class 'int'>

TypeError Traceback (most recent call last)
<ipython-input-25-9d177369d9d9> in <module>
----> 1 x = eval(10+20+30)
 2 print(x,type(x))

TypeError: eval() arg 1 must be a string, bytes or code object

10.0 <class 'float'>

<class 'list'>

x = eval('10+20+30')
print(x,type(x))

x = eval(10+20+30)
print(x,type(x))

x = eval('10+20/3**4//5*40')
print(x,type(x))

from sys import argv
print(type(argv))

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 12/19

from sys import argv

print(“The Number of Command Line Arguments:”, len(argv))

print(“The List of Command Line Arguments:”, argv)

print(“Command Line Arguments one by one:”)

for x in argv:

print(x)

Output :

D:\Python_classes>py test.py 10 20 30

The Number of Command Line Arguments: 4

The List of Command Line Arguments: [‘test.py’, ‘10’,’20’,’30’]

Command Line Arguments one by one:

test.py

10

20

30

Eg 2: (Executed in Atom Editor)

from sys import argv

sum=0

args=argv[1:]

for x in args :

n=int(x)

sum=sum+n

print("The Sum:",sum)

Output:

D:\Python_classes>py test.py 10 20 30 40

The Sum: 100

Note 1:

Usually space is seperator between command line arguments. If our command line argument itself
contains space then we should enclose within double quotes(but not single quotes)

(Executed in Edit Plus)

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 13/19

()
from sys import argv

print(argv[1])

Output:

D:\Python_classes>py test.py Karthi Keya

Karthi

D:\Python_classes>py test.py 'Karthi Keya'

'Karthi'

D:\Python_classes>py test.py "Karthi Keya"

Karthi Keya

Note 2:

Within the Python program command line arguments are available in the String form. Based on our
requirement,we can convert into corresponding type by using typecasting methods.

(Executed in Edit Plus)

from sys import argv

print(argv[1]+argv[2])

print(int(argv[1])+int(argv[2]))

Output :

D:\Python_classes>py test.py 10 20

1020

30

Note 3:

If we are trying to access command line arguments with out of range index then we will get Error.

(Executed in Edit Plus)

from sys import argv

print(argv[100])

D:\Python_classes>py test.py 10 20

IndexError: list index out of range

5. Output Statements : 'print()' function

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 14/19

We can use print() function to display output to the console for end user sake.

Multiple forms are there related to print() function.

Form-1:print() without any argument

Just it prints new line character (i.e.,\n)

In [1]:

see the difference in below code:

In [2]:

Form-2: print() function to print of string argument

In [5]:

We can use escape characters also.

In [6]:

We can use repetetion operator (*) in the string.

karthi

sahasra

karthi
sahasra

Hello World

Hello
 World
Hello World

print('karthi')
print() # prints new line character
print('sahasra')

print('karthi')
#print() # prints new line character
print('sahasra')

 print("Hello World")

print("Hello \n World")
print("Hello\tWorld")

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 15/19

In [7]:

We can use + operator also.

In [8]:

Note:

If both arguments are string type then + operator acts as concatenation operator.

If one argument is string type and second is any other type like int then we will get Error

If both arguments are number type then + operator acts as arithmetic addition operator.

In [10]:

6. 'sep' attribute:
Form-4: print() with 'sep' attribute:

By default output values are seperated by space. If we want we can specify seperator by using "sep"
attribute.

'sep' means seperator.

HelloHelloHelloHelloHelloHelloHelloHelloHelloHello
HelloHelloHelloHelloHelloHelloHelloHelloHelloHello

HelloWorld

The Values are : 10 20 30

print(10*"Hello")
print("Hello"*10)

print("Hello"+"World")

Form-3: print() with variable number of arguments:

a,b,c=10,20,30
print("The Values are :",a,b,c) # here, we are passing 4 arguments to the print function.

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 16/19

In [14]:

7. 'end' attribute:
Form-5: print() with 'end' attribute:

In [15]:

If we want output in the same line with space, we need to use end attribute.

default value of 'end' attribute is newline character. (That means, if there is no end attribute,
automatically newline character will be printed)

In [21]:

In [22]:

In [23]:

Eg: Program to demonstrate both 'sep' and 'end' attributes.

10 20 30
10,20,30
10:20:30
10-20-30

Hello
Karthi
Sahasra

Hello Karthi Sahasra

HelloKarthiSahasra

hello::karthi****sahasra

a,b,c=10,20,30
print(a,b,c) # 10 20 30
print(a,b,c,sep=',') # 10,20,30
print(a,b,c,sep=':') # 10:20:30
print(a,b,c,sep='-') # 10-20-30

print("Hello")
print("Karthi")
print("Sahasra")

print("Hello",end=' ')
print("Karthi",end=' ') # if end is space character
print("Sahasra")

print("Hello",end='')
print("Karthi",end='') # if end is nothing
print("Sahasra")

print('hello',end = '::')
print('karthi',end = '****')
print('sahasra')

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 17/19

g og a to de o st ate bot sep a d e d att butes

In [26]:

In [37]:

Form-6: print(object) statement:

We can pass any object (like list,tuple,set etc)as argument to the print() statement.

Eg:

In [27]:

Form-7: print(String,variable list):

We can use print() statement with String and any number of arguments.

In [38]:

8.Printing formatted string

10:20:30***40:50:60
70**80$$90 100

karthisahasra
karthi sahasra
10 20 30

[10, 20, 30, 40]
(10, 20, 30, 40)

Hello Karthi Your Age is 6
You are learning java and Python

print(10,20,30,sep = ':', end = '***')
print(40,50,60,sep = ':') # default value of 'end' attribute is '\n'
print(70,80,sep = '**',end = '$$')
print(90,100)

Eg : Consider the following case,

print('karthi' + 'sahasra') # Concatanation
print('karthi','sahasra') # ',' means space is the seperator
print(10,20,30)

l=[10,20,30,40]
t=(10,20,30,40)
print(l)
print(t)

s="Karthi"
a=6
s1="java"
s2="Python"
print("Hello",s,"Your Age is",a)
print("You are learning",s1,"and",s2)

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 18/19

Form-8: print(formatted string):

%i ====>int

%d ====>int

%f =====>float

%s ======>String type

Syntax:

print("formatted string" %(variable list))

In [43]:

In [57]:

In [60]:

9. Replacement Operator ({ }):
Form-9: print() with replacement operator { }

Eg: 1

a value is 10
b value is 20 and c value is 30

Hello Karthi ...The List of Items are [10, 20, 30, 40]

Price value = 70.56789
Price value = 70.567890
Price value = 70.57

a=10
b=20
c=30
print("a value is %i" %a)
print("b value is %d and c value is %d" %(b,c))

s="Karthi"
list=[10,20,30,40]
print("Hello %s ...The List of Items are %s" %(s,list))

price = 70.56789
print('Price value = {}'.format(price))
print('Price value = %f'%price)
print('Price value = %.2f'%price) # only two digits after decimal point, we can't do
 #This type of customization is possible with formatted s

22/04/2020 Input-Output statements

localhost:8889/notebooks/Desktop/PythonCourse/Input-Output statements.ipynb 19/19

In [53]:

Eg: 2

In [56]:

Good Luck

Hello Karthi your salary is 100000 and Your Sister Sahasra is waiting
Hello Karthi your salary is 100000 and Your Sister Sahasra is waiting
Hello 100000 your salary is Sahasra and Your Sister Karthi is waiting
Hello Karthi your salary is 100000 and Your Sister Sahasra is waiting
Hello Karthi your salary is 100000 and Your Sister Sahasra is waiting

a = 10,b = 20,c = 30,d = 40

name = "Karthi"
salary = 100000
sister = "Sahasra"

print("Hello {} your salary is {} and Your Sister {} is waiting".format(name,salary,sister)
print("Hello {0} your salary is {1} and Your Sister {2} is waiting".format(name,salary,sist
print("Hello {1} your salary is {2} and Your Sister {0} is waiting".format(name,salary,sist
print("Hello {2} your salary is {0} and Your Sister {1} is waiting".format(salary,sister,na
print("Hello {x} your salary is {y} and Your Sister {z} is waiting".format(x=name,y=salary,

a,b,c,d = 10,20,30,40 # print a=10,b=20,c=30,d=40
print('a = {},b = {},c = {},d = {}'.format(a,b,c,d))

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 1/26

Flow Control Statements:

Date: 22-04-2020 Day-1

Flow control describes the order in which statements will be executed at runtime.

Flow control statements are divided into three categoriesin Python.

1. Conditional Statements (or) Selection Statements

Based on some condition result, some group of statements will be executed and some group of statements
will not be executed.

Note:

There is no switch statement in Python. (Which is available in C and Java)

There is no do-while loop in Python.(Which is available in C and Java)

goto statement is also not available in Python. (Which is available in C)

i) if Statement :

Before going to discuss about if statement syntax and examples, we need to know about an important concept
known as indentation.

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 2/26

In C/Java language, How to define if statement?

if(condition)

{

body

}

statements

Here, by using curly braces, we can define a block of statements.

But in Python, curly braces style is not there. Then how can we define a particular statement is under if
statement (i.e, How we can define if block?).

In Python:

if condition: (Note: In Python any where we are using colon(:) means we are defining block)

statement 1

statement 2 (These statements are said to be same indentation)

statement 3

statement 4 (This staement is not under if statement)

If you are not followed indentation, you will get indentation error.

In Python enabled editors indention is automatically maintained.

In []:

In this way we need to follow indentation in Python.

In [2]:

10 is less than 20
End of Program

if condition:
 statement 1
 statement 2
 statement 3
statement

if 10<20:
 print('10 is less than 20')
print('End of Program')

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 3/26

In [3]:

Eg:

In [7]:

In [8]:

ii) if - else Statement:

Syntax:

if condition:

Action 1

else:

Action 2

if condition is true then Action-1 will be executed otherwise Action-2 will be executed.

Eg:

 File "<ipython-input-3-f2d3b9a6180e>", line 2
 print('10 is less than 20')
 ^
IndentationError: expected an indented block

Enter Name:Karthi
Hello Karthi Good Morning
How are you!!!

Enter Name:ravi
How are you!!!

if 10<20:
print('10 is less than 20')
print('End of Program')

name=input("Enter Name:")
if name=="Karthi":
 print("Hello Karthi Good Morning")
print("How are you!!!")

name=input("Enter Name:")
if name=="Karthi":
 print("Hello Karthi Good Morning")
print("How are you!!!")

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 4/26

In [10]:

In [11]:

iii) if-elif-else Statement:

Syntax:

if condition1:

Action-1

elif condition2:

Action-2

elif condition3:

Action-3

elif condition4:

Action-4

...

else:

Default Action

Based condition the corresponding action will be executed.

Eg :

Enter Name : Karthi
Hello Karthi! Good Morning
How are you?

Enter Name : ram
Hello Guest! Good MOrning
How are you?

name = input('Enter Name : ')
if name == 'Karthi':
 print('Hello Karthi! Good Morning')
else:
 print('Hello Guest! Good MOrning')
print('How are you?')

name = input('Enter Name : ')
if name == 'Karthi':
 print('Hello Karthi! Good Morning')
else:
 print('Hello Guest! Good MOrning')
print('How are you?')

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 5/26

In [12]:

In [13]:

In [14]:

Points to Ponder:

1. else part is always optional

Hence the following are various possible syntaxes.

 1. if

 2. if - else

 3. if-elif-else

 4. if-elif

Enter Your Favourite Brand:RC
It is childrens brand

Enter Your Favourite Brand:FO
Buy one get Free One

Enter Your Favourite Brand:abc
Other Brands are not recommended

brand=input("Enter Your Favourite Brand:")
if brand=="RC":
 print("It is childrens brand")
elif brand=="KF":
 print("It is not that much kick")
elif brand=="FO":
 print("Buy one get Free One")
else :
 print("Other Brands are not recommended")

brand=input("Enter Your Favourite Brand:")
if brand=="RC":
 print("It is childrens brand")
elif brand=="KF":
 print("It is not that much kick")
elif brand=="FO":
 print("Buy one get Free One")
else :
 print("Other Brands are not recommended")

brand=input("Enter Your Favourite Brand:")
if brand=="RC":
 print("It is childrens brand")
elif brand=="KF":
 print("It is not that much kick")
elif brand=="FO":
 print("Buy one get Free One")
else :
 print("Other Brands are not recommended")

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 6/26

2. There is no switch statement in Python

Example Programs

Q 1. Write a program to find biggest of given 2 numbers.

In [17]:

Q 2. Write a program to find biggest of given 3 numbers.

In [18]:

Q 3. Write a program to find smallest of given 2 numbers?

In [19]:

Q 4. Write a program to find smallest of given 3 numbers?

Enter First Number:10
Enter Second Number:20
Biggest Number is: 20

Enter First Number:10
Enter Second Number:20
Enter Third Number:35
Biggest Number is: 35

Enter First Number:10
Enter Second Number:20
Smallest Number is: 10

n1=int(input("Enter First Number:"))
n2=int(input("Enter Second Number:"))
if n1>n2:
 print("Biggest Number is:",n1)
else :
 print("Biggest Number is:",n2)

n1=int(input("Enter First Number:"))
n2=int(input("Enter Second Number:"))
n3=int(input("Enter Third Number:"))
if n1>n2 and n1>n3:
 print("Biggest Number is:",n1)
elif n2>n3:
 print("Biggest Number is:",n2)
else :
 print("Biggest Number is:",n3)

n1=int(input("Enter First Number:"))
n2=int(input("Enter Second Number:"))
if n1>n2:
 print("Smallest Number is:",n2)
else :
 print("Smallest Number is:",n1)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 7/26

In [20]:

Q 5. Write a program to check whether the given number is even or odd?

In [21]:

In [22]:

Q 6. Write a program to check whether the given number is in between 1 and 100?

In [23]:

Enter First Number:10
Enter Second Number:20
Enter Third Number:30
Smallest Number is: 10

Enter First Number:56
Entered Number is an Even Number

Enter First Number:55
Entered Number is an Odd Number

Enter Number:78
The number 78 is in between 1 to 100

n1=int(input("Enter First Number:"))
n2=int(input("Enter Second Number:"))
n3=int(input("Enter Third Number:"))
if n1<n2 and n1<n3:
 print("Smallest Number is:",n1)
elif n2<n3:
 print("Smallest Number is:",n2)
else :
 print("Smallest Number is:",n3)

n1=int(input("Enter First Number:"))
rem = n1 % 2
if rem == 0:
 print('Entered Number is an Even Number')
else:
 print('Entered Number is an Odd Number')

n1=int(input("Enter First Number:"))
rem = n1 % 2
if rem == 0:
 print('Entered Number is an Even Number')
else:
 print('Entered Number is an Odd Number')

n=int(input("Enter Number:"))
if n>=1 and n<=100 :
 print("The number",n,"is in between 1 to 100")
else:
 print("The number",n,"is not in between 1 to 100")

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 8/26

In [24]:

Q 7. Write a program to take a single digit number from the key board and print it's value in English
word?

In [25]:

Enter Number:101
The number 101 is not in between 1 to 100

Enter a digit from o to 9:8
EIGHT

n=int(input("Enter Number:"))
if n>=1 and n<=100 :
 print("The number",n,"is in between 1 to 100")
else:
 print("The number",n,"is not in between 1 to 100")

n=int(input("Enter a digit from o to 9:"))
if n==0 :
 print("ZERO")
elif n==1:
 print("ONE")
elif n==2:
 print("TWO")
elif n==3:
 print("THREE")
elif n==4:
 print("FOUR")
elif n==5:
 print("FIVE")
elif n==6:
 print("SIX")
elif n==7:
 print("SEVEN")
elif n==8:
 print("EIGHT")
elif n==9:
 print("NINE")
else:
 print("PLEASE ENTER A DIGIT FROM 0 TO 9")

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 9/26

In [26]:

Another Way of writing program for the same requirement

In [16]:

In [17]:

Enter a digit from o to 9:10
PLEASE ENTER A DIGIT FROM 0 TO 9

Enter a digit from 0 to 9 :7
SEVEN

Enter a digit from 0 to 9 :15

IndexError Traceback (most recent call last)
<ipython-input-17-7dee7e007a8f> in <module>
 1 list1 = ['ZERO','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIG

HT','NINE']
 2 n =int(input('Enter a digit from 0 to 9 :'))

----> 3 print(list1[n])

IndexError: list index out of range

n=int(input("Enter a digit from o to 9:"))
if n==0 :
 print("ZERO")
elif n==1:
 print("ONE")
elif n==2:
 print("TWO")
elif n==3:
 print("THREE")
elif n==4:
 print("FOUR")
elif n==5:
 print("FIVE")
elif n==6:
 print("SIX")
elif n==7:
 print("SEVEN")
elif n==8:
 print("EIGHT")
elif n==9:
 print("NINE")
else:
 print("PLEASE ENTER A DIGIT FROM 0 TO 9")

list1 = ['ZERO','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE']
n =int(input('Enter a digit from 0 to 9 :'))
print(list1[n])

list1 = ['ZERO','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE']
n =int(input('Enter a digit from 0 to 9 :'))
print(list1[n])

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 10/26

How can you extend the above program from 0 to 99?

In [19]:

In [20]:

Enter a number from 0 to 99 : 0
ZERO

Enter a number from 0 to 99 : 9
NINE

words_upto_19 = ['','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN','E
 'TWELVE','THIRTEEN','FOURTEEN','FIFTEEN','SIXTEEN','SEVENTEEN','EIGHTEEN',

words_for_tens = ['','','TWENTY','THIRTY','FORTY','FIFTY','SIXTY','SEVENTY','EIGHTY','NINET

n = int(input('Enter a number from 0 to 99 : '))

output = ''

if n == 0:
 output = 'ZERO'
elif n <= 19:
 output = words_upto_19[n]
elif n<=99:
 output = words_for_tens[n//10]+' '+words_upto_19[n%10]
else:
 output = 'Pleae Enter a value fron 0 to 99 only'
print(output)

words_upto_19 = ['','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN','E
 'TWELVE','THIRTEEN','FOURTEEN','FIFTEEN','SIXTEEN','SEVENTEEN','EIGHTEEN',

words_for_tens = ['','','TWENTY','THIRTY','FORTY','FIFTY','SIXTY','SEVENTY','EIGHTY','NINET

n = int(input('Enter a number from 0 to 99 : '))

output = ''

if n == 0:
 output = 'ZERO'
elif n <= 19:
 output = words_upto_19[n]
elif n<=99:
 output = words_for_tens[n//10]+' '+words_upto_19[n%10]
else:
 output = 'Pleae Enter a value fron 0 to 99 only'
print(output)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 11/26

In [21]:

In [22]:

Enter a number from 0 to 99 : 19
NINETEEN

Enter a number from 0 to 99 : 25
TWENTY FIVE

words_upto_19 = ['','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN','E
 'TWELVE','THIRTEEN','FOURTEEN','FIFTEEN','SIXTEEN','SEVENTEEN','EIGHTEEN',

words_for_tens = ['','','TWENTY','THIRTY','FORTY','FIFTY','SIXTY','SEVENTY','EIGHTY','NINET

n = int(input('Enter a number from 0 to 99 : '))

output = ''

if n == 0:
 output = 'ZERO'
elif n <= 19:
 output = words_upto_19[n]
elif n<=99:
 output = words_for_tens[n//10]+' '+words_upto_19[n%10]
else:
 output = 'Pleae Enter a value fron 0 to 99 only'
print(output)

words_upto_19 = ['','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN','E
 'TWELVE','THIRTEEN','FOURTEEN','FIFTEEN','SIXTEEN','SEVENTEEN','EIGHTEEN',

words_for_tens = ['','','TWENTY','THIRTY','FORTY','FIFTY','SIXTY','SEVENTY','EIGHTY','NINET

n = int(input('Enter a number from 0 to 99 : '))

output = ''

if n == 0:
 output = 'ZERO'
elif n <= 19:
 output = words_upto_19[n]
elif n<=99:
 output = words_for_tens[n//10]+' '+words_upto_19[n%10]
else:
 output = 'Pleae Enter a value fron 0 to 99 only'
print(output)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 12/26

In [25]:

In [24]:

Assignment: Extend the above example to the range 0 to 999

2. Iterative Statements

If we want to execute a group of statements multiple times then we should go for Iterative statements.

Python supports 2 types of iterative statements.

Enter a number from 0 to 99 : 40
FORTY

Enter a number from 0 to 99 : 123
Pleae Enter a value fron 0 to 99 only

words_upto_19 = ['','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN','E
 'TWELVE','THIRTEEN','FOURTEEN','FIFTEEN','SIXTEEN','SEVENTEEN','EIGHTEEN',

words_for_tens = ['','','TWENTY','THIRTY','FORTY','FIFTY','SIXTY','SEVENTY','EIGHTY','NINET

n = int(input('Enter a number from 0 to 99 : '))

output = ''

if n == 0:
 output = 'ZERO'
elif n <= 19:
 output = words_upto_19[n]
elif n<=99:
 output = words_for_tens[n//10]+' '+words_upto_19[n%10]
else:
 output = 'Pleae Enter a value fron 0 to 99 only'
print(output)

words_upto_19 = ['','ONE','TWO','THREE','FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN','E
 'TWELVE','THIRTEEN','FOURTEEN','FIFTEEN','SIXTEEN','SEVENTEEN','EIGHTEEN',

words_for_tens = ['','','TWENTY','THIRTY','FORTY','FIFTY','SIXTY','SEVENTY','EIGHTY','NINET

n = int(input('Enter a number from 0 to 99 : '))

output = ''

if n == 0:
 output = 'ZERO'
elif n <= 19:
 output = words_upto_19[n]
elif n<=99:
 output = words_for_tens[n//10]+' '+words_upto_19[n%10]
else:
 output = 'Pleae Enter a value fron 0 to 99 only'
print(output)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 13/26

i. for loop

ii. while loop

i) for loop:

If we want to execute some action for every element present in some sequence (it may be string or
collection) then we should go for for loop.

Syntax:

for x in sequence:

body

where 'sequence' can be string or any collection.

Body will be executed for every element present in the sequence.

Eg 1: Write a Program to print characters present in the given string.

In [27]:

Eg 2: To print characters present in string index wise.

S
a
h
a
s
r
a

s="Sahasra"
for x in s :
 print(x)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 14/26

In [28]:

Eg 3: To print Hello 10 times.

In [31]:

In [32]:

Eg 4: To display numbers from 0 to 10

Enter some String: Karthikeya
The character present at 0 index is : K
The character present at 1 index is : a
The character present at 2 index is : r
The character present at 3 index is : t
The character present at 4 index is : h
The character present at 5 index is : i
The character present at 6 index is : k
The character present at 7 index is : e
The character present at 8 index is : y
The character present at 9 index is : a

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

s=input("Enter some String: ")
i=0
for x in s :
 print("The character present at ",i,"index is :",x)
 i=i+1

s = 'Hello'
for i in range(1,11):
 print(s)

s = 'Hello'
for i in range(10):
 print(s)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 15/26

In [33]:

Eg 5: To display odd numbers from 0 to 20

In [34]:

Eg 6: To display numbers from 10 to 1 in descending order.

In [35]:

Eg 7: To print sum of numbers presenst inside list.

0
1
2
3
4
5
6
7
8
9
10

1
3
5
7
9
11
13
15
17
19

10
9
8
7
6
5
4
3
2
1

for i in range(0,11):
 print(i)

for i in range(21):
 if(i%2!=0):
 print(i)

for i in range(10,0,-1):
 print(i)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 16/26

In [36]:

In [42]:

ii) while loop:

If we want to execute a group of statements iteratively until some condition false,then we should go for while
loop.

Syntax:

while condition:

body

Eg 1: To print numbers from 1 to 10 by using while loop

In [43]:

Eg 2: To display the sum of first n numbers.

Enter List:10,20,30,40
The Sum= 100

Enter List:45,67,89
The Sum= 201

1
2
3
4
5
6
7
8
9
10

list=eval(input("Enter List:"))
sum=0;
for x in list:
 sum=sum+x;
print("The Sum=",sum)

list=eval(input("Enter List:"))
sum=0;
for x in list:
 sum=sum+ x;
print("The Sum=",sum)

x=1
while x <=10:
 print(x)
 x=x+1

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 17/26

In [44]:

Date: 23-04-2020 Day-2
Eg 3: write a program to prompt user to enter some name until entering Karthi.

In [1]:

Infinite Loops

Some times a loop can execute infinite number of times without stopping also.

Eg :

In []:

Note: By pressing Ctrl + C we can stop this program.

By mistake, if our program entered into an infinite loop, how we can solve this prolem, where we have the
above problem requirement.

while True:

Enter number:10
The sum of first 10 numbers is : 55

Enter Name:ramu
Enter Name:raju
Enter Name:Karthi
Thanks for confirmation

n=int(input("Enter number:"))
sum=0
i=1
while i<=n:
 sum=sum+i
 i=i+1
print("The sum of first",n,"numbers is :",sum)

name=""
while name!="Karthi":
 name=input("Enter Name:")
print("Thanks for confirmation")

i = 1
while True: # The body of this while loop keep on execuing because condition is alwa
 print('Hello', i) # This program never going to terminates
 i=i+1

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 18/26

body

if our required condition satisfied
break

If you are using break statement, you will come out from the loop.

Nested Loops

Sometimes we can take a loop inside another loop,which are also known as nested loops.

Eg 1:

In [1]:

Eg 2:

In [6]:

Eg :3

Hello
Hello
Hello
Hello
Hello
Hello

i = 0 j = 0
i = 0 j = 1
i = 0 j = 2
i = 0 j = 3
i = 1 j = 0
i = 1 j = 1
i = 1 j = 2
i = 1 j = 3
i = 2 j = 0
i = 2 j = 1
i = 2 j = 2
i = 2 j = 3
i = 3 j = 0
i = 3 j = 1
i = 3 j = 2
i = 3 j = 3

for i in range(3):
 for j in range(2):
 print('Hello')

for i in range(4):
 for j in range(4):
 #print("i=",i," j=",j)
 print('i = {} j = {}'.format(i,j))

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 19/26

Q. Write a program to dispaly *'s in Right angled triangled form.

In [3]:

Alternative way:

In [7]:

Eg 4:

Q. Write a program to display *'s in pyramid style (also known as equivalent triangle)

In [9]:

Enter number of rows:7
*
* *
* * *
* * * *
* * * * *
* * * * * *
* * * * * * *

Enter number of rows:7
*
* *
* * *
* * * *
* * * * *
* * * * * *
* * * * * * *

Enter number of rows:7
 *
 * *
 * * *
 * * * *
 * * * * *
 * * * * * *
 * * * * * * *

n = int(input("Enter number of rows:"))
for i in range(1,n+1):
 for j in range(1,i+1):
 print("*",end=" ")
 print()

n = int(input("Enter number of rows:"))
for i in range(1,n+1):
 print("* " * i)

n = int(input("Enter number of rows:"))
for i in range(1,n+1):
 print(" " * (n),end="") # Righ angle Triangle form
 print("* "*i)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 20/26

In [13]:

Transfer Statements

i) break:
We can use break statement inside loops to break loop execution based on some condition.

Eg :

In [27]:

Eg :

In [28]:

Enter number of rows:7
 *
 * *
 * * *
 * * * *
 * * * * *
 * * * * * *
* * * * * * *

0
1
2
3
4
5
6
processing is enough..plz break

10
20
To place this order insurence must be required

n = int(input("Enter number of rows:"))
for i in range(1,n+1):
 print(" " * (n-i),end="") # Equivalent Triangle form
 print("* "*i)

for i in range(10):
 if i==7:
 print("processing is enough..plz break")
 break
 print(i)

cart=[10,20,600,60,70]
for item in cart:
 if item>500:
 print("To place this order insurence must be required")
 break
 print(item)

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 21/26

ii) continue:
We can use continue statement to skip current iteration and continue next iteration.

Eg 1: To print odd numbers in the range 0 to 9.

In [29]:

Eg 2:

In [31]:

Eg 3:

In [33]:

Loops with else block:

1
3
5
7
9

10
20
We cannot process this item : 500
We cannot process this item : 700
50
60

100/10 = 10.0
100/20 = 5.0
Hey how we can divide with zero..just skipping
100/5 = 20.0
Hey how we can divide with zero..just skipping
100/30 = 3.3333333333333335

for i in range(10):
 if i%2==0:
 continue
 print(i)

cart=[10,20,500,700,50,60]
for item in cart:
 if item >= 500:
 print("We cannot process this item :",item)
 continue
 print(item)

numbers=[10,20,0,5,0,30]
for n in numbers:
 if n==0:
 print("Hey how we can divide with zero..just skipping")
 continue
 print("100/{} = {}".format(n,100/n))

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 22/26

Inside loop execution,if break statement not executed ,then only else part will be executed.

else means loop without break

Eg 1:

In [35]:

Eg 2:

In [36]:

Questions:

Q 1. What is the difference between for loop and while loop in Python?

We can use loops to repeat code execution

Repeat code for every item in sequence ==>for loop

Repeat code as long as condition is true ==>while loop

Q 2. How to exit from the loop?

by using break statement

Q 3. How to skip some iterations inside loop?

10
20
30
40
50
Congrats ...all items processed successfully

10
20
We cannot process this order

cart=[10,20,30,40,50]
for item in cart:
 if item>=500:
 print("We cannot process this order")
 break
 print(item)
else:
 print("Congrats ...all items processed successfully")

cart=[10,20,600,30,40,50]
for item in cart:
 if item>=500:
 print("We cannot process this order")
 break
 print(item)
else:
 print("Congrats ...all items processed successfully")

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 23/26

by using continue statement.

Q 4. When else part will be executed wrt loops?

If loop executed without break

iii) pass statement:

pass is a keyword in Python.

In our programming syntactically if block is required which won't do anything then we can define that empty
block with pass keyword.

pass statement --

 - It is an empty statement

 - It is null statement

 - It won't do anything

Eg :

In [37]:

In [39]:

In [40]:

 File "<ipython-input-37-2c8a33b52dfb>", line 1
 if True:
 ^
SyntaxError: unexpected EOF while parsing

 File "<ipython-input-40-e96db426b315>", line 1
 def m1():
 ^
SyntaxError: unexpected EOF while parsing

if True: # It is invalid

if True:
 pass # It is valid

def m1(): # It is invalid

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 24/26

In [41]:

use case of pass:

Sometimes in the parent class we have to declare a function with empty body and child class responsible
to provide proper implementation. Such type of empty body we can define by using pass keyword. (It is
something like abstract method in java).

Eg :

In [42]:

iv) del statement:
del is a keyword in Python.

After using a variable, it is highly recommended to delete that variable if it is no longer required,so that the
corresponding object is eligible for Garbage Collection. We can delete variable by using 'del' keyword.

Eg :

In [44]:

After deleting a variable we cannot access that variable otherwise we will get NameError.

0
9
18
27
36
45
54
63
72
81
90
99

10

def m1():
 pass # It is valid

for i in range(100):
 if i%9==0:
 print(i)
 else:
 pass

x=10
print(x)
del x

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 25/26

In [45]:

Note:

We can delete variables which are pointing to immutable objects.But we cannot delete the elements
present inside immutable object.

Eg :

In [46]:

Difference between 'del' and 'None':

In the case del, the variable will be removed and we cannot access that variable(unbind operation).

NameError Traceback (most recent call last)
<ipython-input-45-f85867067c4c> in <module>
 1 x = 10
 2 del(x)
----> 3 print(x)

NameError: name 'x' is not defined

karthi

NameError Traceback (most recent call last)
<ipython-input-46-7771d7c31337> in <module>
 2 print(s)
 3 del s #valid

----> 4 del s[0] #TypeError: 'str' object doesn't support item delet
ion

NameError: name 's' is not defined

x = 10
del(x)
print(x)

s="karthi"
print(s)
del s #valid
del s[0] #TypeError: 'str' object doesn't support item deletion

23/04/2020 Flow Control

localhost:8888/notebooks/Desktop/PythonCourse/Flow Control.ipynb#i)-break:* 26/26

In [47]:

But in the case of None assignment the variable won't be removed but the corresponding object is eligible for
Garbage Collection(re bind operation). Hence after assigning with None value,we can access that variable.

In [48]:

In []:

NameError Traceback (most recent call last)
<ipython-input-47-43859941d54d> in <module>
 1 s="durga"
 2 del s
----> 3 print(s) # NameError: name 's' is not defined.

NameError: name 's' is not defined

None

s="karthi"
del s
print(s) # NameError: name 's' is not defined.

s="karthi"
s=None
print(s)

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 1/23

 UNIT - 3

String Data Type

Date: 24-04-2020 Day-1

The most commonly used object in any project and in any programming language is String only. Hence we
should aware complete information about String data type.

What is String?

Any sequence of characters within either single quotes or double quotes is considered as a String.

Syntax:

s='karthi'

s="karthi"

Note:

In most of other languges like C, C++,Java, a single character with in single quotes is treated as char data type
value. But in Python we are not having char data type.Hence it is treated as String only.

In [19]:

How to define multi-line String literals?

1. We can define multi-line String literals by using triple single or double quotes.

In [20]:

<class 'str'>

karthi
sahasra
sri

ch = 'a'
print(type(ch))

s = '''karthi
sahasra
sri'''
print(s) # Multi line strings

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 2/23

In [21]:

2. We can also use triple quotes to use single quotes or double quotes as symbol inside String literal.

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

karthi
sahasra
sri

 File "<ipython-input-22-8b8100e80f54>", line 1
 s='This is ' single quote symbol'
 ^
SyntaxError: invalid syntax

This is ' single quote symbol

This is ' single quote symbol

This is " double quotes symbol

 File "<ipython-input-26-476c982681ef>", line 1
 s='The "Python Notes" by 'durga' is very helpful'
 ^
SyntaxError: invalid syntax

s = """karthi
sahasra
sri"""
print(s)

s='This is ' single quote symbol'

s='This is \' single quote symbol'
print(s)

s="This is ' single quote symbol"
print(s)

s='This is " double quotes symbol'
print(s)

s='The "Python Notes" by 'durga' is very helpful'

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 3/23

In [27]:

In [28]:

In [29]:

How to access characters of a String?

We can access characters of a string by using the following ways.

1. By using index

2. By using slice operator

1. By using index:

Python supports both +ve and -ve index.

+ve index means left to right(Forward direction)

-ve index means right to left(Backward direction)

 File "<ipython-input-27-182ab0922e87>", line 1
 s="The "Python Notes" by 'durga' is very helpful"
 ^
SyntaxError: invalid syntax

The "Python Notes" by 'durga' is very helpful

The "Python Notes" by 'durga' is very helpful

s="The "Python Notes" by 'durga' is very helpful"

s='The \"Python Notes\" by \'durga\' is very helpful'
print(s)

s='''The "Python Notes" by 'durga' is very helpful'''
print(s)

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 4/23

In [30]:

Note:

If we are trying to access characters of a string with out of range index then we will get error saying :
IndexError

Eg: Q 1. Write a program to accept some string from the keyboard and display its characters by index
wise(both positive and negative index)

In [31]:

Date: 26-04-2020 Day-2

2. Accessing characters by using slice operator:

K
i
i

IndexError Traceback (most recent call last)
<ipython-input-30-d39a6b459de8> in <module>
 3 print(s[5])
 4 print(s[-1])
----> 5 print(s[19])

IndexError: string index out of range

Enter Some String:karthikeya
The character present at positive index 0 and at negative index -10 is k
The character present at positive index 1 and at negative index -9 is a
The character present at positive index 2 and at negative index -8 is r
The character present at positive index 3 and at negative index -7 is t
The character present at positive index 4 and at negative index -6 is h
The character present at positive index 5 and at negative index -5 is i
The character present at positive index 6 and at negative index -4 is k
The character present at positive index 7 and at negative index -3 is e
The character present at positive index 8 and at negative index -2 is y
The character present at positive index 9 and at negative index -1 is a

s = 'Karthi'
print(s[0])
print(s[5])
print(s[-1])
print(s[19])

s=input("Enter Some String:")
i=0
for x in s:
 print("The character present at positive index {} and at negative index {} is {}".forma
 i=i+1

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 5/23

string slice means a part of the string (i.e, Sub string).

Syntax:

string_Name [beginindex:endindex:step]

Here,

beginindex: From where we have to consider slice(substring)

endindex: We have to terminate the slice(substring) at endindex-1

step: incremented / decremented value

Note :

Slicing operator returns the sub string form beginindex to endindex - 1

Note:

If we are not specifying begin index then it will consider from beginning of the string.

If we are not specifying end index then it will consider up to end of the string.

The default value for step is 1

Eg 1:

In [32]:

In [33]:

In [34]:

In [35]:

cdefg

abcdefg

cdefghijk

abcdefghijk

s = 'abcdefghijk'
print(s[2:7])

s = 'abcdefghijk'
print(s[:7])

s = 'abcdefghijk'
print(s[2:])

s = 'abcdefghijk'
print(s[:])

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 6/23

In [36]:

In [37]:

In [38]:

In [39]:

In [40]:

In [41]:

Eg 2:

In [11]:

cdefg

ceg

cf

abcdefghijk

acegik

adgj

Out[11]:

'earnin'

s = 'abcdefghijk'
print(s[2:7:1])

s = 'abcdefghijk'
print(s[2:7:2])

s = 'abcdefghijk'
print(s[2:7:3])

s = 'abcdefghijk'
print(s[::1])

s = 'abcdefghijk'
print(s[::2])

s = 'abcdefghijk'
print(s[::3])

s="Learning Python is very very easy!!!"
s[1:7:1]

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 7/23

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:

In [17]:

Out[12]:

'earnin'

Out[13]:

'eri'

Out[14]:

'Learnin'

Out[15]:

'g Python is very very easy!!!'

Out[16]:

'Learning Python is very very easy!!!'

Out[17]:

'Learning Python is very very easy!!!'

s="Learning Python is very very easy!!!"
s[1:7]

s="Learning Python is very very easy!!!"
s[1:7:2]

s="Learning Python is very very easy!!!"
s[:7]

s="Learning Python is very very easy!!!"
s[7:]

s="Learning Python is very very easy!!!"
s[::]

s="Learning Python is very very easy!!!"
s[:]

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 8/23

In [18]:

Behaviour of slice operator:

s[begin:end:step]

Here, step value can be either +ve or –ve

if +ve then it should be forward direction(left to right) and we have to consider begin to end-1

if -ve then it should be backward direction(right to left) and we have to consider begin to end+1

Note:

In the backward direction if end value is -1 then result is always empty.

In the forward direction if end value is 0 then result is always empty.

In forward direction:

default value for begin: 0

default value for end: length of string

default value for step: +1

In backward direction:

default value for begin: -1

default value for end: -(length of string + 1)

Note:

Either forward or backward direction, we can take both +ve and -ve values for begin and end index.

Mathematical Operators for String:

We can apply the following mathematical operators for Strings.

1. operator for concatenation

2. operator for repetition

Out[18]:

'!!!ysae yrev yrev si nohtyP gninraeL'

s="Learning Python is very very easy!!!"
s[::-1] # Reverse of the string

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 9/23

In [10]:

Note:

1. To use + operator for Strings, compulsory both arguments should be str type.

2. To use * operator for Strings, compulsory one argument should be str and other argument should be int.

len() in-built function:
We can use len() function to find the number of characters present in the string.

Eg:

In [2]:

Eg : Q. Write a Python program to access each character of string in forward and backward direction by
using while loop.

karthisahasra
karthikarthi

6

print("karthi" + "sahasra")

print("karthi"*2)

s='karthi'
print(len(s)) #5

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 10/23

In [3]:

Alternative way [Using slice operator]:

Forward direction

L e a r n i n g P y t h o n i s v e r y e a s y ! ! !

Backward direction

! ! ! y s a e y r e v s i n o h t y P g n i n r a e L

s="Learning Python is very easy !!!"
n=len(s)
i=0

print("Forward direction")
print()
while i<n:
 print(s[i],end=' ')
 i +=1
print('')
print('')
print("Backward direction")
print()
i=-1
while i>=-n:
 print(s[i],end=' ')
 i=i-1

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 11/23

In [4]:

Eg 2:

In [5]:

Alternative Way :

Forward direction

L e a r n i n g P y t h o n i s v e r y e a s y ! ! !

Forward direction

L e a r n i n g P y t h o n i s v e r y e a s y ! ! !

Backward Direction

! ! ! y s a e y r e v s i n o h t y P g n i n r a e L

Enter the stringkarthi
Data in Farward Direction
karthi
Data in Backward Direction
ihtrak

s="Learning Python is very easy !!!"

print("Forward direction")
print('')
for i in s:
 print(i,end=' ')
print('')
print('')

print("Forward direction")
print('')
for i in s[::]:
 print(i,end=' ')
print('')
print('')
print('Backward Direction')
print('')
for i in s[::-1]:
 print(i,end=' ')

s = input('Enter the string')
print('Data in Farward Direction')
for i in s:
 print(i,end='')
print()
print('Data in Backward Direction')
for i in s[::-1]:
 print(i,end='')

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 12/23

In [7]:

In [8]:

In [9]:

Date: 27-04-2020 Day 3

Membership Operators:

We can check whether the character or string is the member of another string or not by using following
membership operators:

1. in

2. not in

In [42]:

In [43]:

Enter the string : karthi
Data in Farward Direction
karthi

Data in Backward Direction
ihtrak

True

False

s = input('Enter the string : ')
print('Data in Farward Direction')
print(s[::1])
print()
print('Data in Backward Direction')
print(s[::-1])

s = 'karthikeya'
print(s[-1:-1:-1]) # It results an empty string

s = 'karthikeya'
print(s[-1:0:1]) # It results an empty string

s = 'karthi'
print('r' in s)

s = 'karthi'
print('p' in s)

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 13/23

In [44]:

In [45]:

Comparison of Strings:

We can use comparison operators (<,<=,>,>=) and equality operators(==,!=) for strings.

Comparison will be performed based on alphabetical order.

Eg :

In [46]:

Enter main string:karthikeya
Enter sub string:thi
thi is found in main string

Enter main string:karthi
Enter sub string:saha
saha is not found in main string

Enter first string:karthi
Enter Second string:karthi
Both strings are equal

s=input("Enter main string:")
subs=input("Enter sub string:")
if subs in s:
 print(subs,"is found in main string")
else:
 print(subs,"is not found in main string")

s=input("Enter main string:")
subs=input("Enter sub string:")
if subs in s:
 print(subs,"is found in main string")
else:
 print(subs,"is not found in main string")

s1=input("Enter first string:")
s2=input("Enter Second string:")
if s1==s2:
 print("Both strings are equal")
elif s1<s2:
 print("First String is less than Second String")
else:
 print("First String is greater than Second String")

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 14/23

In [47]:

In [48]:

Note :

s1 == s2 ====> Content Comparison

s1 is s2 ====> Reference Comparison

Removing spaces from the string:

To remove the blank spaces present at either beginning and end of the string, we can use the following 3
methods:

1.rstrip() ===>To remove blank spaces present at end of the string (i.e.,right hand side)

2. lstrip()===>To remove blank spaces present at the beginning of the string (i.e.,left hand side)

3. strip() ==>To remove spaces both sides

Eg :

Enter first string:karthi
Enter Second string:sahasra
First String is less than Second String

Enter first string:sahasra
Enter Second string:karthi
First String is greater than Second String

s1=input("Enter first string:")
s2=input("Enter Second string:")
if s1==s2:
 print("Both strings are equal")
elif s1<s2:
 print("First String is less than Second String")
else:
 print("First String is greater than Second String")

s1=input("Enter first string:")
s2=input("Enter Second string:")
if s1==s2:
 print("Both strings are equal")
elif s1<s2:
 print("First String is less than Second String")
else:
 print("First String is greater than Second String")

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 15/23

In [49]:

In [50]:

In [51]:

Enter your city Name:Hyderabad
Hello Hyderbadi..Adab

Enter your city Name:Chennai
Hello Madrasi...Vanakkam

Enter your city Name:Bangalore
Hello Kannadiga...Shubhodaya

city=input("Enter your city Name:")
scity=city.strip()
if scity=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

city=input("Enter your city Name:")
scity=city.strip()
if scity=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

city=input("Enter your city Name:")
scity=city.strip()
if scity=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 16/23

In [52]:

In [53]:

In [54]:

Enter your city Name:nandyal
your entered city is invalid

Enter your city Name: Hyderabad
your entered city is invalid

Enter your city Name: Hyderabad
Hello Hyderbadi..Adab

city=input("Enter your city Name:")
scity=city.strip()
if scity=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

city=input("Enter your city Name:")
#scity=city.strip()
if city=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

city=input("Enter your city Name:")
scity=city.strip()
if scity=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 17/23

In [55]:

Note :

In the middle of the string, if the blank spaces are present then the above specified functions can't do
anything.

Finding Substrings:

If you want to find whether the substring is available in the given string or not in Python, we have 4 methods.

For forward direction:

1. find()
2. index()

For backward direction:

1. rfind()

2. rindex()

1. find() :

s.find(substring) (Without Boundary)

Returns index of first occurrence of the given substring. If it is not available then we will get -1

Enter your city Name: Hyderabad
Hello Hyderbadi..Adab

city=input("Enter your city Name:")
scity=city.strip()
if scity=='Hyderabad':
 print("Hello Hyderbadi..Adab")
elif scity=='Chennai':
 print("Hello Madrasi...Vanakkam")
elif scity=="Bangalore":
 print("Hello Kannadiga...Shubhodaya")
else:
 print("your entered city is invalid")

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 18/23

In [56]:

By default find() method can search total string. We can also specify the boundaries to search.

Syntax:

s.find(substring,begin,end) (With Boundary)

It will always search from begin index to end-1 index.

Eg :

In [57]:

2. index() method:

index() method is exactly same as find() method except that if the specified substring is not available then
we will get ValueError.

In [58]:

9
-1
3
21

1
9
-1

ValueError Traceback (most recent call last)
<ipython-input-58-136a30f266f9> in <module>
 1 s = 'abbaaaaaaaaaaaaaaaaabbababa'
----> 2 print(s.index('bb',2,15))

ValueError: substring not found

s="Learning Python is very easy"
print(s.find("Python")) # 9
print(s.find("Java")) # -1
print(s.find("r")) # 3
print(s.rfind("r")) # 21

s="karthikeyasahasra"
print(s.find('a')) #1
print(s.find('a',7,15)) #9
print(s.find('z',7,15)) #-1

s = 'abbaaaaaaaaaaaaaaaaabbababa'
print(s.index('bb',2,15))

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 19/23

In [59]:

In [60]:

Eg :

In [61]:

In [62]:

Counting substring in the given String:

We can find the number of occurrences of substring present in the given string by using count() method.

1. s.count(substring) ==> It will search through out the string

2. s.count(substring, begin, end) ===> It will search from begin index to end-1 index

1

20

Enter main string:karthikeya
Enter sub string:thi
substring found

Enter main string:karthi
Enter sub string:saha
substring not found

s = 'abbaaaaaaaaaaaaaaaaabbababa'
print(s.index('bb'))

s = 'abbaaaaaaaaaaaaaaaaabbababa'
print(s.rindex('bb'))

s=input("Enter main string:")
subs=input("Enter sub string:")
try:
 n=s.index(subs)
except ValueError:
 print("substring not found")
else:
 print("substring found")

s=input("Enter main string:")
subs=input("Enter sub string:")
try:
 n=s.index(subs)
except ValueError:
 print("substring not found")
else:
 print("substring found")

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 20/23

In [63]:

In [64]:

Date: 27-04-2020 Day 4
Eg : Q. Write a Python Program to display all positions of substring in a given main string.

In [65]:

6
4
2

1

Enter main string:abcabcabcaaa
Enter sub string:abc
Found at position 0
Found at position 3
Found at position 6
The number of occurrences : 3

s="abcabcabcabcadda"
print(s.count('a')) #6
print(s.count('ab')) #4
print(s.count('a',3,7)) #2

s = 'abcdcdckk'
print(s.count('cdc'))

s=input("Enter main string:")
subs=input("Enter sub string:")
flag=False
pos=-1
n=len(s)
c = 0
while True:
 pos=s.find(subs,pos+1,n)
 if pos==-1:
 break
 c = c+1
 print("Found at position",pos)
 flag=True
if flag==False:
 print("Not Found")
print('The number of occurrences : ',c)

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 21/23

In [66]:

In [67]:

Alternate Way

Enter main string:abcabcabcaa
Enter sub string:bb
Not Found
The number of occurrences : 0

Enter main string:karthikeya
Enter sub string:k
Found at position 0
Found at position 6
The number of occurrences : 2

s=input("Enter main string:")
subs=input("Enter sub string:")
flag=False
pos=-1
n=len(s)
c = 0
while True:
 pos=s.find(subs,pos+1,n)
 if pos==-1:
 break
 c = c+1
 print("Found at position",pos)
 flag=True
if flag==False:
 print("Not Found")
print('The number of occurrences : ',c)

s=input("Enter main string:")
subs=input("Enter sub string:")
flag=False
pos=-1
n=len(s)
c = 0
while True:
 pos=s.find(subs,pos+1,n)
 if pos==-1:
 break
 c = c+1
 print("Found at position",pos)
 flag=True
if flag==False:
 print("Not Found")
print('The number of occurrences : ',c)

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 22/23

In [68]:

In [70]:

In [71]:

Enter main string:karthikeya
Enter sub string:k
k is present at index: 0
k is present at index: 6
The number of occurrences : 2

Enter main string:abcabcabcaaa
Enter sub string:abc
abc is present at index: 0
abc is present at index: 3
abc is present at index: 6
The number of occurrences : 3

Enter main string:karthi
Enter sub string:saha
Specified Substring is not found
The number of occurrences : 0

s=input("Enter main string:")
subs=input("Enter sub string:")
i = s.find(subs)
if i == -1:
 print('Specified Substring is not found')
c = 0
while i !=- 1:
 c = c + 1
 print('{} is present at index: {}'.format(subs,i))
 i = s.find(subs,i+len(subs),len(s))
print('The number of occurrences : ',c)

s=input("Enter main string:")
subs=input("Enter sub string:")
i = s.find(subs)
if i == -1:
 print('Specified Substring is not found')
c = 0
while i !=- 1:
 c = c + 1
 print('{} is present at index: {}'.format(subs,i))
 i = s.find(subs,i+len(subs),len(s))
print('The number of occurrences : ',c)

s=input("Enter main string:")
subs=input("Enter sub string:")
i = s.find(subs)
if i == -1:
 print('Specified Substring is not found')
c = 0
while i !=- 1:
 c = c + 1
 print('{} is present at index: {}'.format(subs,i))
 i = s.find(subs,i+len(subs),len(s))
print('The number of occurrences : ',c)

27/04/2020 Strings

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings.ipynb# 23/23

In []:

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 1/21

Date 28-04-2020 Day 4

Replacing a string with another string:

We can repalce a string with another string in python using a library function replace().

Syntax:

s.replace(oldstring,newstring)

Here, inside 's', every occurrence of oldstring will be replaced with newstring.

Eg :

In [1]:

Eg : All occurrences will be replaced

In [6]:

In [5]:

Q. String objects are immutable then how we can change the content by using replace() method.

Once we creates string object, we cannot change the content.This non changeable behaviour is nothing
but immutability. If we are trying to change the content by using any method, then with those changes a
new object will be created and changes won't be happend in existing object.

Learning Python is very easy

2168146994672
2168146994672
bbbbbbbbbbbbbb

2168149958000
2168149958128
bbbbbbbbbbbbbb

s="Learning Python is very difficult"
s1=s.replace("difficult","easy")
print(s1)

s="ababababababab"
print(id(s))
s1=s.replace("a","b")
print(id(s))
print(s1)

s="ababababababab"
print(id(s))
s=s.replace("a","b") # two objcets are created
print(id(s))
print(s)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 2/21

Hence with replace() method also a new object got created but existing object won't be changed.

Eg :

In [3]:

In the above example, original object is available and we can see new object which was created because of
replace() method.

Eg : Consider the string : Python is easy but Java is difficult.

How can you replace the string 'difficult' with 'easy' and 'easy' with 'difficult'.

In [7]:

In [8]:

In [10]:

Splitting of Strings:

We can split the given string according to specified seperator by using split() method.

We can split the given string according to specified seperator in reverse direction by using rsplit() method.

abab is available at : 2168149950512
bbbb is available at : 2168149953312

Python is difficult but Java is difficult

Python is e1 but Java is d1

Python is difficult but Java is easy

s="abab"
s1=s.replace("a","b")
print(s,"is available at :",id(s))
print(s1,"is available at :",id(s1))

s = 'Python is easy but Java is difficult'
s = s.replace('difficult','easy')
s = s.replace('easy','difficult')
print(s) # it is not giving correct output

s = 'Python is easy but Java is difficult'
s = s.replace('difficult','d1')
s = s.replace('easy','e1')
print(s)

s = 'Python is easy but Java is difficult'
s = s.replace('difficult','d1')
s = s.replace('easy','e1')
s = s.replace('d1','easy')
s = s.replace('e1','difficult')
print(s)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 3/21

Syntax :

l=s.split(seperator, Maximum splits)

Here, Both parameters are optional

The default seperator is space.

Maximum split defines maximum number of splits

The return type of split() method is List.

rsplit() breaks the string at the seperator staring from the right and returns a list of strings.

Eg 1:

In [11]:

Eg 2:

In [12]:

In [14]:

karthi
sahasra
sri

22
02
2018

22-02-2018

s="karthi sahasra sri"
l=s.split()
for x in l:
 print(x)

s="22-02-2018"
l=s.split('-')
for x in l:
 print(x)

s="22-02-2018"
l=s.split() # no space in the string , so output is same as the given string
for x in l:
 print(x)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 4/21

In [1]:

In [10]:

In [9]:

In [7]:

karthi
sahasra
sri
nandyal
india

karthi sahasra
sri
nandyal
india

karthi sahasra sri
nandyal
ap
india

AttributeError Traceback (most recent call last)
<ipython-input-7-0862072ad106> in <module>
 1 s = 'karthi sahasra sri nandyal india'
----> 2 l=s.lsplit(' ',3)
 3 for x in l:
 4 print(x)

AttributeError: 'str' object has no attribute 'lsplit'

s = 'karthi sahasra sri nandyal india'
l=s.split()
for x in l:
 print(x)

s = 'karthi sahasra sri nandyal india'
l=s.rsplit(' ',3) # rsplit(): from revesre direction it considers the given seperator
for x in l:
 print(x)

s = 'karthi sahasra sri nandyal ap india'
l=s.rsplit(' ',3)
for x in l:
 print(x)

s = 'karthi sahasra sri nandyal india'
l=s.lsplit(' ',3) # there is no lsplit() methon in python
for x in l:
 print(x)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 5/21

In [11]:

In [12]:

In [13]:

Joining of Strings:

We can join a group of strings(list or tuple) with respect to the given seperator.

Syntax :

s=seperator.join(group of strings)

Eg 1:

10
20
30
40,50,60,70,80

10,20,30,40,50
60
70
80

10
20
30
40
50
60
70
80

s = '10,20,30,40,50,60,70,80'
l = s.split(',',3)
for x in l:
 print(x)

s = '10,20,30,40,50,60,70,80'
l = s.rsplit(',',3)
for x in l:
 print(x)

s = '10,20,30,40,50,60,70,80'
l = s.split(',',-1)
for x in l:
 print(x)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 6/21

In [15]:

Eg 2:

In [16]:

In [17]:

In [18]:

Changing case of a String:

We can change case of a string by using the following methods.

1. upper()===>To convert all characters to upper case

2. lower() ===>To convert all characters to lower case

3. swapcase()===>converts all lower case characters to upper case and all upper case characters to lower
case

4. title() ===>To convert all characters to title case. i.e first character in every word should be upper case and
all remaining characters should be in lower case.

5. capitalize() ==>Only first character will be converted to upper case and all remaining characters can be
converted to lower case.

Eg :

sunny-bunny-chinny

hyderabad:singapore:london:dubai

hyderabadsingaporelondondubai

hyderabad singapore london dubai

t=('sunny','bunny','chinny')
s='-'.join(t)
print(s)

l=['hyderabad','singapore','london','dubai']
s=':'.join(l)
print(s)

l=['hyderabad','singapore','london','dubai']
s=''.join(l)
print(s)

l=['hyderabad','singapore','london','dubai']
s=' '.join(l)
print(s)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 7/21

In [19]:

Eg : Convert the uppercase chatacters into lowercase and remove spaces.

In [23]:

In [24]:

Checking starting and ending part of the string:

Python contains the following methods for this purpose

1. s.startswith(substring)

2. s.endswith(substring)

Eg :

LEARNING PYTHON IS VERY EASY
learning python is very easy
LEARNING pYTHON IS VERY eASY
Learning Python Is Very Easy
Learning python is very easy

learningpythonisveryeasy

learningpythonisveryeasy

s='learning Python is very Easy'
print(s.upper())
print(s.lower())
print(s.swapcase())
print(s.title())
print(s.capitalize())

s='Learning Python Is Very Easy'
s = s.lower().replace(' ','')
print(s)

Above example with join() & split() functions

s='Learning Python Is Very Easy'
s = s.lower()
s1 = s.split()
s = ''.join(s1)
print(s)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 8/21

In [25]:

To check type of characters present in a string:

Python contains the following methods for this purpose.

1) isalnum(): Returns True if all characters are alphanumeric(a to z , A to Z ,0 to9)

2) isalpha(): Returns True if all characters are only alphabet symbols(a to z,A to Z)

3) isdigit(): Returns True if all characters are digits only(0 to 9)

4) islower(): Returns True if all characters are lower case alphabet symbols

5) isupper(): Returns True if all characters are upper case aplhabet symbols

6) istitle(): Returns True if string is in title case

7) isspace(): Returns True if string contains only spaces

Note : We can't pass any arguments to these functions.

True
False
True

s='learning Python is very easy'
print(s.startswith('learning'))
print(s.endswith('learning'))
print(s.endswith('easy'))

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 9/21

In [28]:

Date: 01-05-2020 Day 5

Demo Program:

In [14]:

True
False
True
False
True
True
False
True
True
False
True
True

Enter any character:7
Alpha Numeric Character
it is a digit

print('Karthidurga786'.isalnum()) # True
print('Karthidurga786'.isalpha()) #False
print('Karthi'.isalpha()) #True
print('karthi'.isdigit()) #False
print('786786'.isdigit()) #True
print('abc'.islower()) #True
print('Abc'.islower()) #False
print('abc123'.islower()) #True
print('ABC'.isupper()) #True
print('Learning python is Easy'.istitle()) #False
print('Learning Python Is Easy'.istitle()) #True
print(' '.isspace()) #True

s=input("Enter any character:")
if s.isalnum():
 print("Alpha Numeric Character")
 if s.isalpha():
 print("Alphabet character")
 if s.islower():
 print("Lower case alphabet character")
 else:
 print("Upper case alphabet character")
 else:
 print("it is a digit")
elif s.isspace():
 print("It is space character")
else:
 print("Non Space Special Character")

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 10/21

In [15]:

In [16]:

Enter any character:a
Alpha Numeric Character
Alphabet character
Lower case alphabet character

Enter any character:A
Alpha Numeric Character
Alphabet character
Upper case alphabet character

s=input("Enter any character:")
if s.isalnum():
 print("Alpha Numeric Character")
 if s.isalpha():
 print("Alphabet character")
 if s.islower():
 print("Lower case alphabet character")
 else:
 print("Upper case alphabet character")
 else:
 print("it is a digit")
elif s.isspace():
 print("It is space character")
else:
 print("Non Space Special Character")

s=input("Enter any character:")
if s.isalnum():
 print("Alpha Numeric Character")
 if s.isalpha():
 print("Alphabet character")
 if s.islower():
 print("Lower case alphabet character")
 else:
 print("Upper case alphabet character")
 else:
 print("it is a digit")
elif s.isspace():
 print("It is space character")
else:
 print("Non Space Special Character")

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 11/21

In [18]:

In [17]:

Formatting the Strings:

We can format the strings with variable values by using replacement operator {} and format() method.

Enter any character:
It is space character

Enter any character:$
Non Space Special Character

s=input("Enter any character:")
if s.isalnum():
 print("Alpha Numeric Character")
 if s.isalpha():
 print("Alphabet character")
 if s.islower():
 print("Lower case alphabet character")
 else:
 print("Upper case alphabet character")
 else:
 print("it is a digit")
elif s.isspace():
 print("It is space character")
else:
 print("Non Space Special Character")

s=input("Enter any character:")
if s.isalnum():
 print("Alpha Numeric Character")
 if s.isalpha():
 print("Alphabet character")
 if s.islower():
 print("Lower case alphabet character")
 else:
 print("Upper case alphabet character")
 else:
 print("it is a digit")
elif s.isspace():
 print("It is space character")
else:
 print("Non Space Special Character")

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 12/21

In [19]:

Important Programs regarding String Concept:

1. Write a program to reverse the given String.

Way 1:

In [20]:

Way 2:

reversed():

In [22]:

In [24]:

karthi 's salary is 100000 and his age is 6
karthi 's salary is 100000 and his age is 6
karthi 's salary is 100000 and his age is 6

Enter Some String:karthi
ihtrak

Enter Some String:karthi
<reversed object at 0x0000018959D1CD68>

Enter Some String:karthi
i
h
t
r
a
k

name='karthi'
salary=100000
age=6
print("{} 's salary is {} and his age is {}".format(name,salary,age))
print("{0} 's salary is {1} and his age is {2}".format(name,salary,age))
print("{x} 's salary is {y} and his age is {z}".format(z=age,y=salary,x=name))

s=input("Enter Some String:")
print(s[::-1])

s=input("Enter Some String:")
print((reversed(s)))

s=input("Enter Some String:")
for x in (reversed(s)):
 print(x)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 13/21

In [21]:

Way 3:

In [25]:

Way 4:

In [27]:

Way 5:

In [32]:

Q 2. Program to reverse order of words.

input: Learning Python is Very Easy

Enter Some String:karthi
ihtrak

Enter Some String:karthi
ihtrak

Enter Some String:karthi
ihtrak

Enter Some String:karthi
ihtrak

s=input("Enter Some String:")
print(''.join(reversed(s)))

s=input("Enter Some String:")
i=len(s)-1
target=''
while i>=0:
 target=target+s[i]
 i=i-1
print(target)

s=input("Enter Some String:")
i=len(s)-1
target=''
for x in s:
 target=target+s[i]
 i=i-1
print(target)

s=input("Enter Some String:")
i=len(s)-1
target=''
for x in range(len(s)-1,-1,-1):
 target = target + s[i]
 i = i-1
print(target)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 14/21

output: Easy Very is Python Learning

In [34]:

In [35]:

Q 3. Program to reverse internal content of each word.

input: Learning Python is Very Easy

output: gninreaL nohtyP si yreV ysaE

Way 1:

In [41]:

Way 2:

Enter Some String:karthi sahasra sri
['karthi', 'sahasra', 'sri']
3

Enter Some String:karthi sahasra sri
sri sahasra karthi

Enter Some String:Learning Python Is Very Easy
gninraeL nohtyP sI yreV ysaE

s=input("Enter Some String:")
l=s.split()
print(l)
print(len(l))

s=input("Enter Some String:")
l=s.split()
l1=[]
i=len(l)-1
while i>=0:
 l1.append(l[i])
 i=i-1
output=' '.join(l1)
print(output)

s=input("Enter Some String:")
l=s.split()
l1=[]
i = 0
while i<len(l):
 l1.append(l[i][::-1])
 i=i+1
output=' '.join(l1)
print(output)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 15/21

In [44]:

In [45]:

In [46]:

Way 3:

In [47]:

Q 4. Write a program to print characters at odd position and even position for the given String?

Way 1:

Enter Some String:Learning Python Is Very Easy
['Learning', 'Python', 'Is', 'Very', 'Easy']

Enter Some String:Learning Python Is Very Easy
['gninraeL', 'nohtyP', 'sI', 'yreV', 'ysaE']

Enter Some String:Learning Python Is Very Easy
gninraeL nohtyP sI yreV ysaE

Enter Some String:Learning Python Is Very Easy
gninraeL nohtyP sI yreV ysaE

s=input("Enter Some String:")
l=s.split()
l1=[]
for i in range(len(l)):
 s1 =l[i]
 l1.append(s1)
print(l1)

s=input("Enter Some String:")
l=s.split()
l1=[]
for i in range(len(l)):
 s1 =l[i]
 l1.append(s1[::-1])
print(l1)

s=input("Enter Some String:")
l=s.split()
l1=[]
for i in range(len(l)):
 s1 =l[i]
 l1.append(s1[::-1]) # Appending reverse of s1 to the list l1
output=' '.join(l1)
print(output)

s=input("Enter Some String:")
l=s.split()
l1=[]
for x in l:
 l1.append(x[::-1]) # Appending reverse of s1 to the list l1
output=' '.join(l1)
print(output)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 16/21

In [48]:

Way 2:

In [49]:

Q 5. Program to merge characters of 2 strings into a single string by taking characters alternatively.

In [53]:

Eventhough above code is working, there is some flaw in the code. This code works for the strings with same
length. see the below code.

Enter Some String:karthikeya
Characters at Even Position: krhky
Characters at Odd Position: atiea

Enter Some String:karthikeya
Characters at Even Position:
k,r,h,k,y,
Characters at Odd Position:
a,t,i,e,a,

Enter First String:ravi
Enter Second String:ramu
rraavmiu

s=input("Enter Some String:")
print("Characters at Even Position:",s[0::2])
print("Characters at Odd Position:",s[1::2])

s=input("Enter Some String:")
i=0
print("Characters at Even Position:")
while i< len(s):
 print(s[i],end=',')
 i=i+2
print()
print("Characters at Odd Position:")
i=1
while i< len(s):
 print(s[i],end=',')
 i=i+2

s1=input("Enter First String:")
s2=input("Enter Second String:")
output=''
i,j=0,0
while i<len(s1) or j<len(s2):
 output = output + s1[i]
 i = i + 1
 output = output + s2[j]
 j = j + 1
print(output)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 17/21

In [55]:

Modified Code :

In [51]:

Enter First String:karthi
Enter Second String:rgm

IndexError Traceback (most recent call last)
<ipython-input-55-5dfcfbfd7737> in <module>
 6 output = output + s1[i]
 7 i = i + 1
----> 8 output = output + s2[j]
 9 j = j + 1
 10 print(output)

IndexError: string index out of range

Enter First String:karthi
Enter Second String:sahasra
ksaarhtahsira

s1=input("Enter First String:")
s2=input("Enter Second String:")
output=''
i,j=0,0
while i<len(s1) or j<len(s2):
 output = output + s1[i]
 i = i + 1
 output = output + s2[j]
 j = j + 1
print(output)

s1=input("Enter First String:")
s2=input("Enter Second String:")
output=''
i,j=0,0
while i<len(s1) or j<len(s2):
 if i<len(s1):
 output=output+s1[i]
 i+=1
 if j<len(s2):
 output=output+s2[j]
 j+=1
print(output)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 18/21

In [52]:

Q 6. Write a program to sort the characters of the string and first alphabet symbols followed by numeric
values.

input: B4A1D3

Output: ABD134

sorted() function is used to sort the present content in side the string, which is given as an argument.

In [56]:

Optimized version of the above code:

Enter First String:karthisahasra
Enter Second String:rgm
kragrmthisahasra

Enter Some String:b4a1d3
abd134

s1=input("Enter First String:")
s2=input("Enter Second String:")
output=''
i,j=0,0
while i<len(s1) or j<len(s2):
 if i<len(s1):
 output=output+s1[i]
 i+=1
 if j<len(s2):
 output=output+s2[j]
 j+=1
print(output)

s=input("Enter Some String:")
s1=s2=output=''
for x in s:
 if x.isalpha():
 s1=s1+x # All alphabets in s1
 else:
 s2=s2+x # All digits in s2
for x in sorted(s1): # In s1, whatever the content is there which will be sorted.
 output=output+x
for x in sorted(s2): # # In s2, whatever the content is there which will be sorted
 output=output+x
print(output)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 19/21

In [59]:

Q 7. Write a program for the following requirement:

input: a4b3c2

output: aaaabbbcc

In [60]:

Note:

chr(unicode)===>The corresponding character

ord(character)===>The corresponding unicode value

Q 8. Write a program to perform the following activity :

input: a4k3b2

output:aeknbd

Enter Some String:b4a1d3
abd134

Enter Some String:a5b4c2
aaaaabbbbcc

s=input("Enter Some String:")
s1=s2=output=''
for x in s:
 if x.isalpha():
 s1=s1+x # All alphabets in s1
 else:
 s2=s2+x # All digits in s2
print(''.join(sorted(s1))+''.join(sorted(s2)))

s=input("Enter Some String:")
output=''
for x in s:
 if x.isalpha():
 output=output+x
 previous=x
 else:
 output = output + previous*(int(x)-1)
print(output)

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 20/21

In [1]:

Q 9. Write a program to remove duplicate characters from the given input string.

Input: ABCDABBCDABBBCCCDDEEEF

Output: ABCDEF

In [2]:

Q 10. Write a program to find the number of occurrences of each character present in the given String.

Input: ABCABCABBCDE

Output: A-3,B-4,C-3,D-1,E-1

In [3]:

Enter Some String:a4k3b2
aeknbd

Enter Some String:abcdffaaannncd
abcdfn

Enter the Some String:ABCABCABBCDE
A = 3 Times
B = 4 Times
C = 3 Times
D = 1 Times
E = 1 Times

s=input("Enter Some String:")
output=''
for x in s:
 if x.isalpha():
 output=output+x
 previous=x
 else:
 output=output+chr(ord(previous)+int(x))
print(output)

s=input("Enter Some String:")
l=[]
for x in s:
 if x not in l:
 l.append(x)
 output=''.join(l)
print(output)

s=input("Enter the Some String:")
d={}
for x in s:
 if x in d.keys():
 d[x]=d[x]+1
 else:
 d[x]=1
for k,v in d.items():
 print("{} = {} Times".format(k,v))

01/05/2020 Strings Part 2

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Strings Part 2.ipynb 21/21

In []:

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 1/30

 UNIT - 4

List Data Type

Topics Covered:
1. Introduction

2. Creation of List Objects

3. Accessing elements of List

4. Traversing the elements of List

5. Important functions of List :

 i) To get information about list

 ii) Manipulating elements of List

 iii) Ordering elements of List

6. Aliasing and Cloning of List objects

7. Using Mathematical operators for List Objects

8. Comparing List objects

9. Membership operators

10. clear() function

11. Nested Lists

12. List Comprehensions

1. Introduction:
If we want to represent a group of individual objects as a single entity where insertion order is preserved
and duplicates are allowed, then we should go for List.

Insertion order preserved.

Duplicate objects are allowed

Heterogeneous objects are allowed.

List is dynamic because based on our requirement we can increase the size and decrease the size.

In List the elements will be placed within square brackets and with comma seperator.

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 2/30

We can differentiate duplicate elements by using index and we can preserve insertion order by using index.
Hence index will play very important role.

Python supports both positive and negative indexes. +ve index means from left to right where as negative
index means right to left.

Eg: [10,"A","B",20, 30, 10]

List objects are mutable.i.e we can change the content.

2. Creation of List Objects:

1. We can create empty list object as follows...

In [2]:

2. If we know elements already then we can create list as follows

In [4]:

3. With dynamic input:

In [5]:

[]
<class 'list'>

[10, 20, 30, 40]
<class 'list'>

Enter List:10,20,30,40
10,20,30,40
<class 'str'>

list=[]
print(list)
print(type(list))

list = [10,20,30,40]
print(list)
print(type(list))

list=(input("Enter List:")) # Entire input is considered as string
print(list)
print(type(list))

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 3/30

In [6]:

In [8]:

In [9]:

4. With list() function:

In []:

In [12]:

Enter List:[10,20,30,40]
[10, 20, 30, 40]
<class 'list'>

Enter List:[ram,raj]

NameError Traceback (most recent call last)
<ipython-input-8-ac0b44db1317> in <module>
----> 1 list=eval(input("Enter List:"))
 2 print(list)
 3 print(type(list))

<string> in <module>

NameError: name 'ram' is not defined

Enter List:['ram','raj']
['ram', 'raj']
<class 'list'>

Out[12]:

[0, 2, 4, 6, 8]

list=eval(input("Enter List:"))
print(list)
print(type(list))

list=eval(input("Enter List:"))
print(list)
print(type(list))

list=eval(input("Enter List:"))
print(list)
print(type(list))

l=list(range(0,10,2))
print(l) # Not working in jupyter notebook but executed in Editplus

[0, 2, 4, 6, 8]

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 4/30

In []:

In []:

5. With split() function:

In [16]:

Note:

Sometimes we can take list inside another list,such type of lists are called nested lists. [10,20,[30,40]]

3. Accessing elements of List:

We can access elements of the list either by using index or by using slice operator(:)

1. By using index:

List follows zero based index. ie index of first element is zero.

List supports both +ve and -ve indexes.

+ve index meant for Left to Right.

-ve index meant for Right to Left.

Eg :

list=[10,20,30,40]

['Learning', 'Python', 'is', 'very', 'very', 'easy', '!!!']
<class 'list'>

s="durga"
l=list(s)
print(l) # Not working in jupyter notebook but executed in editplus

['d', 'u', 'r', 'g', 'a']

s="Learning Python is very very easy !!!"
l=s.split()
print(l)
print(type(l))

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 5/30

In [20]:

In [23]:

2. By using slice operator:

Syntax:

list2= list1[start:stop:step]

start ==>it indicates the index where slice has to start default value is 0

stop ===>It indicates the index where slice has to end default value is max allowed index of list ie length of
the list

step ==>increment value

step default value is 1

In [24]:

10
40
10

IndexError Traceback (most recent call last)
<ipython-input-20-c9b501127143> in <module>
 3 print(list[-1]) #40
 4 print(list[-4]) #10
----> 5 print(list[10]) #IndexError: list index out of range

IndexError: list index out of range

[30, 40]
40

[10, 20, 30, 40, 50, 60]

list=[10,20,30,40]
print(list[0]) #10
print(list[-1]) #40
print(list[-4]) #10
print(list[10]) #IndexError: list index out of range

list = [10,20,[30,40]]
print(list[2])
print(list[2][1])

l = [10,20,30,40,50,60]
print(l[::])

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 6/30

In [25]:

In [26]:

In [27]:

In [29]:

List vs mutability:

Once we creates a List object,we can modify its content. Hence List objects are mutable.

In [30]:

Date: 02-05-2020 Day 2

4. Traversing the elements of List:

The sequential access of each element in the list is called traversal.

[10, 30, 50]

[60, 50, 40, 30, 20, 10]

[10, 20, [30, 40]]

[3, 5, 7]
[5, 7, 9]
[4, 5, 6, 7]
[9, 7, 5]
[5, 6, 7, 8, 9, 10]

[10, 20, 30, 40]
[10, 777, 30, 40]

l = [10,20,30,40,50,60]
print(l[::2])

l = [10,20,30,40,50,60]
print(l[::-1])

l = [10,20,[30,40],50,60]
print(l[0:3:])

n=[1,2,3,4,5,6,7,8,9,10]
print(n[2:7:2]) #3,5,7
print(n[4::2]) # 5,7,9
print(n[3:7]) #4,5,6,7
print(n[8:2:-2]) # 9,7,5
print(n[4:100]) # 5,6,7,8,9,10

n=[10,20,30,40]
print(n)
n[1]=777
print(n)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 7/30

1. By using while loop:

In [2]:

2. By using for loop:

In [3]:

3. To display only even numbers:

In [4]:

0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6
7
8
9
10

0
2
4
6
8
10

n=[0,1,2,3,4,5,6,7,8,9,10]
i=0
while i<len(n):
 print(n[i])
 i=i+1

n=[0,1,2,3,4,5,6,7,8,9,10]
for n1 in n:
 print(n1)

n=[0,1,2,3,4,5,6,7,8,9,10]
for n1 in n:
 if n1%2==0:
 print(n1)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 8/30

4. To display elements by index wise:

In [5]:

5. Important functions of List:

What is the difference between function and method?

In Python you can use both these terms interchangeably.

-Function:

Function by default considered as method also.

If a function is declaring outside a class is called as function.

- Method :

If you are declaring a function inside a class is called as a method.

In other words, if you are calling any function with object reference is called as method.

Note:
Python is both functional oriented as well as object oriented programming language.

I. To get information about list:

1. len():

returns the number of elements present in the list

In [7]:

2. count():

It returns the number of occurrences of specified item in the list.

A is available at positive index: 0 and at negative index: -3
B is available at positive index: 1 and at negative index: -2
C is available at positive index: 2 and at negative index: -1

4

l=["A","B","C"]
x=len(l)
for i in range(x):
 print(l[i],"is available at positive index: ",i,"and at negative index: ",i-x)

n=[10,20,30,40]
print(len(n))

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 9/30

In [8]:

3. index() function:

returns the index of first occurrence of the specified item.

In [9]:

Note:

If the specified element not present in the list then we will get ValueError.

Hence before index() method we have to check whether item present in the list or not by using in operator.

In [10]:

Eg:

1
4
2
0

0
1
5

ValueError Traceback (most recent call last)
<ipython-input-9-6eef43f6d8a4> in <module>
 3 print(n.index(2)) # 1
 4 print(n.index(3)) # 5

----> 5 print(n.index(4))

ValueError: 4 is not in list

False

n=[1,2,2,2,2,3,3]
print(n.count(1))
print(n.count(2))
print(n.count(3))
print(n.count(4))

n=[1,2,2,2,2,3,3]
print(n.index(1)) # 0
print(n.index(2)) # 1
print(n.index(3)) # 5
print(n.index(4))

print(4 in n) #False

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 10/30

In [14]:

In [15]:

In [16]:

II. Manipulating Elements of List:

1. append() function:

We can use append() function to add item at the end of the list.

By using this append function, we always add an element at last position.

In [11]:

Eg: To add all elements to list upto 100 which are divisible by 10

Enter value to search : 50
50 is not available

Enter value to search : 20
20 available and its first occurrence is at 1

Enter value to search : 10
10 available and its first occurrence is at 0

['A', 'B', 'C']

l = [10,20,30,40,10,20,10,10]
target = int(input('Enter value to search : '))
if target in l:
 print(target,'available and its first occurrence is at ',l.index(target))
else:
 print(target,' is not available')b

l = [10,20,30,40,10,20,10,10]
target = int(input('Enter value to search : '))
if target in l:
 print(target,'available and its first occurrence is at ',l.index(target))
else:
 print(target,' is not available')

l = [10,20,30,40,10,20,10,10]
target = int(input('Enter value to search : '))
if target in l:
 print(target,'available and its first occurrence is at ',l.index(target))
else:
 print(target,' is not available')

list=[]
list.append("A")
list.append("B")
list.append("C")
print(list)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 11/30

In [17]:

Another Way:

In [19]:

2. insert() function:

To insert item at specified index position.

In [18]:

In [23]:

Note:

If the specified index is greater than max index then element will be inserted at last position. If the specified
index is smaller than min index then element will be inserted at first position.

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

[1, 888, 2, 3, 4, 5]

[999, 1, 2, 3, 4, 5, 777]
6
0

list=[]
for i in range(101):
 if i%10==0:
 list.append(i)
print(list)

list= []
for i in range(0,101,10):
 list.append(i)
print(list)

n=[1,2,3,4,5]
n.insert(1,888)
print(n)

n=[1,2,3,4,5]
n.insert(10,777)
n.insert(-10,999)
print(n)
print(n.index(777))
print(n.index(999))

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 12/30

3. extend() function:

To add all items of one list to another list,we use extend() method.

Eg:

l1.extend(l2)

all items present in l2 will be added to l1

Eg 1:

In [24]:

In [26]:

Eg 2:

In [1]:

['Chicken', 'Mutton', 'Fish', 'RC', 'KF', 'FO']
['RC', 'KF', 'FO']

['Chicken', 'Mutton', 'Fish']
['RC', 'KF', 'FO']
['Chicken', 'Mutton', 'Fish', 'RC', 'KF', 'FO']

[10, 20, 30, 40, 50, 60]

order1=["Chicken","Mutton","Fish"]
order2=["RC","KF","FO"]
order1.extend(order2)
print(order1)
print(order2)

order1=["Chicken","Mutton","Fish"]
order2=["RC","KF","FO"]
order3 = order1 + order2
print(order1)
print(order2)
print(order3)

l1 = [10,20,30]
l2 = [40,50,60]
l1.extend(l2)
print(l1)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 13/30

Eg 3:

In [2]:

Explanation :

Here, 'Mushroom' is a string type, in this string 8 elements are there. These elements are added seperately.

In [3]:

Date: 03-05-2020 Day 3

4. remove() function:

We can use this function to remove specified item from the list.

If the item present multiple times then only first occurrence will be removed.

In [4]:

If the specified item not present in list then we will get ValueError

['Chicken', 'Mutton', 'Fish', 'M', 'u', 's', 'h', 'r', 'o', 'o', 'm']

['Chicken', 'Mutton', 'Fish', 'Mushroom']

[20, 10, 30]

order=["Chicken","Mutton","Fish"]
order.extend("Mushroom") # It adds every character as a single element to the list
print(order)

order=["Chicken","Mutton","Fish"]
order.append("Mushroom") # It adds this string as a single element to the list
print(order)

n=[10,20,10,30]
n.remove(10)
print(n)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 14/30

In [5]:

Note:

Hence before using remove() method first we have to check specified element present in the list or not by
using in operator.

In [6]:

In [7]:

5. pop() function:

It removes and returns the last element of the list.

This is only function which manipulates list and returns some element.

Eg:

ValueError Traceback (most recent call last)
<ipython-input-5-75e98f1b4fac> in <module>
 1 n=[10,20,10,30]
----> 2 n.remove(40)
 3 print(n)

ValueError: list.remove(x): x not in list

Enter the element to be removed : 10
Element removed Successfully
[20, 30, 40, 50, 60, 70]

Enter the element to be removed : 80
Specified element is not available

n=[10,20,10,30]
n.remove(40)
print(n)

l1= [10,20,30,40,50,60,70]
x = int(input('Enter the element to be removed : '))
if x in l1:
 l1.remove(x)
 print('Element removed Successfully ')
 print(l1)
else:
 print('Specified element is not available ')

l1= [10,20,30,40,50,60,70]
x = int(input('Enter the element to be removed : '))
if x in l1:
 l1.remove(x)
 print('Element removed Successfully ')
 print(l1)
else:
 print('Specified element is not available ')

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 15/30

In [8]:

If the list is empty then pop() function raises IndexError

In [9]:

Note:

1. pop() is the only function which manipulates the list and returns some value

2. In general we can use append() and pop() functions to implement stack datastructure by using
list,which follows LIFO(Last In First Out) order.

3. In general we can use pop() function to remove last element of the list. But we can use to remove
elements based on index.

We can use pop() function in following ways:

n.pop(index)===>To remove and return element present at specified index.

n.pop()==>To remove and return last element of the list

40
30
[10, 20]

IndexError Traceback (most recent call last)
<ipython-input-9-5146d826acc3> in <module>
 1 n=[]
----> 2 print(n.pop())

IndexError: pop from empty list

n=[10,20,30,40]
print(n.pop())
print(n.pop())
print(n)

n=[]
print(n.pop())

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 16/30

In [11]:

Note:

List objects are dynamic. i.e based on our requirement we can increase and decrease the size.

append(),insert() ,extend() ===>for increasing the size/growable nature

remove(), pop() ======>for decreasing the size /shrinking nature

III. Ordering elements of List:

1. reverse():

We can use to reverse() order of elements of list.

In [12]:

2. sort() function:

60
20

IndexError Traceback (most recent call last)
<ipython-input-11-c0a703a9cc2f> in <module>
 2 print(n.pop()) #60
 3 print(n.pop(1)) #20
----> 4 print(n.pop(10)) # IndexError: pop index out of range

IndexError: pop index out of range

[40, 30, 20, 10]

n=[10,20,30,40,50,60]
print(n.pop()) #60
print(n.pop(1)) #20
print(n.pop(10)) # IndexError: pop index out of range

n=[10,20,30,40]
n.reverse()
print(n)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 17/30

()
In list by default insertion order is preserved. If you want to sort the elements of list according to default
natural sorting order then we should go for sort() method.

 -For numbers ==> default natural sorting order is Ascending Order

 -For Strings ==> default natural sorting order is Alphabetical Order

Eg 1:

In [13]:

Eg 2:

In [14]:

In [17]:

Note:

To use sort() function, compulsory list should contain only homogeneous elements, otherwise we will
get TypeError.

Eg 3:

[0, 5, 10, 15, 20]

['Apple', 'Banana', 'Cat', 'Dog']

['Banana', 'Cat', 'Dog', 'apple']

n=[20,5,15,10,0]
n.sort()
print(n)

s=["Dog","Banana","Cat","Apple"]
s.sort()
print(s)

s=["Dog","Banana","Cat","apple"]
s.sort() # Unicode values are used during comparison of alp
print(s)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 18/30

In [15]:

Note:

In Python 2 if List contains both numbers and Strings then sort() function first sort numbers followed by
strings.

In [16]:

Eg 4:

In [19]:

How to sort the elements of list in reverse of default natural sorting order:

One Simple Way

TypeError Traceback (most recent call last)
<ipython-input-15-41c38805e086> in <module>
 1 n=[20,10,"A","B"]
----> 2 n.sort()
 3 print(n)

TypeError: '<' not supported between instances of 'str' and 'int'

TypeError Traceback (most recent call last)
<ipython-input-16-bda452934197> in <module>
 1 n=[20,"B",10,"A"]
----> 2 n.sort()
 3 print(n) # [10,20,'A','B'] But in Python 3 it is inval

id.

TypeError: '<' not supported between instances of 'str' and 'int'

['10', '20', 'A', 'B']

n=[20,10,"A","B"]
n.sort()
print(n)

n=[20,"B",10,"A"]
n.sort()
print(n) # [10,20,'A','B'] It is valid in Python 2, but in Python 3 it is inv

n=['20',"B",'10',"A"]
n.sort()
print(n)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 19/30

In [25]:

Alternate Way :

We can sort according to reverse of default natural sorting order by using reverse = True argument.

In [27]:

In [28]:

6 . Aliasing and Cloning of List objects:
The process of giving another reference variable to the existing list is called aliasing.

In [29]:

[40, 30, 20, 10]

[10, 20, 30, 40]
[40, 30, 20, 10]
[10, 20, 30, 40]

['Dog', 'Cat', 'Banana', 'Apple']

1709842944648
1709842944648

n=[40,10,30,20]
n.sort()
n.reverse()
print(n)

n=[40,10,30,20]
n.sort()
print(n) #[10,20,30,40]
n.sort(reverse=True)
print(n) #[40,30,20,10]
n.sort(reverse=False)
print(n) #[10,20,30,40]

s=["Dog","Banana","Cat","Apple"]
s.sort(reverse= True) # reverse of Alphabetical order
print(s)

x=[10,20,30,40]
y=x
print(id(x))
print(id(y))

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 20/30

The problem in this approach is by using one reference variable if we are changing content,then those changes
will be reflected to the other reference variable.

In [30]:

To overcome this problem we should go for cloning.

Cloning :The process of creating exactly duplicate independent object is called cloning.

We can implement cloning by using the following ways:

1. slice operator

2. copy() function

1. By using slice operator:

[10, 777, 30, 40]

x=[10,20,30,40]
y=x
y[1]=777
print(x) #[10,777,30,40]

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 21/30

In [31]:

2. By using copy() function:

In [32]:

[10, 20, 30, 40]
[10, 777, 30, 40]

[10, 20, 30, 40]
[10, 777, 30, 40]

x=[10,20,30,40]
y=x[:]
y[1]=777
print(x) #[10,20,30,40]
print(y) #[10,777,30,40]

x=[10,20,30,40]
y=x.copy()
y[1]=777
print(x) # [10,20,30,40]
print(y) # [10,777,30,40]

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 22/30

Q. What is the difference between = operator and copy() function?

= operator meant for aliasing copy() function meant for cloning

7. Using Mathematical operators for List Objects:
We can use + and * operators for List objects.

1. Concatenation operator(+):

We can use + to concatenate 2 lists into a single list.

In [38]:

 a : [10, 20, 30]
 b : [40, 50, 60]
 c : [10, 20, 30, 40, 50, 60]

a=[10,20,30]
b=[40,50,60]
c=a+b # concatenation
print(' a : ',a)
print(' b : ',b)
print(' c : ',c)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 23/30

In [41]:

In []:

Note:

To use + operator compulsory both arguments should be list objects,otherwise we will get TypeError.

Eg:

In [42]:

In [43]:

2. Repetition Operator(*):

We can use repetition operator * to repeat elements of list specified number of times

In [44]:

 a : [10, 20, 30, 40, 50, 60]
 b : [40, 50, 60]
 c : None

TypeError Traceback (most recent call last)
<ipython-input-42-aae8ea9a4fe9> in <module>
----> 1 c=a+40 #TypeError: can only concatenate list (not "int") to l
ist
 2 print(c)

TypeError: can only concatenate list (not "int") to list

[10, 20, 30, 40, 50, 60, 40]

[10, 20, 30, 10, 20, 30, 10, 20, 30]

a=[10,20,30]
b=[40,50,60]
c=a.extend(b) # extend() methodwon't return anything. it adds the content of 'b' to 'a'.
print(' a : ',a)
print(' b : ',b)
print(' c : ',c)

c=a+40 #TypeError: can only concatenate list (not "int") to list
print(c)

c=a+[40] #valid
print(c)

x=[10,20,30]
y=x*3
print(y) #[10,20,30,10,20,30,10,20,30]

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 24/30

8. Comparing List objects

We can use comparison operators for List objects.

Eg :

In [45]:

Note:

Whenever we are using comparison operators(==,!=) for List objects then the following should be
considered:

1. The number of elements

2. The order of elements

3. The content of elements (case sensitive)

Note:

When ever we are using relatational operators(<,<=,>,>=) between List objects,only first element
comparison will be performed.

Eg :

In [46]:

Eg :

True
False
True

True
True
False
False

x=["Dog","Cat","Rat"]
y=["Dog","Cat","Rat"]
z=["DOG","CAT","RAT"]
print(x==y) #True
print(x==z) #False
print(x != z) #True

x=[50,20,30]
y=[40,50,60,100,200]
print(x>y) #True
print(x>=y) #True
print(x<y) #False
print(x<=y) #False

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 25/30

In [47]:

In [48]:

9. Membership operators:
We can check whether element is a member of the list or not by using memebership operators.

1. in operator

2. not in operator

In [49]:

10. clear() function:

We can use clear() function to remove all elements of List.

False
False
True
True

True

True
False
True
False
True

x=["Dog","Cat","Rat"]
y=["Rat","Cat","Dog"]
print(x>y) #False
print(x>=y) #False
print(x<y) #True
print(x<=y) #True

x=["Dog","Cat","Rat"]
y=["Dat","Cat","Dog"]
print(x>y)

n=[10,20,30,40]
print (10 in n)
print (10 not in n)
print (100 not in n)
print (50 in n)
print (50 not in n)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 26/30

In [50]:

Date: 04-05-2020 Day 4

11. Nested Lists:
Sometimes we can take one list inside another list. Such type of lists are called nested lists.

Consider the follwoing example:

In [1]:

Note:

We can access nested list elements by using index just like accessing multi dimensional array elements.

Nested List as Matrix

In Python we can represent matrix by using nested lists.

[10, 20, 30, 40]
[]

[10, 20, [30, 40]]
10
[30, 40]
30
40

n=[10,20,30,40]
print(n)
n.clear()
print(n)

n=[10,20,[30,40]]
print(n)
print(n[0])
print(n[2])
print(n[2][0])
print(n[2][1])

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 27/30

In [2]:

12. List Comprehensions

It is very easy and compact way of creating list objects from any iterable objects(like
list,tuple,dictionary,range etc) based on some condition.

Syntax:

list=[expression for item in list if condition]

Consider an example, If you want to store squares of numbers form 1 to 10 in a list,

In [12]:

In the above case, the program consisting 4 lines of code. Now for the same purpose we will write the following
code in more concised way.

In [13]:

[[10, 20, 30], [40, 50, 60], [70, 80, 90]]
Elements by Row wise:
[10, 20, 30]
[40, 50, 60]
[70, 80, 90]
Elements by Matrix style:
10 20 30
40 50 60
70 80 90

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 32
4, 361, 400]
[4, 16, 36, 64, 100, 144, 196, 256, 324, 400]

n=[[10,20,30],[40,50,60],[70,80,90]]
print(n)
print("Elements by Row wise:")
for r in n:
 print(r)
print("Elements by Matrix style:")
for i in range(len(n)):
 for j in range(len(n[i])):
 print(n[i][j],end=' ')
 print()

l1=[]
for x in range(1,11):
 l1.append(x*x)
print(l1)

l1 = [x*x for x in range(1,21)]
l2 = [x for x in l1 if x % 2 == 0]
print(l1)
print(l2)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 28/30

Few more examples on List comprehensions :

In [10]:

In [14]:

In [8]:

In [15]:

In [17]:

In [16]:

In [21]:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2, 4, 6, 8, 10]

[1, 3, 5, 7, 9]

[1, 9, 25, 49, 81]

['B', 'N', 'V', 'C']

['Balaiah', 'Venkatesh', 'Chiranjeevi']

l1 = [x*x for x in range(1,11)]
print(l1)

l =[2**x for x in range(1,11)]
print(l)

l = [x for x in range(1,11) if x%2==0]
print(l)

l = [x for x in range(1,11) if x%2==1]
print(l)

l = [x**2 for x in range(1,11) if (x**2)%2==1]
print(l)

words=["Balaiah","Nag","Venkatesh","Chiranjeevi"]
l=[w[0] for w in words]
print(l)

words=["Balaiah","Nag","Venkatesh","Chiranjeevi"]
l=[w for w in words if len(w)>6]
print(l)

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 29/30

In [18]:

In [22]:

Example Program

Q. Write a program to display unique vowels present in the given word.

In [23]:

Suppose if you want lower case and upper case vowels, what you can do is as follows:

In [2]:

[10, 20]

['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']
[['THE', 3], ['QUICK', 5], ['BROWN', 5], ['FOX', 3], ['JUMPS', 5], ['OVER',
4], ['THE', 3], ['LAZY', 4], ['DOG', 3]]

Enter the word to search for vowels: Quality Education is useful
['u', 'a', 'i', 'o', 'e']
The number of different vowels present in Quality Education is useful is 5

Enter the word to search for vowels: karthi Abc
['a', 'i', 'A']
The number of different vowels present in karthi Abc is 3

num1=[10,20,30,40]
num2=[30,40,50,60]
num3=[i for i in num1 if i not in num2]
print(num3) #[10,20]

words="the quick brown fox jumps over the lazy dog".split() # All 26 alphabets used in t
print(words)
l=[[w.upper(),len(w)] for w in words]
print(l)

vowels=['a','e','i','o','u']
word=input("Enter the word to search for vowels: ")
found=[]
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
print(found)
print("The number of different vowels present in",word,"is",len(found))

vowels=['a','e','i','o','u','A','E','I','O','U']
word=input("Enter the word to search for vowels: ")
found=[]
for letter in word:
 if letter in vowels:
 if letter not in found:
 found.append(letter)
print(found)
print("The number of different vowels present in",word,"is",len(found))

04/05/2020 List Data Type

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/List Data Type.ipynb 30/30

See the above code in another simplified way:

In [3]:

In [4]:

In []:

Enter the word to search for vowels: KARTHIKEYA
['A', 'I', 'E', 'A']
The number of different vowels present in KARTHIKEYA is 4

Enter the word to search for vowels: KARTHIKEYA
['a', 'i', 'e']
The number of different vowels present in KARTHIKEYA is 3

vowels=['a','e','i','o','u']
word=input("Enter the word to search for vowels: ")
found=[]
for letter in word:
 if letter.lower() in vowels:
 if letter.lower() not in found:
 found.append(letter)
print(found)
print("The number of different vowels present in",word,"is",len(found))

vowels=['a','e','i','o','u']
word=input("Enter the word to search for vowels: ")
found=[]
for letter in word:
 if letter.lower() in vowels:
 if letter.lower() not in found:
 found.append(letter.lower())
print(found)
print("The number of different vowels present in",word,"is",len(found))

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 1/15

Tuple Data Type

Date: 04-05-2020 Day 1

Topics Covered:

1. Introduction

2. Creation of Tuple objects

3. Accessing elements of tuple

4. Tuple vs immutability

5. Mathematical operators for tuple

6. Important functions of Tuple
 i) len()

 ii) count()

 iii) index()

 iv) sorted()

 v) min()

 vi) max()

 vii) cmp()

7. Tuple Packing and Unpacking

8. Tuple Comprehension

9. Differences between List and Tuple

1. Introduction:

1. Tuple is exactly same as List except that it is immutable. i.e., once we creates Tuple object,we cannot
perform any changes in that object. Hence Tuple is Read Only Version of List.

2. If our data is fixed and never changes then we should go for Tuple.

3. Insertion Order is preserved.

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 2/15

p
4. Duplicates are allowed.

5. Heterogeneous objects are allowed.

6. We can preserve insertion order and we can differentiate duplicate objects by using index. Hence index will
play very important role in Tuple also.

7. Tuple support both +ve and -ve index. +ve index means forward direction(from left to right) and -ve index
means backward direction(from right to left).

8. We can represent Tuple elements within Parenthesis and with comma seperator.

Note :

Parenethesis are optional but recommended to use.

Eg :

In [1]:

In [2]:

In [3]:

Note:

We have to take special care about single valued tuple.compulsary the value should ends with
comma,otherwise it is not treated as tuple.

Eg:

In [4]:

(10, 20, 30, 40)
<class 'tuple'>

(10, 20, 30, 40)
<class 'tuple'>

<class 'tuple'>

10
<class 'int'>

t=10,20,30,40
print(t)
print(type(t))

t=(10,20,30,40)
print(t)
print(type(t))

t = ()
print(type(t))

t=(10)
print(t)
print(type(t))

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 3/15

In [5]:

Q. Which of the following are valid/Invalid tuples?

In [7]:

In [1]:

Date: 05-05-2020 Day 2

2. Creation of Tuple objects

1. t=()

creation of empty tuple

In [2]:

2. t=(10,)

t=10, ====> creation of single valued tuple ,parenthesis are optional,but it should ends with comma.

(10,)
<class 'tuple'>

(10, 20, 30)
<class 'tuple'>

()
<class 'tuple'>

t=(10,)
print(t)
print(type(t))

t=() # valid
t=10,20,30,40 # valid
t=10 # not valid
t=10, # valid
t=(10) # notvalid
t=(10,) # valid
t=(10,20,30,40) # valid
t= (10,20,30,) # valid

t = (10,20,30,)
print(t)
print(type(t))

t=()
print(t)
print(type(t))

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 4/15

In [3]:

3. t=10,20,30 or t=(10,20,30)*

creation of multi values tuples & parenthesis are optional.

In [4]:

4. By using tuple() function:

if you have any sequence (i.e., string, list, range etc.,) which can be easily converted into a tuple by using
tuple() function.

In [5]:

In [9]:

In [10]:

3. Accessing elements of tuple:

(10,)
<class 'tuple'>

(10, 20, 30)
<class 'tuple'>

(10, 20, 30)
<class 'tuple'>

(10, 12, 14, 16, 18)
<class 'tuple'>

('k', 'a', 'r', 't', 'h', 'i')
<class 'tuple'>

t = (10,)
print(t)
print(type(t))

t = 10,20,30
print(t)
print(type(t))

list=[10,20,30]
t=tuple(list)
print(t)
print(type(t))

t=tuple(range(10,20,2))
print(t)
print(type(t))

t = tuple('karthi')
print(t)
print(type(t))

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 5/15

3. Accessing elements of tuple:

We can access elements of a tuple either by using index or by using slice operator.

1. By using index:

In [7]:

2. By using slice operator:

In [8]:

Eg:

In [11]:

4. Tuple vs immutability:
Once we creates tuple,we cannot change its content. Hence tuple objects are immutable.

Eg :

10
60

IndexError Traceback (most recent call last)
<ipython-input-7-a762027e6505> in <module>
 2 print(t[0]) #10
 3 print(t[-1]) #60
----> 4 print(t[100]) #IndexError: tuple index out of range

IndexError: tuple index out of range

(30, 40, 50)
(30, 40, 50, 60)
(10, 30, 50)

k
('a', 'r', 't', 'h')
('y', 'e', 'k')

t=(10,20,30,40,50,60)
print(t[0]) #10
print(t[-1]) #60
print(t[100]) #IndexError: tuple index out of range

t=(10,20,30,40,50,60)
print(t[2:5]) #30,40,50
print(t[2:100]) # 30,40,50,60
print(t[::2]) #10,30,50

t= tuple('karthikeya')
print(t[0])
print(t[1:5:1])
print(t[-2:-5:-1])

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 6/15

In [12]:

5. Mathematical operators for tuple:
We can apply + and * operators for tuple

1. Concatenation Operator(+):

In [13]:

In [15]:

2. Multiplication operator (or) repetition operator(*):

In [14]:

6. Important functions of Tuple:

1. len():

It is an in-built function of Python, if you provide any sequnce (i.e., strings, list,tuple etc.,), in that how many
elements are there that will be returened this function.

TypeError Traceback (most recent call last)
<ipython-input-12-b9dcfa3c846d> in <module>
 1 t=(10,20,30,40)
----> 2 t[1]=70

TypeError: 'tuple' object does not support item assignment

(10, 20, 30, 40, 50, 60)

(10, 20, 30, 40, 10, 20, 30, 40)

(10, 20, 30, 10, 20, 30, 10, 20, 30)

t=(10,20,30,40)
t[1]=70

t1=(10,20,30)
t2=(40,50,60)
t3=t1+t2
print(t3) # (10,20,30,40,50,60)

t1 = 10,20,30,40
t2 = 10,20,30,40
t3 = t1 + t2 # because list and tuple allow duplicates, so you will get all the elements
print(t3)

t1=(10,20,30)
t2=t1*3
print(t2) #(10,20,30,10,20,30,10,20,30)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 7/15

It is used to return number of elements present in the tuple.

In [16]:

2. count():

To return number of occurrences of given element in the tuple

In [17]:

3. index():

It returns index of first occurrence of the given element. If the specified element is not available then we will
get ValueError.

In [18]:

4. sorted():

It is used to sort elements based on default natural sorting order (Ascending order).

In [30]:

4

3

0

ValueError Traceback (most recent call last)
<ipython-input-18-e5a94eb1d82a> in <module>
 1 t=(10,20,10,10,20)
 2 print(t.index(10)) # 0

----> 3 print(t.index(30)) # ValueError: tuple.index(x): x not in tuple

ValueError: tuple.index(x): x not in tuple

[10, 20, 30, 40]

t=(10,20,30,40)
print(len(t)) #4

t=(10,20,10,10,20)
print(t.count(10)) #3

t=(10,20,10,10,20)
print(t.index(10)) # 0
print(t.index(30)) # ValueError: tuple.index(x): x not in tuple

t =(10,30,40,20)
print(sorted(t)) # sorted() is going to return list

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 8/15

In [31]:

Reason: Tuple is Immutable. We cannot modify the tuple contents.

In [34]:

In [36]:

AttributeError Traceback (most recent call last)
<ipython-input-31-6dd56d99cf24> in <module>
 1 t =(10,30,40,20)
----> 2 t.sort()
 3 print(t)

AttributeError: 'tuple' object has no attribute 'sort'

2653757219768
<class 'tuple'>
2653757029192
<class 'list'>
[10, 20, 30, 40]

<class 'list'>
[10, 20, 30, 40]
<class 'tuple'>
(40, 10, 30, 20)

t =(10,30,40,20)
t.sort()
print(t)

t=(40,10,30,20)
print(id(t))
print(type(t))
t=sorted(t)
print(id(t))
print(type(t))
print(t) # result is in List form.

t=(40,10,30,20)
t1=sorted(t)
print(type(t1))
print(t1)
print(type(t))
print(t)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 9/15

In [37]:

We can sort according to reverse of default natural sorting order is as follows:

In [20]:

5. min() and max() functions:

These functions return minimum and maximum values according to default natural sorting order.

These functions will works on tuple with respect to homogeneous elements only.

In [35]:

In [40]:

In [39]:

6. cmp():

<class 'tuple'>
(10, 20, 30, 40)
<class 'tuple'>
(40, 10, 30, 20)

[40, 30, 20, 10]

10
40

a
t

A
t

t=(40,10,30,20)
t1=tuple(sorted(t))
print(type(t1))
print(t1)
print(type(t1))
print(t)

t1=sorted(t,reverse=True)
print(t1) #[40, 30, 20, 10]

t=(40,10,30,20)
print(min(t)) #10
print(max(t)) #40

t = ('karthi') # based on unicode values these functions will work.
print(min(t))
print(max(t))

t = ('kArthi')
print(min(t))
print(max(t))

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 10/15

It compares the elements of both tuples.

If both tuples are equal then returns 0.

If the first tuple is less than second tuple then it returns -1.

If the first tuple is greater than second tuple then it returns +1.

In [41]:

Note : cmp() function is available only in Python 2 but not in Python 3

In [46]:

In [47]:

7. Tuple Packing and Unpacking:

Tuple packing :

NameError Traceback (most recent call last)
<ipython-input-41-558f5c41fd64> in <module>
 2 t2=(40,50,60)
 3 t3=(10,20,30)
----> 4 print(cmp(t1,t2)) # -1
 5 print(cmp(t1,t3)) # 0
 6 print(cmp(t2,t3)) # +1

NameError: name 'cmp' is not defined

False
True
False
True

False

t1=(10,20,30)
t2=(40,50,60)
t3=(10,20,30)
print(cmp(t1,t2)) # -1
print(cmp(t1,t3)) # 0
print(cmp(t2,t3)) # +1

t1=(10,20,30)
t2=(40,50,60)
t3=(10,20,30)
print(t1==t2)
print(t1==t3)
print(t2==t3)
print(t1<t2) # true, because it compares only first element.

t1=(10,20,30)
t2=(5,50,60)
print(t1<t2)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 11/15

We can create a tuple by packing a group of variables.

Eg:

In [48]:

Here a,b,c,d are packed into a tuple t. This is nothing but tuple packing.

Tuple unpacking :

Tuple unpacking is the reverse process of tuple packing.

We can unpack a tuple and assign its values to different variables.

Eg :

In [49]:

Note : This concept is also applicable for any sequence (i.e., string,list,set etc.,) concept also.

Unpacking:

In [1]:

In [3]:

(10, 20, 30, 40)

a= 10 b= 20 c= 30 d= 40

a= 10 b= 20 c= 30 d= 40

a= 40 b= 10 c= 20 d= 30

a=10
b=20
c=30
d=40
t=a,b,c,d
print(t) #(10, 20, 30, 40)

t=(10,20,30,40)
a,b,c,d=t
print("a=",a,"b=",b,"c=",c,"d=",d)

t=[10,20,30,40]
a,b,c,d=t
print("a=",a,"b=",b,"c=",c,"d=",d)

t={10,20,30,40}
a,b,c,d=t
print("a=",a,"b=",b,"c=",c,"d=",d)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 12/15

In [2]:

Packing:

In [4]:

In [7]:

In [6]:

Note:

At the time of tuple unpacking the number of variables and number of values should be same. ,otherwise
we will get ValueError.

Eg :

a= a b= b c= c d= d

<class 'list'>
[10, 20, 30, 40]

<class 'set'>
{40, 10, 20, 30}

<class 'str'>
a,b,c,d

t='abcd'
a,b,c,d=t
print("a=",a,"b=",b,"c=",c,"d=",d)

a = 10
b = 20
c = 30
d = 40
t =[a,b,c,d]
print(type(t))
print(t)

a = 10
b = 20
c = 30
d = 40
t ={a,b,c,d} # for 'set' order is not important
print(type(t))
print(t)

a = 10
b = 20
c = 30
d = 40
t ='a,b,c,d'
print(type(t))
print(t)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 13/15

In [50]:

8. Tuple Comprehension

Tuple Comprehension is not supported by Python.

t= (x**2 for x in range(1,6))

Here we are not getting tuple object and we are getting generator object.

In [9]:

Eg :

Q. Write a program to take a tuple of numbers from the keyboard and print its sum and average.

ValueError Traceback (most recent call last)
<ipython-input-50-11ffc4f6133a> in <module>
 1 t=(10,20,30,40)
----> 2 a,b,c=t #ValueError: too many values to unpack
(expected 3)

ValueError: too many values to unpack (expected 3)

<class 'generator'>
1
4
9
16
25

t=(10,20,30,40)
a,b,c=t # ValueError: too many values to unpack (expected 3)

t= (x**2 for x in range(1,6))
print(type(t))
for x in t:
 print(x)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 14/15

In [11]:

In [12]:

9. Differences between List and Tuple:

List and Tuple are exactly same except small difference: List objects are mutable where as Tuple objects
are immutable.

In both cases insertion order is preserved, duplicate objects are allowed, heterogenous objects are
allowed, index and slicing are supported.

Enter Tuple of Numbers:(10,20,30,40)
<class 'tuple'>
The Sum= 100
The Average= 25.0

Enter Tuple of Numbers:100,200,220,300
<class 'tuple'>
The Sum= 820
The Average= 205.0

t=eval(input("Enter Tuple of Numbers:"))
print(type(t))
l=len(t)
sum=0
for x in t:
 sum = sum + x
print("The Sum=",sum)
print("The Average=",sum/l)

t=eval(input("Enter Tuple of Numbers:"))
print(type(t))
l=len(t)
sum=0
for x in t:
 sum = sum + x
print("The Sum=",sum)
print("The Average=",sum/l)

05/05/2020 Tuple Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Tuple Data Type.ipynb 15/15

In []:

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 1/14

 UNIT - 5

Set Data Type

Date: 06-05-2020 Day 1

Topics Covered:

1. Introduction

2. Creation of Set Objects

3. Important functions / methods of set
 1. add()

 2. update()

 3. copy()

 4. pop()

 5. remove()

 6. discard()

 7. clear()

4. Mathematical operations on the Set

5. Membership operators
 i) in

 ii) not in

6. Set Comprehension

1. Introduction

If we want to represent a group of unique values as a single entity then we should go for set.

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 2/14

Key features of Set Data Type:

1. Duplicates are not allowed.

2. Insertion order is not preserved.But we can sort the elements.

3. Indexing and slicing not allowed for the set.

4. Heterogeneous elements are allowed.

5. Set objects are mutable i.e once we creates set object we can perform any changes in that object based on
our requirement.

6. We can represent set elements within curly braces and with comma seperation.

7. We can apply mathematical operations like union,intersection,difference etc on set objects.

2. Creation of Set Objects

i) Creation of set object with single value

In [5]:

ii) Creation of set object with multiple values

In [6]:

<class 'set'>
{10}

<class 'set'>
{5, 40, 10, 20, 30}

s = {10}
print(type(s))
print(s)

s = {30,40,10,5,20} # in the output order not preserved
print(type(s))
print(s)

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 3/14

In [10]:

In [11]:

iii) Creation of set objects using set() function

We can create set objects by using set() function.

Syntax:

s=set(any sequence)

Eg 1:

In [7]:

Eg 2:

<class 'set'>

TypeError Traceback (most recent call last)
<ipython-input-10-655c69b5c557> in <module>
 1 s = {30,40,10,5,20} # in the output order not preserved
 2 print(type(s))
----> 3 print(s[0])

TypeError: 'set' object is not subscriptable

<class 'set'>

TypeError Traceback (most recent call last)
<ipython-input-11-05c9c76958c2> in <module>
 1 s = {30,40,10,5,20} # in the output order not preserved
 2 print(type(s))
----> 3 print(s[0:6])

TypeError: 'set' object is not subscriptable

{40, 10, 20, 30}

s = {30,40,10,5,20} # in the output order not preserved
print(type(s))
print(s[0])

s = {30,40,10,5,20} # in the output order not preserved
print(type(s))
print(s[0:6])

l = [10,20,30,40,10,20,10]
s=set(l)
print(s) # {40, 10, 20, 30} because duplicates are not allowed in set

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 4/14

In [9]:

Eg 3:

In [12]:

Eg 4:

In [15]:

Note:

While creating empty set we have to take special care. Compulsory we should use set() function.

s={} ==>It is treated as dictionary but not empty set.

Eg :

In [13]:

Eg :

In [14]:

3. Important functions / methods of set:

1. add(x):

{0, 1, 2, 3, 4}

{'a', 'h', 'i', 't', 'k', 'r'}

{'a', 'b'}

<class 'dict'>

set()
<class 'set'>

s=set(range(5))
print(s) #{0, 1, 2, 3, 4}

s = set('karthi')
print(s)

s= set('aaabbbb')
print(s)

s = {}
print(type(s))

s = set() # set function without any arguments
print(s)
print(type(s))

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 5/14

Adds item x to the set

Eg :

In [31]:

In [32]:

2. update(x,y,z):

This method is used to add multiple items to the set.

Arguments are not individual elements and these are Iterable objects like List,range etc.

All elements present in the given Iterable objects will be added to the set.

Eg :

In [33]:

In [23]:

{40, 10, 20, 30}

{10, 'karthi', 20, 30}

{'a', 10, 'h', 'i', 20, 't', 'k', 'r', 30}

{0, 1, 2, 3, 4, 40, 10, 50, 20, 60, 30}

s={10,20,30}
s.add(40); # ';' is optional for python statements
print(s) #{40, 10, 20, 30}

s={10,20,30}
s.add('karthi'); # ';' is optional for python statements
print(s)

s={10,20,30}
s.update('karthi'); # ';' is optional for python statements
print(s)

s={10,20,30}
l=[40,50,60,10]
s.update(l,range(5))
print(s)

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 6/14

In [24]:

In [25]:

In [26]:

In [18]:

Q. What is the difference between add() and update() functions in set?

We can use add() to add individual item to the Set,where as we can use update() function to add multiple
items to Set.

add() function can take only one argument where as update() function can take any number of arguments
but all arguments should be iterable objects.

Q. Which of the following are valid for set s?

1. s.add(10) Valid

2. s.add(10,20,30) TypeError: add() takes exactly one argument (3 given)

TypeError Traceback (most recent call last)
<ipython-input-24-d6e54bc11daa> in <module>
 1 s={10,20,30}
 2 l=[40,50,60,10]
----> 3 s.update(l,range(5),100)
 4 print(s)

TypeError: 'int' object is not iterable

{0, 1, 2, 3, 4, 40, 10, '0', '1', 50, 20, 60, 30}

{0, 1, 2, 3, 4, 'a', 40, 10, 'h', 'i', 50, 20, 't', 'k', 'r', 60, 30}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

s={10,20,30}
l=[40,50,60,10]
s.update(l,range(5),100)
print(s)

s={10,20,30}
l=[40,50,60,10]
s.update(l,range(5),'100')
print(s)

s={10,20,30}
l=[40,50,60,10]
s.update(l,range(5),'karthi')
print(s)

s =set()
s.update(range(1,10,2),range(0,10,2))
print(s)

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 7/14

3. s.update(10) TypeError: 'int' object is not iterable

4. s.update(range(1,10,2),range(0,10,2)) Valid

3. copy():

Returns copy of the set. It is cloned object (Backup copy).

Eg :

In [20]:

4. pop():

It removes and returns some random element from the set.

Eg :

In [38]:

Consider the following case :

{10, 20, 30}
{10, 20, 30}

{40, 10, 20, 30}
40
10
20
{30}
30
set()

KeyError Traceback (most recent call last)
<ipython-input-38-22f4166ffe90> in <module>
 7 print(s.pop())
 8 print(s) # empty set
----> 9 print(s.pop())

KeyError: 'pop from an empty set'

s={10,20,30}
s1=s.copy()
print(s1)
print(s)

s={40,10,30,20}
print(s)
print(s.pop())
print(s.pop())
print(s.pop())
print(s)
print(s.pop())
print(s) # empty set
print(s.pop())

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 8/14

In [39]:

In [40]:

In [41]:

Note :

How many times you may execute the code, the elements which are popped from the set in same order. The
reason is ---

All the elements of set are inserted based on some hashcode.If that order is fixed then it is always going to
return one by one. But in which order these elements are inserted we don't know.

5. remove(x):

It removes specified element from the set.

If the specified element not present in the Set then we will get KeyError.

Eg :

{40, 10, 20, 30}
40
10
{20, 30}

{40, 10, 20, 30}
40
10
{20, 30}

{40, 10, 20, 30}
40
10
{20, 30}

s={40,10,30,20}
print(s)
print(s.pop())
print(s.pop())
print(s)

s={40,10,30,20}
print(s)
print(s.pop())
print(s.pop())
print(s)

s={40,10,30,20}
print(s)
print(s.pop())
print(s.pop())
print(s)

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 9/14

In [30]:

Date: 07-05-2020 Day 2
6. discard(x):

It removes the specified element from the set. If the specified element not present in the set then we won't
get any error.

In [1]:

Answer the following :

Q. What is the difference between remove() and discard() functions in Set?

Q. Explain differences between pop(),remove() and discard() functionsin Set?

7.clear():

To remove all elements from the Set.

{40, 10, 20}

KeyError Traceback (most recent call last)
<ipython-input-30-fd29f2336f3b> in <module>
 2 s.remove(30)
 3 print(s) # {40, 10, 20}
----> 4 s.remove(50) #KeyError: 50

KeyError: 50

{20, 30}
{20, 30}

s={40,10,30,20}
s.remove(30)
print(s) # {40, 10, 20}
s.remove(50) # KeyError: 50

s={10,20,30}
s.discard(10)
print(s) #{20, 30}
s.discard(50)
print(s) #{20, 30}

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 10/14

In [2]:

4. Mathematical operations on the Set

1.union():

x.union(y) ==> We can use this function to return all elements present in both x and y sets

wecan perform union operation in two ways:

1. x.union(y) ==> by calling through union() method.

2. x|y ==> by using '|' operator.

This operation returns all elements present in both sets x and y (without duplicate elements).

Eg :

In [3]:

2. intersection():

wecan perform intersection operation in two ways:

1. x.intersection(y) --> by calling through intersection() method.

2. x&y --> by using '&' operator.

This operation returns common elements present in both sets x and y.

Eg :

In [4]:

{10, 20, 30}
set()

{40, 10, 50, 20, 60, 30}
{40, 10, 50, 20, 60, 30}

{40, 30}
{40, 30}

s={10,20,30}
print(s)
s.clear()
print(s)

x={10,20,30,40}
y={30,40,50,60}
print(x.union(y)) #{10, 20, 30, 40, 50, 60}
print(x|y) #{10, 20, 30, 40, 50, 60}

x={10,20,30,40}
y={30,40,50,60}
print(x.intersection(y)) #{40, 30}
print(x&y) #{40, 30}

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 11/14

3. difference():

wecan perform difference operation in two ways:

1. x.difference(y) --> by calling through difference() method.

2. x-y --> by using '-' operator.

This operation returns the elements present in x but not in y.

Eg :

In [5]:

4.symmetric_difference():

wecan perform symmetric_difference operation in two ways:

1. x.symmetric_difference(y) --> by calling through symmetric_difference method.

2. x^y --> by using '^' operator.

This operation returns elements present in either x or y but not in both.

Eg :

In [6]:

5. Membership operators:
Membership operators are used to check whether a particular object is available or not.

For any sequence, we can apply membership operators.

Follwoing are the membership operators:

1. in

2. not in

{10, 20}
{10, 20}
{50, 60}

{10, 50, 20, 60}
{10, 50, 20, 60}

x={10,20,30,40}
y={30,40,50,60}
print(x.difference(y)) #{10, 20}
print(x-y) #{10, 20}
print(y-x) #{50, 60}

x={10,20,30,40}
y={30,40,50,60}
print(x.symmetric_difference(y)) #{10, 50, 20, 60}
print(x^y) #{10, 50, 20, 60}

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 12/14

Eg :

In [8]:

6. Set Comprehension

Set comprehension is possible.

Syntax:

s = {expression for x in sequence condition}

In [9]:

In [10]:

Note :

set objects won't support indexing and slicing.
Eg:

{'r', 'a', 'i', 't', 'k', 'h'}
True
False

{0, 1, 4, 9, 16, 25}

{16, 256, 64, 4}

s=set("karthi")
print(s)
print('a' in s)
print('z' in s)

s = {x*x for x in range(6)}
print(s)

s={2**x for x in range(2,10,2)}
print(s)

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 13/14

In [11]:

Example Programs

Q 1. Write a program to eliminate duplicates present in the list.

Approach-1:

In [12]:

Approach-2:

In [13]:

Q. Write a program to print different vowels present in the given word.

TypeError Traceback (most recent call last)
<ipython-input-11-6f6a7552f39c> in <module>
 1 s={10,20,30,40}
----> 2 print(s[0]) #TypeError: 'set' object does not support in
dexing
 3 print(s[1:3]) #TypeError: 'set' object is not subscriptabl

e

TypeError: 'set' object is not subscriptable

Enter List of values: 10,20,30,10,20,40
{40, 10, 20, 30}

Enter List of values: 10,20,30,10,20,40
[10, 20, 30, 40]

s={10,20,30,40}
print(s[0]) #TypeError: 'set' object does not support indexing
print(s[1:3]) #TypeError: 'set' object is not subscriptable

l=eval(input("Enter List of values: "))
s=set(l)
print(s)

l=eval(input("Enter List of values: "))
l1=[]
for x in l:
 if x not in l1:
 l1.append(x)
print(l1)

06/05/2020 Set Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Set Data Type.ipynb#3.-Important-functions-/-methods--of-set 14/14

In [15]:

In []:

Enter word to search for vowels: Learning python is very easy
The different vowel present in Learning python is very easy are {'o', 'a',
'i', 'e'}
The number of different vowels : 4

w=input("Enter word to search for vowels: ")
s=set(w)
v={'a','e','i','o','u'}
d=s.intersection(v)
print("The different vowel present in",w,"are",d)
print('The number of different vowels : ',len(d))

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 1/18

Dictionary Data Type

Date: 07-05-2020 Day 1

Topics Covered:

1. Introduction

2. Creation of Dictionary objects

3. Accessing data from the Dictionary

4. Updating the Dictionary

5. Deleting the elements from Dictionary

6. Important functions of Dictionary
 i) dict()

 ii) len()

 iii) clear()

 iv) get()

 v) pop()

 vi) popitem()

 vii) keys()

 viii) values()

 ix) items()

 x) copy()

 xi) setdefault()

 xii) update()

7. Dictionary Comprehension

Example Programs

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 2/18

1. Introduction

We can use List,Tuple and Set to represent a group of individual objects as a single entity.

If we want to represent a group of objects as key-value pairs then we should go for Dictionary.

Eg:

rollno----name

phone number--address

ipaddress---domain name

Key features of Dictionary Data type :

1. Duplicate keys are not allowed but values can be duplicated.

2. Hetrogeneous objects are allowed for both key and values.

3. insertion order is not preserved.

4. Dictionaries are mutable.

5. Dictionaries are dynamic.

6. indexing and slicing concepts are not applicable.

Note:

In C++ and Java Dictionaries are known as "Map" where as in Perl and Ruby it is known as "Hash".

2. Creation of Dictionary objects

If you want to create an empty dictionary, we use the following approach:

In [1]:

We can create an empty dictionary using dict() function also.

In [2]:

We can add entries into a dictionary as follows:

<class 'dict'>

<class 'dict'>

d = {}
print(type(d))

d = dict()
print(type(d))

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 3/18

y
d[key] = value

In [8]:

If we know data in advance then we can create dictionary as follows:

In [4]:

3. Accessing data from the dictionary
We can access data by using keys.

In [12]:

If the specified key is not available then we will get KeyError.

In [13]:

We can prevent this by checking whether key is already available or not by using has_key() function (or) by
using in operator.

d.has_key(400) ==> returns 1 if key is available otherwise returns 0

Note :

{100: 'karthi', 200: 'sahasra', 300: 'sri', 'rgm': 'Nandyal'}

{100: 'karthi', 200: 'sahasra', 300: 'sri'}

banana

KeyError Traceback (most recent call last)
<ipython-input-13-15b56079ad88> in <module>
 1 d={'a':'apple' ,'b':'banana', 'c':'cat'}
----> 2 print(d['z'])

KeyError: 'z'

d[100]="karthi"
d[200]="sahasra"
d[300]="sri"
d['rgm'] = 'Nandyal'
print(d) #{100: 'karthi', 200: 'sahasra', 300: 'sri', 'rgm' : 'Nandyal'}

d={100:'karthi' ,200:'sahasra', 300:'sri'}
print(d)

d={'a':'apple' ,'b':'banana', 'c':'cat'}
print(d['b'])

d={'a':'apple' ,'b':'banana', 'c':'cat'}
print(d['z'])

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 4/18

has_key() function is available only in Python 2 but not in Python 3.

Hence compulsory we have to use in operator.

In [16]:

In [18]:

Example Program :

Q. Write a program to enter name and percentage marks in a dictionary and display information on the
screen.

In [23]:

Date: 08-05-2020 Day 2

4. Updating the Dictionary

Syntax:

d[key]=value

banana

Enter number of students: 3
Enter Student Name: sourav
Enter % of Marks of Student: 89
Enter Student Name: sachin
Enter % of Marks of Student: 77
Enter Student Name: dravid
Enter % of Marks of Student: 77
Name of Student % of Marks
 sourav 89
 sachin 77
 dravid 77

d={'a':'apple' ,'b':'banana', 'c':'cat'}
if 'b' in d:
 print(d['b'])

d={'a':'apple' ,'b':'banana', 'c':'cat'}
if 'z' in d:
 print(d['z']) # If the key is not there in the dictionary, it wont give any key err

rec={}
n=int(input("Enter number of students: "))
i=1
while i <= n:
 name=input("Enter Student Name: ")
 marks=input("Enter % of Marks of Student: ")
 rec[name]=marks
 i=i+1
print("Name of Student","\t","% of Marks")
for x in rec:
 print("\t",x,"\t",rec[x]) # x ===> key rec[x] =====> value

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 5/18

If the key is not available then a new entry will be added to the dictionary with the specified key-value pair.

If the key is already available then old value will be replaced with new value.

Eg :

In [1]:

5. Deleting the elements from Dictionary

Syntax :

del d[key]

It deletes entry associated with the specified key.

If the key is not available then we will get KeyError.

Eg :

In [2]:

Note : Let us discuss about few more functions related to delete the contents of a dictionary.

1. clear():

{100: 'karthi', 200: 'sahasra', 300: 'sri'}
{100: 'karthi', 200: 'sahasra', 300: 'sri', 400: 'sachin'}
{100: 'sourav', 200: 'sahasra', 300: 'sri', 400: 'sachin'}

{100: 'karthi', 200: 'sahasra', 300: 'sri'}
{200: 'sahasra', 300: 'sri'}

KeyError Traceback (most recent call last)
<ipython-input-2-a42fad35d4cc> in <module>
 3 del d[100]
 4 print(d)
----> 5 del d[400]

KeyError: 400

d={100:"karthi",200:"sahasra",300:"sri"}
print(d)
d[400]="sachin"
print(d)
d[100]="sourav"
print(d)

d={100:"karthi",200:"sahasra",300:"sri"}
print(d)
del d[100]
print(d)
del d[400]

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 6/18

This function is used to remove all entries from the dictionary.

Eg :

In [3]:

2.del:

To delete total dictionary, we can use del command .Now we cannot access dictionary d.

Eg :

In [4]:

Example:

In [7]:

6. Important functions of Dictionary

1. dict():

This function is used to create a dictionary.

{100: 'karthi', 200: 'sahasra', 300: 'sri'}
{}

{100: 'karthi', 200: 'sahasra', 300: 'sri'}

NameError Traceback (most recent call last)
<ipython-input-4-a93a2726b01d> in <module>
 2 print(d)
 3 del d
----> 4 print(d)

NameError: name 'd' is not defined

{100: ['sourav', 'sachin', 'rahul']}

d={100:"karthi",200:"sahasra",300:"sri"}
print(d)
d.clear()
print(d)

d={100:"karthi",200:"sahasra",300:"sri"}
print(d)
del d
print(d) # d can not access so we will get NameError

list = ['sourav','sachin','rahul']
d={100:list} # here, value is a list which cinsists of multiple objects which are a
print(d)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 7/18

In [13]:

Note :

Compulsory internally we need to take tuple only is acceptable. If you take list it gives the above specified
error.

If the key values are available in the form of tuple, then all those tuple values can be coverted into
dictionary by using 'dict()' function.

2. len()

Returns the number of items in the dictionary.

In [17]:

3. clear():

{}
{100: 'karthi', 200: 'saha'}
{100: 'karthi', 200: 'saha', 300: 'sri'}
{100: 'karthi', 200: 'saha', 300: 'sri'}
{300: 'sri', 200: 'saha', 100: 'karthi'}

TypeError Traceback (most recent call last)
<ipython-input-13-683bd03bcacb> in <module>
 9 d=dict({(100,"karthi"),(200,"saha"),(300,"sri")}) #It creates di

ctionary with the given set of tuple elements
 10 print(d)

---> 11 d=dict({[100,"karthi"],[200,"saha"],[300,"sri"]}) #It creates di
ctionary with the given set of list elements
 12 print(d)

TypeError: unhashable type: 'list'

{100: 'karthi', 200: 'saha'}
2

d=dict() #It creates empty dictionary
print(d)
d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specifie
print(d)
d=dict([(100,"karthi"),(200,"saha"),(300,"sri")]) #It creates dictionary with the given
print(d)
d=dict(((100,"karthi"),(200,"saha"),(300,"sri"))) #It creates dictionary with the given
print(d)
d=dict({(100,"karthi"),(200,"saha"),(300,"sri")}) #It creates dictionary with the given
print(d)
d=dict({[100,"karthi"],[200,"saha"],[300,"sri"]}) #It creates dictionary with the given
print(d)

d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specified elements
print(d)
print(len(d))

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 8/18

To remove all elements from the dictionary.

In [16]:

4. get():

To get the value associated with the key.
Two forms of get() method is available in Python.

i. d.get(key)

If the key is available then returns the corresponding value otherwise returns None.It wont raise any error.

In [18]:

In [19]:

ii. d.get(key,defaultvalue)

If the key is available then returns the corresponding value otherwise returns default value.

In [21]:

In [14]:

{100: 'karthi', 200: 'saha'}
{}

karthi

None

karthi

ravan
{100: 'karthi', 200: 'saha'}

d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specified elements
print(d)
d.clear()
print(d)

d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specified elements
print(d.get(100))

d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specified elements
print(d.get(500))

d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specified elements
print(d.get(100,'ravan'))

d=dict({100:"karthi",200:"saha"}) #It creates dictionary with specified elements
print(d.get(500,'ravan'))
print(d)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 9/18

Another Example :

In [23]:

In [24]:

5. pop():

Syntax :

d.pop(key)

It removes the entry associated with the specified key and returns the corresponding value.

If the specified key is not available then we will get KeyError.

karthi

KeyError Traceback (most recent call last)
<ipython-input-23-2890397dced0> in <module>
 1 d={100:"karthi",200:"saha",300:"sri"}
 2 print(d[100]) #karthi
----> 3 print(d[400]) #KeyError:400
 4 print(d.get(100)) #karthi
 5 print(d.get(400)) #None

KeyError: 400

karthi
karthi
None
karthi
Guest

d={100:"karthi",200:"saha",300:"sri"}
print(d[100]) #karthi
print(d[400]) #KeyError:400
print(d.get(100)) #karthi
print(d.get(400)) #None
print(d.get(100,"Guest")) #karthi
print(d.get(400,"Guest")) #Guest

d={100:"karthi",200:"saha",300:"sri"}
print(d[100]) #karthi
#print(d[400]) #KeyError:400
print(d.get(100)) #karthi
print(d.get(400)) #None
print(d.get(100,"Guest")) #karthi
print(d.get(400,"Guest")) #Guest

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 10/18

In [26]:

6. popitem():

It removes an arbitrary item(key-value) from the dictionaty and returns it.

In [29]:

If the dictionary is empty then we will get KeyError.

{100: 'karthi', 200: 'saha', 300: 'sri'}
karthi
{200: 'saha', 300: 'sri'}

KeyError Traceback (most recent call last)
<ipython-input-26-787766bb18c2> in <module>
 3 print(d.pop(100))
 4 print(d)
----> 5 print(d.pop(400))

KeyError: 400

{100: 'karthi', 200: 'saha', 300: 'sri'}
(300, 'sri')
(200, 'saha')
{100: 'karthi'}

KeyError Traceback (most recent call last)
<ipython-input-29-4185b7c5bad9> in <module>
 4 print(d.popitem())
 5 print(d)
----> 6 print(d.pop(400)) # KeyError

KeyError: 400

d={100:"karthi",200:"saha",300:"sri"}
print(d)
print(d.pop(100))
print(d)
print(d.pop(400))

d={100:"karthi",200:"saha",300:"sri"}
print(d)
print(d.popitem())
print(d.popitem())
print(d)
print(d.pop(400)) # KeyError

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 11/18

In [28]:

In [30]:

7. keys():

It returns all keys associated with dictionary.

Eg :

In [33]:

8. values():

KeyError Traceback (most recent call last)
<ipython-input-28-14f741a4e5d5> in <module>
 1 d ={}
----> 2 print(d.popitem())

KeyError: 'popitem(): dictionary is empty'

{100: 'karthi', 200: 'saha', 300: 'sri'}
(300, 'sri')
(200, 'saha')
(100, 'karthi')

KeyError Traceback (most recent call last)
<ipython-input-30-17881d89d74e> in <module>
 4 print(d.popitem())
 5 print(d.popitem())
----> 6 print(d.popitem())
 7 print(d)

KeyError: 'popitem(): dictionary is empty'

dict_keys([100, 200, 300])
100
200
300

d ={}
print(d.popitem()) #KeyError: 'popitem(): dictionary is empty'

d={100:"karthi",200:"saha",300:"sri"}
print(d)
print(d.popitem())
print(d.popitem())
print(d.popitem())
print(d.popitem())
print(d)

d={100:"karthi",200:"saha",300:"sri"}
print(d.keys())
for key in d.keys():
 print(key)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 12/18

It returns all values associated with the dictionary.

In [34]:

9. items():

It returns list of tuples representing key-value pairs like as shown below.

[(k,v),(k,v),(k,v)]

In [38]:

In [35]:

10. copy():

This method is used to create exactly duplicate dictionary(cloned copy).

In [37]:

11. setdefault():

Syntax :

d.setdefault(k,v)

dict_values(['karthi', 'saha', 'sri'])
karthi
saha
sri

dict_items([(100, 'karthi'), (200, 'saha'), (300, 'sri')])

100 -- karthi
200 -- saha
300 -- sri

{100: 'karthi', 200: 'saha', 300: 'sri'}
{100: 'karthi', 200: 'saha', 300: 'sri'}

d={100:"karthi",200:"saha",300:"sri"}
print(d.values())
for key in d.values():
 print(key)

d={100:"karthi",200:"saha",300:"sri"}
list = d.items()
print(list)

d={100:"karthi",200:"saha",300:"sri"}
for k,v in d.items():
 print(k,"--",v)

d={100:"karthi",200:"saha",300:"sri"}
d1=d.copy()
print(d1)
print(d)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 13/18

If the key is already available then this function returns the corresponding value.

If the key is not available then the specified key-value will be added as new item to the dictionary.

Eg :

In [39]:

12. update():

Syntax :

d.update(x)

All items present in the dictionary x will be added to dictionary d.

In [42]:

In [44]:

sourav
{100: 'karthi', 200: 'saha', 300: 'sri', 400: 'sourav'}
karthi
{100: 'karthi', 200: 'saha', 300: 'sri', 400: 'sourav'}

{100: 'karthi', 200: 'saha', 300: 'sri', 'a': 'apple', 'b': 'banana'}

TypeError Traceback (most recent call last)
<ipython-input-44-58a2bfd142f6> in <module>
 2 d1 ={'a':'apple', 'b':'banana'}
 3 d2 = {777:'A', 888:'B'}

----> 4 d.update(d1,d2) # For update method. you need to pass si
ngle argument only.
 5 print(d)

TypeError: update expected at most 1 arguments, got 2

d={100:"karthi",200:"saha",300:"sri"}
print(d.setdefault(400,"sourav"))
print(d)
print(d.setdefault(100,"sachin"))
print(d)

d={100:"karthi",200:"saha",300:"sri"}
d1 ={'a':'apple', 'b':'banana'}
d.update(d1)
print(d)

d={100:"karthi",200:"saha",300:"sri"}
d1 ={'a':'apple', 'b':'banana'}
d2 = {777:'A', 888:'B'}
d.update(d1,d2) # For ipdate method. you need to pass single argument only.
print(d)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 14/18

In [46]:

In [47]:

Date: 09-05-2020 Day 3
Example Programs

Q 1. Write a program to take dictionary from the keyboard and print the sum of values.

In [3]:

{100: 'karthi', 200: 'saha', 300: 'sri', 777: 'A'}

{100: 'karthi', 200: 'saha', 300: 'sri', 777: 'A', 888: 'B', 999: 'C'}

Enter dictionary:{'A':100,'B':200,'c':300}
Sum= 600

d={100:"karthi",200:"saha",300:"sri"}
d1 ={'a':'apple', 'b':'banana'}
d2 = {777:'A', 888:'B'}
d.update([(777,'A')]) # For ipdate method. you can pass list of tuple as an argument. i.e
print(d)

d={100:"karthi",200:"saha",300:"sri"}
d1 ={'a':'apple', 'b':'banana'}
d2 = {777:'A', 888:'B'}
d.update([(777,'A'),(888,'B'),(999,'C')]) # you can add any no.of list of tuple elements.
print(d)

d=eval(input("Enter dictionary:"))
s=sum(d.values())
print("Sum= ",s)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 15/18

In [4]:

In [5]:

In [6]:

In [7]:

Note : sum() function can work on any sequence.

Q 2. Write a program to find number of occurrences of each letter present in the given string.

Enter dictionary:'A':100,'B':200,'c':300

Traceback (most recent call last):

 File "C:\Users\HP\Anaconda3\lib\site-packages\IPython\core\interactiveshel
l.py", line 3296, in run_code
 exec(code_obj, self.user_global_ns, self.user_ns)

 File "<ipython-input-4-7372dea074de>", line 1, in <module>
 d=eval(input("Enter dictionary:"))

 File "<string>", line 1
 'A':100,'B':200,'c':300
 ^
SyntaxError: invalid syntax

Sum is : 100

Sum is : 100

Sum is : 100

d=eval(input("Enter dictionary:"))
s=sum(d.values())
print("Sum= ",s)

l = [10,20,30,40]
s = sum(l) # sum() function works on list also
print('Sum is : ',s)

l = (10,20,30,40)
s = sum(l) # sum() function works on tuple also
print('Sum is : ',s)

l = {10,20,30,40}
s = sum(l) # sum() function works on set also
print('Sum is : ',s)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 16/18

In [9]:

In [10]:

Q 3. Write a program to find number of occurrences of each vowel present in the given string.

In [11]:

Q 4. Write a program to accept student name and marks from the keyboard and creates a dictionary.
Also display student marks by taking student name as input.

Enter any word: mississippi
m occurred 1 times
i occurred 4 times
s occurred 4 times
p occurred 2 times

Enter any word: mississippi
i occurred 4 times
m occurred 1 times
p occurred 2 times
s occurred 4 times

Enter any word: doganimaldoganimal
a occurred 4 times
i occurred 2 times
o occurred 2 times

word=input("Enter any word: ")
d={}
for x in word:
 d[x]=d.get(x,0)+1 # we are creating dictionary with the given word ====>
for k,v in d.items():
 print(k,"occurred ",v," times")

word=input("Enter any word: ")
d={}
for x in word:
 d[x]=d.get(x,0)+1 # we are creating dictionary with the given word ====>
for k,v in sorted(d.items()): # To sort all the items of the dictionary in alphabetical o
 print(k,"occurred ",v," times")

word=input("Enter any word: ")
vowels={'a','e','i','o','u'}
d={}
for x in word:
 if x in vowels:
 d[x]=d.get(x,0)+1
for k,v in sorted(d.items()):
 print(k,"occurred ",v," times")

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 17/18

In [12]:

7. Dictionary Comprehension
Comprehension concept applicable for dictionaries also.

In [20]:

Enter the number of students: 5
Enter Student Name: Sourav
Enter Student Marks: 90
Enter Student Name: Sachin
Enter Student Marks: 87
Enter Student Name: Rahul
Enter Student Marks: 86
Enter Student Name: Parthiv
Enter Student Marks: 56
Enter Student Name: Robin
Enter Student Marks: 66
Enter Student Name to get Marks: Sourav
The Marks of Sourav are 90
Do you want to find another student marks[Yes|No]Y
Enter Student Name to get Marks: Robin
The Marks of Robin are 66
Do you want to find another student marks[Yes|No]y
Enter Student Name to get Marks: karthi
Student Not Found
Do you want to find another student marks[Yes|No]No
Thanks for using our application

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
{1: 2, 2: 4, 3: 6, 4: 8, 5: 10}

n=int(input("Enter the number of students: "))
d={}
for i in range(n):
 name=input("Enter Student Name: ")
 marks=input("Enter Student Marks: ")
 d[name]=marks # assigninng values to the keys of the dictionary 'd'
while True:
 name=input("Enter Student Name to get Marks: ")
 marks=d.get(name,-1)
 if marks== -1:
 print("Student Not Found")
 else:
 print("The Marks of",name,"are",marks) # print('The marks of {} :{}'.format(name,
 option=input("Do you want to find another student marks[Yes|No]")
 if option=="No":
 break
print("Thanks for using our application")

squares={x:x*x for x in range(1,6)}
print(squares)
doubles={x:2*x for x in range(1,6)}
print(doubles)

08/05/2020 Dictionary Data Type

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Dictionary Data Type.ipynb 18/18

In []:

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 1/39

 UNIT - 6

Functions

Date: 10-05-2020 Day 1

Topics Covered:

1. Introduction

2. Types of Functions

3. Parameters
 i) Types of Parameters

 ii) Return statement

 iii) Returning of mutiple values from a function

4. Types of Variables

5. Recursive Functions

6. Anonymous Functions

7. Function Aliasing

8. Nested Functions

1. Introduction

If a group of statements is repeatedly required then it is not recommended to write these statements everytime
seperately.We have to define these statements as a single unit and we can call that unit any number of times
based on our requirement without rewriting. This unit is nothing but function.

The main advantage of functions is code Reusability.

Note:

In other languages functions are known as methods,procedures,subroutines etc.

Eg :

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 2/39

In [1]:

In [2]:

The Sum : 30
The Difference : 10
The Product : 200

The Sum : 30
The Difference : 10
The Product : 200
The Sum : 300
The Difference : 100
The Product : 20000

a = 20
b = 10
print('The Sum : ', a + b)
print('The Difference : ', a - b)
print('The Product : ', a * b)

a = 20
b = 10
print('The Sum : ', a + b)
print('The Difference : ', a - b)
print('The Product : ', a * b)
a = 200
b = 100
print('The Sum : ', a + b)
print('The Difference : ', a - b)
print('The Product : ', a * b)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 3/39

In [3]:

Here, we written 15 lines of code. What is the problem in this code?

Have you observed that the same code (3 lines) is repeating thrice in the code. Generally we never
recommended to wrtie the group of statements repeatedly in the program.

Problems of writing the same code repeatedly in the program:

1. Length of the program increases.

2. Readability of the program decreases.

3. No Code Reusabilty.

How can you resolve this problem?

We have to define these statements as a single unit and we can call that unit any number of times based
on our requirement without rewriting. This unit is nothing but function.

How can you solve this problem by defining function for the above example?

The Sum : 30
The Difference : 10
The Product : 200
The Sum : 300
The Difference : 100
The Product : 20000
The Sum : 3000
The Difference : 1000
The Product : 2000000

a = 20
b = 10
print('The Sum : ', a + b)
print('The Difference : ', a - b)
print('The Product : ', a * b)
a = 200
b = 100
print('The Sum : ', a + b)
print('The Difference : ', a - b)
print('The Product : ', a * b)
a = 2000
b = 1000
print('The Sum : ', a + b)
print('The Difference : ', a - b)
print('The Product : ', a * b)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 4/39

In [4]:

In [5]:

The Sum : 30
The Difference : 10
The Product : 200

The Sum : 30
The Difference : 10
The Product : 200
The Sum : 300
The Difference : 100
The Product : 20000

def calculate(a,b):
 print('The Sum : ', a + b)
 print('The Difference : ', a - b)
 print('The Product : ', a * b)

a = 20
b = 10
calculate(a,b)

def calculate(a,b):
 print('The Sum : ', a + b)
 print('The Difference : ', a - b)
 print('The Product : ', a * b)

a = 20
b = 10
calculate(a,b)
a = 200
b = 100
calculate(a,b)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 5/39

In [6]:

In [8]:

Note:

We are writing the function once and calling that function 'n' times.

2. Types of Functions
Python supports 2 types of functions:

1. Built in Functions

2. User Defined Functions

The Sum : 30
The Difference : 10
The Product : 200
The Sum : 300
The Difference : 100
The Product : 20000
The Sum : 3000
The Difference : 1000
The Product : 2000000

The Sum : 30
The Difference : 10
The Product : 200
The Sum : 300
The Difference : 100
The Product : 20000
The Sum : 3000
The Difference : 1000
The Product : 2000000

def calculate(a,b):
 print('The Sum : ', a + b)
 print('The Difference : ', a - b) # Function 'calculate()' executes 3 times
 print('The Product : ', a * b)

a = 20
b = 10
calculate(a,b) # Function call
a = 200
b = 100
calculate(a,b)
a = 2000
b = 1000
calculate(a,b)

def calculate(a,b):
 print('The Sum : ', a + b)
 print('The Difference : ', a - b) # Function 'calculate()' executes 3 times
 print('The Product : ', a * b)

calculate(20,10) # Function call
calculate(200,100)
calculate(2000,1000) # Concise code resulted because of code reusabil

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 6/39

1. Built in Functions

The functions which are coming along with Python software automatically,are called built in functions or
pre defined functions.

Eg:

id()

type()

input()

eval() etc..

2. User Defined Functions:

The functions which are developed by programmer explicitly according to business requirements, are
called user defined functions.

Syntax to create user defined functions:

def function_name(parameters) :

Stmt 1

Stmt 2

Stmt n

return value

Note:

While creating functions we can use 2 keywords:

1. def (mandatory)

2. return (optional)

Eg 1: Write a function to print Hello message

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 7/39

In [9]:

3. Parameters:

Parameters are inputs to the function.

If a function contains parameters,then at the time of calling,compulsory we should provide values,otherwise
we will get error.

i. Types of Parameters in Python:
1. Positional Parameters:

In the case of positional arguments, number of arguments must be same.

In the case of positional arguments, order of the arguments is important.

2. Keyword (i.e., Parameter name) Parameters:

In the case of keyword arguments, order of the arguments is not important.

In the case of keyword arguments, number of arguments must be same.

3. Default Parameters:

You can define default value for the arguments.

If you are not passing any argument, then default values by default will be considered.

After default arguments you should not take normal arguments. (i.e., Default arguments you need to take at
last)

4. Variable length Parameters:

Sometimes we can pass variable number of arguments to our function,such type of arguments are called
variable length arguments.

We can declare a variable length argument with * symbol as follows

 def f1(*n):

We can call this function by passing any number of arguments including zero number. Internally all these
values represented in the form of tuple.

Eg: Write a function to take name of the student as input and print wish message by name.

Hello Good Morning
Hello Good Morning
Hello Good Morning

def wish():
 print("Hello Good Morning")
wish()
wish()
wish()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 8/39

In [11]:

Eg: Write a function to take number as input and print its square value.

In [1]:

Date: 10-05-2020 Day 2

ii. return statement

Function can take input values as parameters and executes business logic, and returns output to the caller
with return statement.

Python function can return any number of values at a time by using a return statement.

Default return value of any python function is None.

Eg :

In [3]:

Hello Karthi Good Morning
Hello Sahasra Good Morning

The Square of 4 is 16
The Square of 5 is 25
The Square of 7 is 49

hello

def wish(name):
 print("Hello",name," Good Morning")

wish("Karthi")
wish("Sahasra")

def squareIt(number):
 print("The Square of",number,"is", number*number)
squareIt(4)
squareIt(5)
squareIt(7)

def wish():
 print('hello')
#print(wish())
wish()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 9/39

In [4]:

Simple Example Programs:

Q 1. Write a function to accept 2 numbers as input and return sum.

In [43]:

Note : If we are not writing return statement then default return value is None.

Eg :

In [44]:

Q 2. Write a function to check whether the given number is even or odd?

In [45]:

Q 3. Write a function to find factorial of given number.

hello
None

The sum is 30
The sum is 300

Hello
Hello
None

10 is Even Number
15 is Odd Number

def wish():
 print('hello')
print(wish())
#wish()

def add(x,y):
 return x+y
result=add(10,20)
print("The sum is",result)
print("The sum is",add(100,200))

def f1():
 print("Hello")
f1()
print(f1())

def even_odd(num):
 if num%2==0:
 print(num,"is Even Number")
 else:
 print(num,"is Odd Number")
even_odd(10)
even_odd(15)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 10/39

In [47]:

iii. Returning multiple values from a function:
In other languages like C,C++ and Java, function can return atmost one value. But in Python, a function
can return any number of values.

Eg : Python program to return multiple values at a time using a return statement.

In [6]:

Alternate Way :

In [7]:

The Factorial of 1 is : 1
The Factorial of 2 is : 2
The Factorial of 3 is : 6
The Factorial of 4 is : 24

150 50 5000 2.0

150
50
5000
2.0

def fact(num):
 result=1
 while num>=1:
 result=result*num
 num=num-1
 return result
for i in range(1,5):
 print("The Factorial of",i,"is :",fact(i))

def calc(a,b): # Here, 'a' & 'b' are called positional arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

a,b,c,d = calc(100,50) # Positional arguments
print(a,b,c,d)

def calc(a,b): # Positional Arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

t = calc(100,50)
for x in t:
 print(x)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 11/39

In [8]:

In [9]:

Some more examples on keyword arguments

In [10]:

150
50
5000
2.0

150
50
5000
2.0

150
50
5000
2.0

def calc(a,b): # keyword arguments Arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

t = calc(a = 100, b = 50) # keyword arguments Arguments
for x in t:
 print(x)

def calc(a,b): # keyword arguments Arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

t = calc(b = 50, a = 100) # keyword arguments Arguments
for x in t:
 print(x)

def calc(a,b): # keyword arguments Arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

t = calc(100, b = 50) # It is perfectly valid
for x in t:
 print(x)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 12/39

In [12]:

In [13]:

Another Example:

In [11]:

 File "<ipython-input-12-66d17e37e83f>", line 8
 t = calc(b = 50, 100) # It is invalid, because positional argum
ent should follow keyword argument
 ^
SyntaxError: positional argument follows keyword argument

TypeError Traceback (most recent call last)
<ipython-input-13-b7af0ee55c3b> in <module>
 6 return sum,sub,mul,div
 7
----> 8 t = calc(50, a = 50) # It is also invalid
 9 for x in t:
 10 print(x)

TypeError: calc() got multiple values for argument 'a'

Hello Karthi Good Morning
Hello Karthi Good Morning

def calc(a,b): # keyword arguments Arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

t = calc(b = 50, 100) # It is invalid, because positional argument should follow k
for x in t: # first keyword argument then possitional argument is not all
 print(x)

def calc(a,b): # keyword arguments Arguments
 sum = a + b
 sub = a - b
 mul = a * b
 div = a / b
 return sum,sub,mul,div

t = calc(50, a = 50) # It is also invalid
for x in t:
 print(x)

def wish(name,msg):
 print('Hello',name,msg)

wish(name = 'Karthi',msg = 'Good Morning') #order is not important, but no.of arguments is
wish(msg = 'Good Morning',name = 'Karthi')

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 13/39

Eg : Program on default parameters.

In [15]:

In [13]:

In [12]:

In [14]:

Note:

You can give any number of default arguments.

Eg :

 File "<ipython-input-15-1e1d7a3c73c0>", line 1
 def wish(name ='Guest',msg): # After default argument, we should
 not take non-default argument
 ^
SyntaxError: non-default argument follows default argument

Hello Karthi

Hello Guest

TypeError Traceback (most recent call last)
<ipython-input-14-993af2d34958> in <module>
 2 print(msg,name)
 3
----> 4 wish()

TypeError: wish() missing 1 required positional argument: 'msg'

def wish(name ='Guest',msg): # After default argument, we should not take non-defaul
 print('Hello',name,msg)

def wish(msg,name ='Guest'):
 print(msg,name)

wish('Hello','Karthi')

def wish(msg,name ='Guest'):
 print(msg,name)

wish('Hello')

def wish(msg,name ='Guest'):
 print(msg,name)

wish()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 14/39

In [18]:

Eg :

In [20]:

In [21]:

In [25]:

Hello Guest Good Morning

Student Name: Karthi
Student Age: 48
Student Marks: 99
Message: Good Morning

Student Name: Guest
Student Age: 48
Student Marks: 100
Message: Good Morning

Student Name: Karthi
Student Age: 46
Student Marks: 100
Message: Bad Morning

def wish(name ='Guest',msg='Good Morning'):
 print('Hello',name,msg)

wish()

def wish(marks,age,name = 'Guest', msg = 'Good Morning'):
 print('Student Name:',name)
 print('Student Age:',age)
 print('Student Marks:',marks)
 print('Message:',msg)

wish(99,48,'Karthi') # Valid

def wish(marks,age,name = 'Guest', msg = 'Good Morning'):
 print('Student Name:',name)
 print('Student Age:',age)
 print('Student Marks:',marks)
 print('Message:',msg)

wish(age=48,marks = 100) # valid

def wish(marks,age,name = 'Guest', msg = 'Good Morning'):
 print('Student Name:',name)
 print('Student Age:',age)
 print('Student Marks:',marks)
 print('Message:',msg)

wish(100,age=46,msg='Bad Morning',name='Karthi') # valid

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 15/39

In [24]:

In [26]:

Eg : Program on variable length parameters.

In [23]:

Now it is working correctly. After some time my requiremnet is as follows:

sum(10,20,30)

 File "<ipython-input-24-2c5c0c3096c5>", line 7
 wish(marks=100,46,msg='Bad Morning',name = 'Karthi') # valid
 ^
SyntaxError: positional argument follows keyword argument

TypeError Traceback (most recent call last)
<ipython-input-26-e767702586d4> in <module>
 5 print('Message:',msg)
 6
----> 7 wish(46,marks=100,msg='Bad Morning',name = 'Karthi') # invalid

TypeError: wish() got multiple values for argument 'marks'

30

def wish(marks,age,name = 'Guest', msg = 'Good Morning'):
 print('Student Name:',name)
 print('Student Age:',age)
 print('Student Marks:',marks)
 print('Message:',msg)

wish(marks=100,46,msg='Bad Morning',name = 'Karthi') # invalid, You must specify age also

def wish(marks,age,name = 'Guest', msg = 'Good Morning'):
 print('Student Name:',name)
 print('Student Age:',age)
 print('Student Marks:',marks)
 print('Message:',msg)

wish(46,marks=100,msg='Bad Morning',name = 'Karthi') # invalid

def sum(a,b):
 print(a+b)
sum(10,20)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 16/39

In [24]:

In [25]:

Now it is working correctly. After some time my requiremnet is as follows:

sum(10,20,30,40)

In [26]:

Once again the same problem. we should go for another sum() function.

In [27]:

If you change the number of arguments, then automatically for every change, compusorily we need to go for
new function unnecessarily. Because of this length of the code is going to increase.

To overcome this problem we should go for variable length arguments.

TypeError Traceback (most recent call last)
<ipython-input-24-2918cd889583> in <module>
 1 def sum(a,b):
 2 print(a+b)
----> 3 sum(10,20,30)

TypeError: sum() takes 2 positional arguments but 3 were given

60

TypeError Traceback (most recent call last)
<ipython-input-26-b7625a84ded9> in <module>
 1 def sum(a,b,c):
 2 print(a+b+c)
----> 3 sum(10,20,30,40)

TypeError: sum() takes 3 positional arguments but 4 were given

100

def sum(a,b):
 print(a+b) # This sum() function we can't use for the new requirement.
sum(10,20,30)

def sum(a,b,c):
 print(a+b+c) # we have to go for another sum() function
sum(10,20,30)

def sum(a,b,c):
 print(a+b+c)
sum(10,20,30,40)

def sum(a,b,c,d):
 print(a+b+c+d) # we have to go for another sum() function
sum(10,20,30,40)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 17/39

o o e co e t s p ob e e s ou d go o a ab e e gt a gu e ts

In [29]:

In [30]:

In [31]:

In [32]:

In [33]:

100

60

30

10

0

def sum(*n): # Here, 'n' is a variable length argument. actually variable l
 result =0
 for x in n:
 result = result + x
 print(result)
sum(10,20,30,40)

def sum(*n): # Here, 'n' is a variable length argument. actually variable l
 result =0
 for x in n:
 result = result + x
 print(result)
sum(10,20,30)

def sum(*n): # Here, 'n' is a variable length argument. actually variable l
 result =0
 for x in n:
 result = result + x
 print(result)
sum(10,20)

def sum(*n): # Here, 'n' is a variable length argument. actually variable l
 result =0
 for x in n:
 result = result + x
 print(result)
sum(10)

def sum(*n): # Here, 'n' is a variable length argument. actually variable l
 result =0
 for x in n:
 result = result + x
 print(result)
sum()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 18/39

In [35]:

Note : Same function is used for variable number of arguments.

Key Point 1:

We can mix variable length arguments with positional arguments.

You can take positional arguments and variable length arguments simultaneously.

In [38]:

Note:

Rule : After variable length argumenst,if we are taking any other arguments then we should provide values
as keyword arguments.

The Sum is : 100
The Sum is : 60
The Sum is : 30
The Sum is : 10
The Sum is : 0

The Sum by Robin : 100
The Sum by Rahul : 60
The Sum by Sachin : 30
The Sum by Sourav : 10
The Sum by Karthi : 0

def sum(*n): # Here, 'n' is a variable length argument. actually variable l
 result =0
 for x in n:
 result = result + x
 print('The Sum is : ', result)
sum(10,20,30,40)
sum(10,20,30)
sum(10,20)
sum(10)
sum()

def sum(name,*n):
 result =0
 for x in n:
 result = result + x
 print("The Sum by", name, ": ", result)
sum('Robin',10,20,30,40)
sum('Rahul',10,20,30)
sum('Sachin',10,20)
sum('Sourav',10)
sum('Karthi')

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 19/39

In [39]:

In [40]:

TypeError Traceback (most recent call last)
<ipython-input-39-b8733ebba999> in <module>
 4 result = result + x
 5 print("The Sum by", name, ": ", result)
----> 6 sum('Robin',10,20,30,40)
 7 sum('Rahul',10,20,30)
 8 sum('Sachin',10,20)

TypeError: sum() missing 1 required keyword-only argument: 'name'

 File "<ipython-input-40-19134896e44a>", line 6
 sum(name = 'Robin',10,20,30,40)
 ^
SyntaxError: positional argument follows keyword argument

def sum(*n,name):
 result =0
 for x in n:
 result = result + x
 print("The Sum by", name, ": ", result)
sum('Robin',10,20,30,40)
sum('Rahul',10,20,30)
sum('Sachin',10,20)
sum('Sourav',10)
sum('Karthi')

def sum(*n,name):
 result =0
 for x in n:
 result = result + x
 print("The Sum by", name, ": ", result)
sum(name = 'Robin',10,20,30,40)
sum(name = 'Rahul',10,20,30)
sum(name = 'Sachin',10,20)
sum(name = 'Sourav',10)
sum(name ='Karthi')

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 20/39

In [41]:

Another Example:

In [48]:

Conclusion :

After variable length arguments, if you are taking any other argument, then we have to provide values as
key word arguments only.

If you pass first normal argument and then variable arguments, then there is no rule to follow. It works
correctly.

Key Point 2:

Keyword variable length arguments :

Now, Suppose if we want to pass any number of keyword arguments to a function, compulsorily we have to
identify the difference with the above case (i.e., Passing of any number of positional arguments).

We can declare key word variable length arguments also. For this we have to use **.

The Sum by Robin : 100
The Sum by Rahul : 60
The Sum by Sachin : 30
The Sum by Sourav : 10
The Sum by Karthi : 0

10
10
20
30
40
10
A
30
B

def sum(*n,name):
 result =0
 for x in n:
 result = result + x
 print("The Sum by", name, ": ", result)
sum(10,20,30,40,name = 'Robin')
sum(10,20,30,name = 'Rahul')
sum(10,20,name = 'Sachin')
sum(10,name = 'Sourav')
sum(name ='Karthi')

def f1(n1,*s):
 print(n1)
 for s1 in s:
 print(s1)

f1(10)
f1(10,20,30,40)
f1(10,"A",30,"B")

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 21/39

e ca dec a e ey o d a ab e e gt a gu e ts a so o t s e a e to use
We can call this function by passing any number of keyword arguments. Internally these keyword
arguments will be stored inside a dictionary.

Eg :

In [42]:

Case Study

In [6]:

Note:

Function vs Module vs Package vs Library:

1. A group of lines with some name is called a function.

n1 = 10
n2 = 20
n3 = 30
rno = 100
name = Karthi
marks = 70
subject = Python

3 2 4 8
10 20 30 40
25 50 4 100
3 4 4 2

def display(**kwargs):
 for k,v in kwargs.items():
 print(k,"=",v)
display(n1=10,n2=20,n3=30)
display(rno=100,name="Karthi",marks=70,subject="Python")

def f(arg1,arg2,arg3=4,arg4=8):
 print(arg1,arg2,arg3,arg4)

f(3,2) #3 2 4 8

f(10,20,30,40) # 10,20,30,40

f(25,50,arg4=100) # 25 50 4 100

f(arg4=2,arg1=3,arg2=4) # 3 4 4 2

#f() # TypeError: f() missing 2 required positional arguments: 'arg1' and 'arg2'

#f(arg3=10,arg4=20,30,40) SyntaxError: positional argument follows keyword argument

#f(4,5,arg2=6) #TypeError: f() got multiple values for argument 'arg2'

#f(4,5,arg3=5,arg5=6) #TypeError: f() got an unexpected keyword argument 'arg5'

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 22/39

2. A group of functions saved to a file , is called Module.

3. A group of Modules is nothing but Package.

4. A group of related packages is nothing but Library.

4. Types of Variables:

Python supports 2 types of variables.

1. Global Variables

2. Local Variables

1. Global Variables

The variables which are declared outside of function are called global variables.

These variables can be accessed in all functions of that module.

Consider the following example,

In [1]:

Suppose our requirement is, we don't want local variable. Can you please refer the local variable as the global

20
10

a = 10 # Global Variables

def f1():
 a = 20 # Local variable to the function 'f1'
 print(a) # 20

def f2():
 print(a) # 10

f1()
f2()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 23/39

variable only. How you can do that?

For that, one special keyword is used, called as global.

global keyword:

We can use global keyword for the following 2 purposes:

1. To declare global variables explicitly inside function.

2. To make global variable available to the function so that we can perform required modifications.

Eg 1:

In [2]:

Eg 2:

In [3]:

Eg 3:

777
10

777
777

a=10
def f1():
 a=777
 print(a)
def f2():
 print(a)
f1()
f2()

a=10
def f1():
 global a # To bring global variable to the function for required modi
 a=777 # we are changing the value of the local variable
 print(a)
def f2():
 print(a)
f1()
f2()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 24/39

In [6]:

Here, if you make x of f1() as a global variable, problem will be solved. How can you make 'x' as global
variable?

Eg 4:

In [7]:

10

NameError Traceback (most recent call last)
<ipython-input-6-949ab59188a5> in <module>
 7
 8 f1()
----> 9 f2()

<ipython-input-6-949ab59188a5> in f2()
 4
 5 def f2():

----> 6 print(x) # local variable of 'f1()' can not accessed by functi
on 'f2()'
 7
 8 f1()

NameError: name 'x' is not defined

10
10

def f1():
 x = 10 # local variable of 'f1()'
 print(x)

def f2():
 print(x) # local variable of 'f1()' can not accessed by function 'f2()'

f1()
f2()

def f1():
 global x
 x=10
 print(x)
def f2():
 print(x)
f1()
f2()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 25/39

In [27]:

In [8]:

Another Example :

In [31]:

10
10

 File "<ipython-input-8-c080f0bbb9d1>", line 2
 global x = 10 # This syntax is invalid in Python
 ^
SyntaxError: invalid syntax

f1 : 888
f2 : 999

def f1():
 global x
 x=10
 print(x)
def f2():
 print(x)
f2()
f1()

def f1():
 global x = 10 # This syntax is invalid in Python
 print(x)
def f2():
 print(x)
f1()
f2()

def f1():
 global a
 a = 888
 print('f1 :',a)
def f2():
 global a
 a=999 # global variable 'a' is overrides the old value.
 print('f2 :',a)
f1()
f2()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 26/39

In [33]:

In [35]:

In [36]:

f1 : 888
f2 : 999
f3 : 999

f3 : 888
f1 : 888
f2 : 999

f3 : 999
f2 : 999
f1 : 888

def f1():
 global a
 a = 888
 print('f1 :',a)
def f2():
 global a
 a=999
 print('f2 :',a)
def f3():
 print('f3 :',a)
f1()
f2()
f3()

def f1():
 global a
 a = 888
 print('f1 :',a)
def f2():
 global a
 a=999
 print('f2 :',a)
def f3():
 print('f3 :',a)
f3()
f1()
f2()

def f1():
 global a
 a = 888
 print('f1 :',a)
def f2():
 global a
 a=999
 print('f2 :',a)
def f3():
 print('f3 :',a)
f3()
f2()
f1()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 27/39

In [37]:

Another Example :

In []:

Note:

If global variable and local variable having the same name, then we can access global variable inside a
function using globals() function.

Eg :

In [38]:

f3 : 1000
f2 : 999
f1 : 888

777

def f1():
 global a
 a = 888
 print('f1 :',a)
def f2():
 global a
 a=999
 print('f2 :',a)
def f3():
 a = 1000
 print('f3 :',a)
f3()
f2()
f1()

def f1():
 global a
 a = 888 # global variable 'a' is overrides the old value.
 print('f1 :',a)
def f2():
 global a
 a=999
 print('f2 :',a)
f2()
f1()

a=10 #global variable
def f1():
 a=777 #local variable
 print(a)
 #
f1()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 28/39

In [40]:

Another Example :

In [41]:

In [42]:

5. Recursive Functions

A function that calls itself is known as Recursive Function.

Eg:

factorial(3)=3*factorial(2)

777
10

 File "<ipython-input-41-9834772fedac>", line 6
 f1()

^
SyntaxError: name 'a' is assigned to before global declaration

50

a=10 #global variable
def f1():
 a=777 #local variable
 print(a)
 print(globals()['a']) # globals() function cosisiting all global members related
f1() # here, 'a' is the key value.

def f1():
 a = 10 # SyntaxError: name 'a' is assigned to before global declaration
 global a
 a = 50
 print(a)
f1()

def f1():
 global a
 a = 10
 a = 50
 print(a)
f1()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 29/39

 =3*2*factorial(1)

 =3*2*1*factorial(0)

 =3*2*1*1 =6

factorial(n)= n*factorial(n-1)

The main advantages of recursive functions are:

1. We can reduce length of the code and improves readability.

2. We can solve complex problems very easily. For example, Towers of Hanoi, Ackerman's Problem etc.,

Q 1. Write a Python Function to find factorial of given number with recursion.

In [45]:

6. Anonymous Functions

Sometimes we can declare a function without any name,such type of nameless functions are called
anonymous functions or lambda functions.

The main purpose of anonymous function is just for instant use(i.e., for one time usage) (Eg: Alone train
journey).

Normal Function:

We can define by using def keyword.

def squareIt(n):

return n*n

Factorial of 0 is : 1
Factorial of 4 is : 24
Factorial of 5 is : 120
Factorial of 40 is : 815915283247897734345611269596115894272000000000

def factorial(n):
 if n==0:
 result=1
 else:
 result=n*factorial(n-1)
 return result

print("Factorial of 0 is :",factorial(0))
print("Factorial of 4 is :",factorial(4))
print("Factorial of 5 is :",factorial(5))
print("Factorial of 40 is :",factorial(40))

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 30/39

lambda Function:

We can define by using lambda keyword

lambda n:n*n

Syntax of lambda Function:

lambda argument_list : expression

Note:

By using Lambda Functions we can write very concise code so that readability of the program will be
improved.

Q. Write a program to create a lambda function to find square of given number.

In [46]:

Q 2. Write a program to create a Lambda function to find sum of 2 given numbers.

In [48]:

Q 3.Write a program to create a Lambda Function to find biggest of given values.

In [49]:

Note:

Lambda Function internally returns expression value and we are not required to write return statement
explicitly.

The Square of 4 is : 16
The Square of 5 is : 25

The Sum of 10,20 is: 30
The Sum of 100,200 is: 300

The Biggest of 10,20 is: 20
The Biggest of 100,200 is: 200

s=lambda n:n*n
print("The Square of 4 is :",s(4))
print("The Square of 5 is :",s(5))

s=lambda a,b:a+b
print("The Sum of 10,20 is:",s(10,20))
print("The Sum of 100,200 is:",s(100,200))

s=lambda a,b:a if a>b else b
print("The Biggest of 10,20 is:",s(10,20))
print("The Biggest of 100,200 is:",s(100,200))

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 31/39

Sometimes we can pass a function as argument to another function. In such cases lambda functions
are best choice.

We can use lambda functions very commonly with filter(),map() and reduce() functions,because these
functions expect function as argument.

1. filter() function:

We can use filter() function to filter values from the given sequence based on some condition.

For example, we have 20 numbers and if we want to retrieve only even numbers from them.

Syntax:

filter(function,sequence)

Where,

function argument is responsible to perform conditional check.

sequence can be list or tuple or string.

Q 1. Program to filter only even numbers from the list by using filter() function.

Without lambda Function:

In [50]:

With lambda Function:

In [51]:

[0, 10, 20, 30]

[0, 10, 20, 30]
[5, 15, 25]

def isEven(x):
 if x%2==0:
 return True
 else:
 return False
l=[0,5,10,15,20,25,30]
l1=list(filter(isEven,l))
print(l1) #[0,10,20,30]

l=[0,5,10,15,20,25,30]
l1=list(filter(lambda x:x%2==0,l))
print(l1) #[0,10,20,30]
l2=list(filter(lambda x:x%2!=0,l))
print(l2) #[5,15,25]

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 32/39

2. map() function:
For every element present in the given sequence,apply some functionality and generate new
element with the required modification. For this requirement we should go for map() function.

Syntax:

map(function,sequence)

The function can be applied on each element of sequence and generates new sequence.

Eg 1: For every element present in the list perform double and generate new list of doubles.

Without lambda

In [52]:

With lambda

In [53]:

Eg 2: Find square of given numbers using map() function.

In [54]:

We can apply map() function on multiple lists also.But make sure all list should have same length.

Syntax:

map(lambda x,y:x*y,l1,l2))

x is from l1 and y is from l2

[2, 4, 6, 8, 10]

[2, 4, 6, 8, 10]

[1, 4, 9, 16, 25]

l=[1,2,3,4,5]
def doubleIt(x):
 return 2*x

l1=list(map(doubleIt,l))
print(l1) #[2, 4, 6, 8, 10]

l=[1,2,3,4,5]
l1=list(map(lambda x:2*x,l))
print(l1) #[2, 4, 6, 8, 10]

l=[1,2,3,4,5]
l1=list(map(lambda x:x*x,l))
print(l1) #[1, 4, 9, 16, 25]

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 33/39

Eg :

In [55]:

In [1]:

Date: 11-05-2020 Day 2

3. reduce() function:

reduce() function reduces sequence of elements into a single element by applying the specified
function.

Syntax:

reduce(function,sequence)

Note :

reduce() function present in functools module and hence we should write import statement.

Eg 1:

In [56]:

In [9]:

Eg 2:

[2, 6, 12, 20]

[2, 6, 12, 20]

150

150

l1=[1,2,3,4]
l2=[2,3,4,5]
l3=list(map(lambda x,y:x*y,l1,l2))
print(l3) #[2, 6, 12, 20]

l1=[1,2,3,4,5,6,7] # The extra elements will be ignored
l2=[2,3,4,5]
l3=list(map(lambda x,y:x*y,l1,l2))
print(l3) #[2, 6, 12, 20]

from functools import *
l=[10,20,30,40,50]
result=reduce(lambda x,y:x+y,l)
print(result) # 150

from functools import *
l=sum([10,20,30,40,50])
result=reduce(lambda x,y:x*y,l)
print(l) #150

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 34/39

In [2]:

Eg 3:

In [3]:

Note:

In Python every thing is treated as object. (Except keywords).

Even functions also internally treated as objects only.

Eg :

In [12]:

7. Function Aliasing:

For the existing function we can give another name, which is nothing but function aliasing.

Eg :

12000000

5050

<function f1 at 0x000001697E535598>
1552602584472
1552519043040
1552519042104

from functools import *
l=[10,20,30,40,50]
result=reduce(lambda x,y:x*y,l)
print(result) #12000000

from functools import *
result=reduce(lambda x,y:x+y,range(1,101))
print(result) #5050

def f1():
 print("Hello")

print(f1)
print(id(f1))
print(id(print)) # print is also an object
print(id(id)) # id is also an object

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 35/39

In [5]:

Note:

In the above example only one function is available but we can call that function by using either wish name
or greeting name.

If we delete one name still we can access that function by using alias name.

Eg :

In [6]:

1552601886504
1552601886504
Good Morning: Karthi
Good Morning: Karthi

Good Morning: Karthi
Good Morning: Karthi

NameError Traceback (most recent call last)
<ipython-input-6-f292fb57f669> in <module>
 8
 9 del wish
---> 10 wish('Karthi') #NameError: name 'wish' is not defined
 11 greeting('Saha')

NameError: name 'wish' is not defined

def wish(name):
 print("Good Morning:",name)

greeting = wish
print(id(wish))
print(id(greeting))

greeting('Karthi')
wish('Karthi')

def wish(name):
 print("Good Morning:",name)

greeting=wish

greeting('Karthi')
wish('Karthi')

del wish
wish('Karthi') #NameError: name 'wish' is not defined
greeting('Saha')

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 36/39

In [14]:

8. Nested Functions

We can declare a function inside another function, such type of functions are called Nested functions.

**Where we have this type of requirement?

 If a group of statements inside a function are repeatedly requires, then these
group of statements we will define as inner function and we can call this inner fu
nction whenever need arises.

Eg :

In [15]:

Good Morning: Karthi
Good Morning: Karthi
Good Morning: Karthi
Good Morning: Saha

outer function started
outer function calling inner function
inner function execution

def wish(name):
 print("Good Morning:",name)

greeting=wish
rgm = greeting
greeting('Karthi')
wish('Karthi')
rgm('Karthi')

del wish
#wish('Karthi') #NameError: name 'wish' is not defined
greeting('Saha')

def outer():
 print("outer function started")
 def inner():
 print("inner function execution") # It is function declaration
 print("outer function calling inner function")
 inner() # It is a function call
outer()
#inner() ==>NameError: name 'inner' is not defined

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 37/39

In [16]:

In the above example inner() function is local to outer() function and hence it is not possible to call inner()
function directly from outside of outer() function.

Another Example :

In [17]:

Is it possible to pass a function as an argument to another function?

Yes, a function can take another function as an argument.

For example,

outer function started
outer function calling inner function
inner function execution

NameError Traceback (most recent call last)
<ipython-input-16-63fb5b235d22> in <module>
 6 inner()
 7 outer()
----> 8 inner() #NameError: name 'inner' is not defined

NameError: name 'inner' is not defined

The Sum : 30
The Average : 15.0
The Sum : 50
The Average : 25.0
The Sum : 90
The Average : 45.0
The Sum : 300
The Average : 150.0

def outer():
 print("outer function started")
 def inner():
 print("inner function execution")
 print("outer function calling inner function")
 inner()
outer()
inner() #NameError: name 'inner' is not defined

def f1():
 def inner(a,b):
 print('The Sum :',a+b)
 print('The Average :',(a+b)/2)
 inner(10,20)
 inner(20,30)
 inner(40,50)
 inner(100,200)
f1()

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 38/39

filter(function,Sequence)

map(function,Sequence)

reduce(function,Sequence)

Note:

A function can return another function.

In [13]:

In [10]:

Q. What is the differenece between the following lines?

outer function started
1581911874824
outer function returning inner function
1581911874824
<class 'function'>
inner function execution
inner function execution
inner function execution

outer function started
outer function returning inner function
inner function execution
None

def outer():
 print("outer function started")
 def inner():
 print("inner function execution")
 print(id(inner))
 print("outer function returning inner function")
 return inner

f1=outer() # f1 is pointingto inner function.
print(id(f1))
print(type(f1))
f1() # Now directly 'inner()' function is calling
f1()
f1()

def outer():
 print("outer function started")
 def inner():
 print("inner function execution")
 print("outer function returning inner function")
 return inner() # inner() is not returning anything, so you will get 'None'

f1=outer() # f1 is pointingto inner function.
print(f1)

11/05/2020 Functions

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Functions .ipynb 39/39

f1 = outer

f1 = outer()

In the first case for the outer() function we are providing another name f1(function aliasing).

But in the second case we calling outer() function,which returns inner() function. For that inner() function
we are providing another name 'f1'.

In []:

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 1/25

Modules

Date: 15-05-2020 Day 1

1. Introduction

A group of functions, variables and classes saved to a file, which is nothing but module.

Every Python file (.py) acts as a module.

Eg:

In [1]:

Let me save this code as rgm.py, and itself is a module.

rgm.py module contains two variables and 2 functions.

If we want to use members of module in our program then we should import that module.

Syntax of importing a module

import modulename

We can access members by using module name.

modulename.variable

modulename.function()

In []:

Output

888

x = 888
y = 999

def add(a,b): # Use Editplus editor
 print('The Sum : ',a+b)

def product(a,b):
 print('The produc :', a*b)

import rgm
print(rgm.x)
rgm.add(10,20) # Executed in Editplus editor
rgm.product(10,20)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 2/25

The Sum : 30

The Product : 200

Note:

Whenever we are using a module in our program, for that module compiled file will be generated and
stored in the hard disk permanently.This is avaialble at _ _ pycache_ _ file, which is available at current
working directory.

2.Advantages of Modules

1. Code Reusability

2. Readability improved

3. Maintainability improved

3. Renaming a module at the time of import (module aliasing):

We can create alias name for a module. This can be done as follows:

import rgm as r

Here, rgm is original module name and r** is alias name. We can access members by using alias name **r.

Eg:

In []:

Output

888

The Sum : 30

The Product : 200

Eg :

In []:

import rgm as r
print(r.x)
r.add(10,20) # Executed in Editplus editor
r.product(10,20)

import rgm as r
print(rgm.x)
rgm.add(10,20) # Executed in Editplus editor
rgm.product(10,20)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 3/25

Output

Traceback (most recent call last):

File "test.py", line 2, in

print(rgm.x)

NameError: name 'rgm' is not defined

Note:

Once we define alias name for a module, compulsory you should use alias name only. original names by default
will be gone related to that particular file.

4. from ... import

We can import particular members of module by using from ... import.

The main advantage of this is we can access members directly without using module name.

Eg :

In []:

Output

888

The Sum : 30

Traceback (most recent call last):

File "test.py", line 4, in

product(10,20)

NameError: name 'product' is not defined

We can import all members of a module as follows

from rgm import

Eg :

from rgm import x,add
print(x)
add(10,20) # Executed in Editplus editor
product(10,20)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 4/25

In []:

Output

888

The Sum : 30

The Product : 200

5. member aliasing

Similar to module aliasing, member aliasing also possible in python. This can be done as follows:

from rgm import x as y,add as sum

print(y)

sum(10,20)

Note: Once we defined as alias name,we should use alias name only and we should not use original
name.

Eg:

In []:

Output

Traceback (most recent call last):

File "test.py", line 2, in

print(x)

NameError: name 'x' is not defined

6. Various possibilties of import

import modulename

import module1,module2,module3

import module1 as m

import module1 as m1,module2 as m2,module3

from rgm import *
print(x)
add(10,20) # Executed in Editplus editor
product(10,20)

from rgm import x as y
print(x)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 5/25

p
from module import member

from module import member1,member2,memebr3

from module import memeber1 as x

from module import *

Date: 16-05-2020 Day 2

7. Reloading a Module

By default, module will be loaded only once eventhough we are importing multiple times.

Demo Program for module reloading:

Assume that we created a module named as module1.py.

In []:

Now, we want to use module1.py in another module test.py.

In []:

Output

This is from module 1

This is Test Module

In []:

Output

print('This is from module 1')

import module1
import module1
import module1
import module1
import module1
import module1
print('This is Test Module') # Executed in Editplus editor

import module1
'''import module1
import module1
import module1
import module1
import module1'''

print('This is Test Module') # Executed in Editplus editor

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 6/25

This is from module 1

This is Test Module

In the above program test module will be loaded only once eventhough we are importing multiple times.

The problem in this approach is after loading a module if it is updated outside then updated version of module1
is not available to our program.

In []:

Output

This is from module 1

Program entering into sleeping mode

 # After 30 seconds

This is last line of program # Updated version is not available.

We can solve this problem by reloading module explicitly based on our requirement. We can reload by using
reload() function of imp module.

import importlib

importlib.reload(module1)

In []:

Output

import time
import module1 # importing original version of module1
print("Program entering into sleeping state ")
time.sleep(30) # during this time we want to modify something to module1
import module 1 # After 30 seconds we are importing module1, is it going to import updated
print("This is last line of program") # Executed in Editplus editor

import time
from importlib import reload
import module1
print("program entering into sleeping state")
time.sleep(30) # It is not mandatory
reload(module1)
print("This is last line of program") # Executed in Editplus editor

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 7/25

In []:

Note: In the above program, everytime updated version of module1 will be available to our program

The main advantage of explicit module reloading is we can ensure that updated version is always
available to our program.

8. Finding members of module by using 'dir()' function

Python provides inbuilt function dir() to list out all members of current module or a specified module.

dir() ===>To list out all members of current module

dir(moduleName)==>To list out all members of specified module

Eg 1: To display members of current module

In [1]:

Eg 2: To display members of particular module

Consider rgm.py module,

['In', 'Out', '_', '__', '___', '__builtin__', '__builtins__', '__doc__', '_
_loader__', '__name__', '__package__', '__spec__', '_dh', '_i', '_i1', '_i
h', '_ii', '_iii', '_oh', 'exit', 'f1', 'get_ipython', 'quit', 'x', 'y']

This is from module 1 # original version of module1

Program entering into sleeping mode
 # After 30 seconds

This is from updated module 1 # during this time module1 is updated (i.e

This is last line of program # Updated version of module1 is now availa

x=10
y=20
def f1():
 print("Hello")
print(dir()) # To print all members of current module

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 8/25

In []:

import rgm module in another module, called as test.py,

In []:

Output

['builtins', 'cached', 'doc', 'file', 'loader', 'name', 'package', 'spec', 'add', 'product', 'x', 'y']

Note:

For every module at the time of execution Python interpreter will add some special properties automatically
for internal use.

Eg: _ builtins ,_ _cached ,' doc ,_ _file , _ _loader , _ _name ,_ _package , _ _spec _

Based on our requirement we can access these properties also in our program.

In []:

Output

<module 'builtins' (built-in)>

None

None

test.py

<frozenimportlib_external.SourceFileLoader object at 0x000001C8488D2640>

main

x = 888
y = 999

def add(a,b):
 print('The Sum :',a+b)

def product(a,b):
 print('The Product :',a*b)

import rgm
print(dir(rgm))

print(__builtins__)
print(__cached__)
print(__doc__)
print(__file__)
print(__loader__)
print(__name__)
print(__package__)
print(__spec__)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 9/25

None

None

9. The Special variable '_ name _'

For every Python program , a special variable _ name_ will be added internally. This variable stores
information regarding whether the program is executed as an individual program or as a module.

If the program executed as an individual program then the value of this variable is _ main_.

If the program executed as a module from some other program then the value of this variable is the name
of module where it is defined.

Hence by using this _ name_ variable we can identify whether the program executed directly or as a
module.

Demo program:

module1.py

In [2]:

test.py

In []:

Output

The code executed indirectly as a module from some other program

The value of name: module1

From test we are executing module f1()

The code executed indirectly as a module from some other program

The value of name: module1

The code executed directly as a program
The value of __name__: __main__

def f1():
 if __name__=='__main__':
 print("The code executed directly as a program")
 print("The value of __name__:",__name__)
 else:
 print("The code executed indirectly as a module from some other program")
 print("The value of __name__:",__name__)
f1()

import module1
print("From test we are executing module f1()")
module1.f1() # Executed in Editplus editor

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 10/25

10.Working with math module

Python provides inbuilt module math.

This module defines several functions which can be used for mathematical operations.

The main important functions are:

1. sqrt(x)

2. ceil(x)

3. floor(x)

4. fabs(x)

5. log(x)

6. sin(x)

7. tan(x)

Eg :

In [6]:

Note:

We can find help for any module by using help() function.

Eg:

2.0
11
10
10.6
10.6

from math import *
print(sqrt(4))
print(ceil(10.1))
print(floor(10.1))
print(fabs(-10.6)) # Ignore sign, consider only value fabs ---> float absolute fu
print(fabs(10.6)) # Ignore sign, consider only value

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 11/25

In [5]:

Help on built-in module math:

NAME
 math

DESCRIPTION
 This module is always available. It provides access to the
 mathematical functions defined by the C standard.

FUNCTIONS
 acos(x, /)
 Return the arc cosine (measured in radians) of x.

 acosh(x, /)
 Return the inverse hyperbolic cosine of x.

 asin(x, /)
 Return the arc sine (measured in radians) of x.

 asinh(x, /)
 Return the inverse hyperbolic sine of x.

 atan(x, /)
 Return the arc tangent (measured in radians) of x.

 atan2(y, x, /)
 Return the arc tangent (measured in radians) of y/x.

 Unlike atan(y/x), the signs of both x and y are considered.

 atanh(x, /)
 Return the inverse hyperbolic tangent of x.

 ceil(x, /)
 Return the ceiling of x as an Integral.

 This is the smallest integer >= x.

 copysign(x, y, /)
 Return a float with the magnitude (absolute value) of x but the sign
of y.

 On platforms that support signed zeros, copysign(1.0, -0.0)
 returns -1.0.

 cos(x, /)
 Return the cosine of x (measured in radians).

 cosh(x, /)
 Return the hyperbolic cosine of x.

 degrees(x, /)
 Convert angle x from radians to degrees.

 erf(x, /)
 Error function at x.

import math
help(math)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 12/25

 erfc(x, /)
 Complementary error function at x.

 exp(x, /)
 Return e raised to the power of x.

 expm1(x, /)
 Return exp(x)-1.

 This function avoids the loss of precision involved in the direct ev
aluation of exp(x)-1 for small x.

 fabs(x, /)
 Return the absolute value of the float x.

 factorial(x, /)
 Find x!.

 Raise a ValueError if x is negative or non-integral.

 floor(x, /)
 Return the floor of x as an Integral.

 This is the largest integer <= x.

 fmod(x, y, /)
 Return fmod(x, y), according to platform C.

 x % y may differ.

 frexp(x, /)
 Return the mantissa and exponent of x, as pair (m, e).

 m is a float and e is an int, such that x = m * 2.**e.
 If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.

 fsum(seq, /)
 Return an accurate floating point sum of values in the iterable seq.

 Assumes IEEE-754 floating point arithmetic.

 gamma(x, /)
 Gamma function at x.

 gcd(x, y, /)
 greatest common divisor of x and y

 hypot(x, y, /)
 Return the Euclidean distance, sqrt(x*x + y*y).

 isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
 Determine whether two floating point numbers are close in value.

 rel_tol
 maximum difference for being considered "close", relative to the
 magnitude of the input values
 abs_tol
 maximum difference for being considered "close", regardless of t
he
 magnitude of the input values

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 13/25

 Return True if a is close in value to b, and False otherwise.

 For the values to be considered close, the difference between them
 must be smaller than at least one of the tolerances.

 -inf, inf and NaN behave similarly to the IEEE 754 Standard. That
 is, NaN is not close to anything, even itself. inf and -inf are
 only close to themselves.

 isfinite(x, /)
 Return True if x is neither an infinity nor a NaN, and False otherwi
se.

 isinf(x, /)
 Return True if x is a positive or negative infinity, and False other
wise.

 isnan(x, /)
 Return True if x is a NaN (not a number), and False otherwise.

 ldexp(x, i, /)
 Return x * (2**i).

 This is essentially the inverse of frexp().

 lgamma(x, /)
 Natural logarithm of absolute value of Gamma function at x.

 log(...)
 log(x, [base=math.e])
 Return the logarithm of x to the given base.

 If the base not specified, returns the natural logarithm (base e) of
x.

 log10(x, /)
 Return the base 10 logarithm of x.

 log1p(x, /)
 Return the natural logarithm of 1+x (base e).

 The result is computed in a way which is accurate for x near zero.

 log2(x, /)
 Return the base 2 logarithm of x.

 modf(x, /)
 Return the fractional and integer parts of x.

 Both results carry the sign of x and are floats.

 pow(x, y, /)
 Return x**y (x to the power of y).

 radians(x, /)
 Convert angle x from degrees to radians.

 remainder(x, y, /)
 Difference between x and the closest integer multiple of y.

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 14/25

11. Working with random module

This module defines several functions to generate random numbers.

We can use these functions while developing games,in cryptography and to generate random numbers on
fly for authentication. (For example, OTPs).

1. random() function:

This function always generate some float value between 0 and 1 (not inclusive).

 Return x - n*y where n*y is the closest integer multiple of y.
 In the case where x is exactly halfway between two multiples of
 y, the nearest even value of n is used. The result is always exact.

 sin(x, /)
 Return the sine of x (measured in radians).

 sinh(x, /)
 Return the hyperbolic sine of x.

 sqrt(x, /)
 Return the square root of x.

 tan(x, /)
 Return the tangent of x (measured in radians).

 tanh(x, /)
 Return the hyperbolic tangent of x.

 trunc(x, /)
 Truncates the Real x to the nearest Integral toward 0.

 Uses the __trunc__ magic method.

DATA
 e = 2.718281828459045
 inf = inf
 nan = nan
 pi = 3.141592653589793
 tau = 6.283185307179586

FILE
 (built-in)

NameError Traceback (most recent call last)
<ipython-input-5-9ef53aca3b77> in <module>
 1 import math
 2 help(math)
----> 3 a

NameError: name 'a' is not defined

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 15/25

0 < x < 1

Eg :

In [14]:

2. randint() function:

This function is used to generate random integers beween two given numbers (inclusive).

Eg:

In [22]:

3. uniform():

It returns random float values between 2 given numbers (not inclusive).

Eg:

0.5298687885975731
0.1959883975809048
0.7856765556766167
0.621345638337082
0.0017397062733900404
0.053682389130991326
0.6870134702620266
0.012400503004914687
0.9615995552319757
0.5501802331038093

4
5
3
9
4
5
6
10
6
6

from random import random # from random import *
#import random
for i in range(10):
 print(random())

from random import *
for i in range(10):
 print(randint(1,10)) # generate random int value between 1 and 100(inclusive)

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 16/25

In [17]:

Note:

random() ===>in between 0 and 1 (not inclusive) ===> float
randint(x,y) ==>in between x and y (inclusive) ===> int
uniform(x,y) ==> in between x and y (not inclusive) ===> float

4. randrange([start],stop,[step])

returns a random number from range start<= x < stop

start argument is optional and default value is 0

step argument is optional and default value is 1

For example,

randrange(10)-->generates a number from 0 to 9

randrange(1,11)-->generates a number from 1 to 10

randrange(1,11,2)-->generates a number from 1,3,5,7,9

Eg :

4.219659431824531
5.058564769299971
7.5266485757042485
4.190749282077976
3.8464174832123033
7.043381178043777
9.30504048393276
4.41712781745301
3.9935721537809465
8.274960415539518

from random import *
for i in range(10):
 print(uniform(1,10))

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 17/25

In [18]:

Eg 2:

In [20]:

Eg 3:

In [24]:

5. choice() function:

It won't return random number.

5
8
6
1
2
6
2
9
6
1

8
5
5
6
6
8
3
10
10
4

1
9
1
3
7
7
7
7
1
5

from random import *
for i in range(10):
 print(randrange(10))

from random import *
for i in range(10):
 print(randrange(1,11))

from random import *
for i in range(10):
 print(randrange(1,11,2))

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 18/25

It will return a random object from the given list or tuple.

Always the argument for this function is any indexable sequence. (i.e., Set is not supported)

Eg :

In [25]:

In [26]:

Chinny
Chinny
pinny
Sunny
Chinny
Vinny
Chinny
Bunny
Sunny
Bunny

Bunny
Bunny
pinny
Bunny
Sunny
Vinny
Sunny
Chinny
Bunny
Chinny

from random import *
list=["Sunny","Bunny","Chinny","Vinny","pinny"]
for i in range(10):
 print(choice(list))

from random import *
list=("Sunny","Bunny","Chinny","Vinny","pinny")
for i in range(10):
 print(choice(list))

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 19/25

In [27]:

In [28]:

Date: 17-05-2020 Day-3

Example programs

Q 1. Write a Python program to generate a six digit random number as One Time Password (OTP).

Way 1

TypeError Traceback (most recent call last)
<ipython-input-27-207be8b00172> in <module>
 2 list={"Sunny","Bunny","Chinny","Vinny","pinny"}
 3 for i in range(10):
----> 4 print(choice(list))

~\Anaconda3\lib\random.py in choice(self, seq)
 260 except ValueError:
 261 raise IndexError('Cannot choose from an empty sequence')
from None
--> 262 return seq[i]
 263
 264 def shuffle(self, x, random=None):

TypeError: 'set' object is not subscriptable

r
a
t
t
h
r
a
a
h
r

from random import *
list={"Sunny","Bunny","Chinny","Vinny","pinny"}
for i in range(10): #Set object is not support indexing
 print(choice(list))

from random import *
list=["Sunny","Bunny","Chinny","Vinny","pinny"]
for i in range(10):
 print(choice('karthi'))

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 20/25

In [3]:

In [16]:

Way 2

In [7]:

792314
871530
780895
157332
796357
502414
826712
785971
309040
015443

161446
197083
758751
996540
851466
666187
700286
719132
372328
136409

899095
829710
031807
656661
053638
290606
805589
240823
108752
356289

from random import *
for i in range(10):
 print(randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),sep

from random import *
for i in range(10):
 print(randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),randint(0,9),sep

from random import *
for i in range(10):
 for x in range(6):
 print(randint(0,9),end='') # Correct version
 print()

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 21/25

In [15]:

Way 3

In [8]:

In [9]:

738483
300653
071471
666878
872723
287566
540940
676690
328498
360878

962601
889203
384254
393560
633705
103495
985154
107436
149361
240032

682096
266601
510098
805968
203852
838713
744178
568925
830862
538721

from random import *
for i in range(10):
 for x in range(6):
 print(randint(0,9),end='') # Correct version
 print()

from random import *
for i in range(10):
 print(randint(000000,999999),sep='')

from random import *
for i in range(10):
 print(randint(000000,999999),sep='')

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 22/25

In [10]:

Way 4

In [11]:

In [12]:

347289
624504
70817
916648
627988
848795
66449
415174
989153
872602

869252
909810
596249
585590
346792
498318
326801
788542
835508
960551

572571
692732
462218
234897
442399
480218
278091
182737
396578
244616

from random import *
for i in range(10):
 print(randint(000000,999999),sep='') # Some times it may give wrong output also, bec

from random import *
for i in range(10):
 print(randint(100000,999999),sep='')

from random import *
for i in range(10):
 print(randint(100000,999999),sep='')

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 23/25

In [13]:

In [14]:

Flaw: It won't generate OTP which start from 0.

Q 2. Write aPython program to generate a random password of 6 length.

Within the OTP --

1,3,5 positions are alphabets.

2,4,6 positions are digits.

Way 1

501568
282792
596089
356996
377236
717111
145663
941932
903885
904369

749026
924598
217585
709813
503600
640488
464279
508086
521877
834829

from random import *
for i in range(10):
 print(randint(100000,999999),sep='')

from random import *
for i in range(10): # This code is working properly, ex
 print(randint(100000,999999),sep='')

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 24/25

In [20]:

In [21]:

Way 2:

In [27]:

R2I6T5
F4S6I6
W5B8K5
M3U7L6
C3A6M3
O5L7W3
T5W7X4
S3I7W1
L5C9A9
J9H4W4

B9D7J9
X0S2M0
S6R7Y6
B2B1B0
O4G4I0
J6U2P2
L6C6B3
C6C5K9
M1Q7N3
I3Y2F7

P3H1U3
V1Q1A7
R4Z2G9
I3Y4H8
B8K7V9
N4X7S0
R5L3S2
O5A3Y8
M0D7J7
H7V2Z0

from random import *
for i in range(10):
 print(chr(randint(65,90)),randint(0,9),chr(randint(65,90)),randint(0,9),chr(randint(

from random import *
for i in range(10):
 print(chr(randint(65,90)),randint(0,9),chr(randint(65,90)),randint(0,9),chr(randint(

from random import *
for i in range(10):
 for x in range(1,7):
 if x%2 == 1:
 print(chr(randint(65,90)),end='')
 else:
 print(randint(0,9),end='')
 print()

16/05/2020 Modules

localhost:8888/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Modules.ipynb 25/25

In [28]:

In []:

I4O0C6
E1K2K9
K9J6X8
W9I3Z9
Z0A1X9
T6S9M7
L6E8W7
A1X8J2
A7M6A3
R4R1E7

from random import *
for i in range(10):
 for x in range(1,7):
 if x%2 == 1:
 print(chr(randint(65,90)),end='')
 else:
 print(randint(0,9),end='')
 print()

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 1/27

Regular Expressions

Date: 20-05-2020

Introduction

If we want to represent a group of Strings according to a particular format/pattern then we should go for Regular
Expressions. i.e., Regualr Expressions is a declarative mechanism to represent a group of Strings
accroding to particular format/pattern.

Eg 1: We can write a regular expression to represent all mobile numbers. (i.e., All mobile numbers having a
particular format i.e., exactly 10 numbers only)

Eg 2: We can write a regular expression to represent all mail ids.

Eg 3: We can write a regular expression to represent all java/python/C identifiers.

Note: Regular Expressions is language independent concept.

The main important application areas of Regular Expressions are as follows:

1. To develop validation frameworks/validation logic. For example, mail id validation, mobile number validation
etc.

2. To develop Pattern matching applications (ctrl-f in windows, grep in UNIX etc).

3. To develop Translators like compilers, interpreters etc. In compiler design, Lexical analysis phase is
internally implemented using Regular expressions only.

4. To develop digital circuits. For example, Binary Incrementor, Binary adder, Binary subtractor etc.

5. To develop communication protocols like TCP/IP, UDP etc. (Protocol means set of rules, to follow the rules
during communication, we use regular expressions).

NOTE:

3 Mantras, to become no.1 software Engineer:

1. Ctrl + f

2. Ctrl + c

3. Ctrl + v
Then you may get one doubt that, why we need to learn all these technologies???

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 2/27

Ans: To get the Job all several things are required, To
do the job nothing is

required.

Real Fact: Almost 80% - 90% of the software engineers work
depends on the above 3

mantras only.

re module:
We can develop Regular Expression Based applications by using python module known as re.

This module contains several in-built functions to use Regular Expressions very easily in our applications.

1. compile():

re module contains compile() function to compile a pattern into RegexObject.

For example, if you want to find the pattern 'python' in the given string, first you need to convert this pattern into
RegexObject form.

In [1]:

2. finditer():

Returns an Iterator object which yields Match object for every Match.

In []:

On Match object we can call the following methods.

1. start() ==> Returns start index of the match

2. end() ==> Returns end+1 index of the match

3. group() ==> Returns the matched string

Eg: Write a python program to find whether the given pattern is available in the given string or not?

<class 're.Pattern'>

import re
pattern = re.compile("python")
print(type(pattern))

matcher = pattern.finditer("Learning python is very easy...")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 3/27

In [3]:

Note: More Simplified form

We can pass pattern directly as argument to finditer() function.

In [4]:

In [10]:

9 ... 15 ... python
The number of occurrences: 1

0 ... 2 ... ab
3 ... 5 ... ab
5 ... 7 ... ab
The number of occurrences: 3

1 ... 3 ... ba
4 ... 6 ... ba
6 ... 8 ... ba
The number of occurrences: 3

import re
count=0
pattern=re.compile("python")
matcher=pattern.finditer("Learning python is very easy...") # We are searching for a word i
for match in matcher:
 count+=1
 print(match.start(),"...",match.end(),"...",match.group())
print("The number of occurrences: ",count)

import re
count=0
matcher=re.finditer("ab","abaababa") # We are searching for a word in one sentence (i.e., p
for match in matcher:
 count+=1
 print(match.start(),"...",match.end(),"...",match.group())
print("The number of occurrences: ",count)

import re
count=0
matcher=re.finditer("ba","abaababa") # We are searching for a word in one sentence (i.e., p
for match in matcher:
 count+=1
 print(match.start(),"...",match.end(),"...",match.group())
print("The number of occurrences: ",count)

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 4/27

In [13]:

In [14]:

In [15]:

Date: 21-05-2020 Day 2

Character classes:

We can use character classes to search a group of characters.

1. [abc]===>Either a or b or c

2. [^abc] ===>Except a and b and c

3. [a-z]==>Any Lower case alphabet symbol

4. [A-Z]===>Any upper case alphabet symbol

5. [a-zA-Z]==>Any alphabet symbol

The number of occurrences: 0

start:0,end:2,group:ab
start:3,end:5,group:ab
start:5,end:7,group:ab
The number of occurrences: 3

start:0,end:2,group:ab
start:2,end:4,group:ab
start:4,end:6,group:ab
The number of occurrences: 3

import re
count=0
matcher=re.finditer("bb","abaababa") # We are searching for a word in one sentence (i.e., p
for match in matcher:
 count+=1
 print("start:{},end:{},group:{}".format(match.start(),match.end(),match.group()))
print("The number of occurrences: ",count)

import re
count=0
matcher=re.finditer("ab","abaababa") # We are searching for a word in one sentence (i.e., p
for match in matcher:
 count+=1
 print("start:{},end:{},group:{}".format(match.start(),match.end(),match.group()))
print("The number of occurrences: ",count)

import re
count=0
matcher=re.finditer("ab","abababa") # We are searching for a word in one sentence (i.e., pa
for match in matcher:
 count+=1
 print("start:{},end:{},group:{}".format(match.start(),match.end(),match.group()))
print("The number of occurrences: ",count)

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 5/27

[] y p y
6. [0-9] Any digit from 0 to 9

7. [a-zA-Z0-9]==>Any alphanumeric character

8. [^a-zA-Z0-9]==>Except alphanumeric characters(Special Characters)

In [8]:

In [9]:

In [1]:

In [3]:

In [4]:

0 a
2 b

1 7
3 @
4 k
5 9
6 z

0 a
2 b
4 k
6 z

1 7
5 9

import re
matcher=re.finditer("[abc]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[^abc]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[a-z]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[0-9]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[A-Z]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 6/27

In [5]:

In [6]:

In [7]:

In [8]:

Pre defined Character classes

\s ==> Space character

\S ==> Any character except space character

\d ==> Any digit from 0 to 9

\D ==> Any character except digit

0 a
2 b
4 k
6 z

0 a
1 7
2 b
4 k
5 9
6 z

3 @

0 a
1 b
2 c
3 a
4 b
5 c

import re
matcher=re.finditer("[a-zA-Z]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[a-zA-Z0-9]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[^a-zA-Z0-9]","a7b@k9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("[abc]","abcabc")
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 7/27

\w ==> Any word character [a-zA-Z0-9]

\W ==> Any character except word character (only Special Characters includes)

. ==> Any character including special characters

In [9]:

In [10]:

In [11]:

In [12]:

3

0 a
1 7
2 b
4 k
5 @
6 9
7 z

1 7
6 9

0 a
2 b
3
4 k
5 @
7 z

import re
matcher=re.finditer("\s","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("\S","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("\d","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("\D","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 8/27

In [13]:

In [14]:

In [15]:

Qunatifiers

We can use quantifiers to specify the number of occurrences to match.

a ==> Exactly one 'a'

a+ ==> Atleast one 'a'

a* ==> Any number of a's including zero number

a? ==> Atmost one 'a', i.e., either zero number or one number

a{m} ==> Exactly m number of a's

a{m,n} ==> Minimum m number of a's and Maximum n number of a's

0 a
1 7
2 b
4 k
6 9
7 z

3
5 @

0 a
1 7
2 b
3
4 k
5 @
6 9
7 z

import re
matcher=re.finditer("\w","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("\W","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer(".","a7b k@9z")
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 9/27

In [17]:

In [18]:

In [19]:

In [20]:

0 a
2 a
3 a
5 a
6 a
7 a

0 a
2 aa
5 aaa

0 a
1
2 aa
4
5 aaa
8
9

0 a
1
2 a
3 a
4
5 a
6 a
7 a
8
9

import re
matcher=re.finditer("a","abaabaaab") # Exactly one 'a'
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a+","abaabaaab") # Atleast one 'a'
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a*","abaabaaab") # Any no.of 'a's including zero
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a?","abaabaaab") # Atmost one 'a', i.e., either
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 10/27

In [21]:

In [25]:

In [26]:

In [27]:

In [28]:

5 aaa

2 aa
5 aaa

2 aa
5 aa

0 a
2 aa
5 aaa

2 aa
5 aaa

import re
matcher=re.finditer("a{3}","abaabaaab") # Exactly '3' number of 'a's
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a{2,4}","abaabaaab") # Minimum '2' 'a's and Maximum
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a{2,2}","abaabaaab") # Minimum '2' 'a's and Maximum
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a{1,4}","abaabaaab") # Minimum '1' 'a' and Maximum
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a{2}a*","abaabaaab") # Exactly'2' 'a's followed by
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 11/27

In [29]:

Note:

^x ==> It will check whether target string starts with x or not

x$ ==> It will check whether target string ends with x or not

In [30]:

In [31]:

In [32]:

Important functions of 're' module

1. match()

2. fullmatch()

3. search()

4. findall()

5. finditer()

6. sub()

7. subn()

1 b
4 b
8 b

0 a

8 b

import re
matcher=re.finditer("[^a]","abaabaaab") # Except 'a'
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("^a","abaabaaab") # Whether the given string starts
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("a$","abaabaaab") # Whether the given string ends w
for match in matcher:
 print(match.start(),"......",match.group())

import re
matcher=re.finditer("b$","abaabaaab") # Whether the given string ends w
for match in matcher:
 print(match.start(),"......",match.group())

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 12/27

8. split()

9. compile()

1. match():

We can use match function to check the given pattern at beginning of target string or not.

If the match is available then we will get Match object, otherwise we will get None.

In [34]:

In [35]:

2. fullmatch():

We can use fullmatch() function to match a pattern to all of target string. i.e., complete string should be
matched according to given pattern.

If complete string matched then this function returns Match object otherwise it returns None.

Enter pattern to check: abc
Match is available at the beginning of the String
Start Index: 0 and End Index: 3

Enter pattern to check: rgm
Match is not available at the beginning of the String

import re
s=input("Enter pattern to check: ")

m=re.match(s,"abcabdefg") # match() function

if m!= None:
 print("Match is available at the beginning of the String")
 print("Start Index:",m.start(), "and End Index:",m.end())
else:
 print("Match is not available at the beginning of the String")

import re
s=input("Enter pattern to check: ")

m=re.match(s,"abcabdefg") # match() function

if m!= None:
 print("Match is available at the beginning of the String")
 print("Start Index:",m.start(), "and End Index:",m.end())
else:
 print("Match is not available at the beginning of the String")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 13/27

In [36]:

In [37]:

In [38]:

3. search():

We can use search() function to search the given pattern in the target string.

If the match is available then it returns the Match object which represents first occurrence of the match.

If the match is not available then it returns None.

Enter pattern to check: ab
Full String not Matched

Enter pattern to check: abababa
Full String not Matched

Enter pattern to check: ababab
Full String Matched

import re
s=input("Enter pattern to check: ")

m=re.fullmatch(s,"ababab")

if m!= None:
 print("Full String Matched")
else:
 print("Full String not Matched")

import re
s=input("Enter pattern to check: ")

m=re.fullmatch(s,"ababab")

if m!= None:
 print("Full String Matched")
else:
 print("Full String not Matched")

import re
s=input("Enter pattern to check: ")

m=re.fullmatch(s,"ababab")

if m!= None:
 print("Full String Matched")
else:
 print("Full String not Matched")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 14/27

In [39]:

In [40]:

4. findall():

This function is used to find all occurrences of the match.

This function returns a list object which contains all occurrences.

In [41]:

5. finditer():

It returns the iterator yielding a match object for each match.

On each match object we can call start(), end() and group() functions.

Enter pattern to check: aa
Match is available
First Occurrence of match with start index: 2 and end index: 4

Enter pattern to check: bb
Match is not available

['7', '9', '5']

import re
s=input("Enter pattern to check: ")

m=re.search(s,"abaabaaab")

if m!= None:
 print("Match is available")
 print("First Occurrence of match with start index:",m.start(),"and end index:",m.end())
else:
 print("Match is not available")

import re
s=input("Enter pattern to check: ")

m=re.search(s,"abaabaaab")

if m!= None:
 print("Match is available")
 print("First Occurrence of match with start index:",m.start(),"and end index:",m.end())
else:
 print("Match is not available")

import re
l=re.findall("[0-9]","a7b9c5kz")
print(l)

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 15/27

In [42]:

In [48]:

6. sub():

sub means substitution or replacement.

re.sub(regex,replacement,targetstring)

In the target string every matched pattern will be replaced with provided replacement.

In [43]:

Here, Every alphabet symbol is replaced with # symbol.

In [49]:

0 ... 1 ... a
2 ... 3 ... b
4 ... 5 ... c
6 ... 7 ... k
8 ... 9 ... z

<class 're.Match'>
1 ... 2 ... 7
<class 're.Match'>
3 ... 4 ... 9
<class 're.Match'>
5 ... 6 ... 5
<class 're.Match'>
7 ... 8 ... 8

#7#9#5#8#

a#b#c#k#z

import re
itr=re.finditer("[a-z]","a7b9c5k8z")
for m in itr:
 print(m.start(),"...",m.end(),"...",m.group())

import re
itr=re.finditer("\d","a7b9c5k8z")
for m in itr:
 print(type(m))
 print(m.start(),"...",m.end(),"...",m.group())

import re
s=re.sub("[a-z]","#","a7b9c5k8z")
print(s)

import re
s=re.sub("\d","#","a7b9c5k8z")
print(s)

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 16/27

Here, Every digit is replaced with # symbol.

7. subn():

It is exactly same as sub except it can also returns the number of replacements.

This function returns a tuple where first element is result string and second element is number of
replacements.

(resultstring, number of replacements)

In [44]:

8. split():

If we want to split the given target string according to a particular pattern then we should go for split()
function.

This function returns list of all tokens.

In [45]:

In [46]:

('#7#9#5#8#', 5)
The Result String: #7#9#5#8#
The number of replacements: 5

['sunny', 'bunny', 'chinny', 'vinny', 'pinny']
sunny
bunny
chinny
vinny
pinny

www
rgmcet
edu
in

import re
t=re.subn("[a-z]","#","a7b9c5k8z")
print(t)
print("The Result String:",t[0])
print("The number of replacements:",t[1])

import re
l=re.split(",","sunny,bunny,chinny,vinny,pinny")
print(l)
for t in l:
 print(t)

import re
l=re.split("\.","www.rgmcet.edu.in")
for t in l:
 print(t)

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 17/27

In [50]:

Two special symbols used in Regular Expressions

1. ^ symbol:

We can use ^ symbol to check whether the given target string starts with our provided pattern or not.

Eg:

res=re.search("^Learn",s)

if the target string starts with Learn then it will return Match object,otherwise returns None.

In [52]:

In [53]:

2. '$' symbol:
We can use $ symbol to check whether the given target string ends with our provided pattern or not.

www
rgmcet
edu
in

Target String starts with Learn

Target String Not starts with Learn

import re
l=re.split("[.]","www.rgmcet.edu.in")
for t in l:
 print(t)

import re
s="Learning Python is Very Easy"
res=re.search("^Learn",s)
if res != None:
 print("Target String starts with Learn")
else:
 print("Target String Not starts with Learn")

import re
s="Learning Python is Very Easy"
res=re.search("^Learns",s)
if res != None:
 print("Target String starts with Learn")
else:
 print("Target String Not starts with Learn")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 18/27

Eg:

res=re.search("Easy$",s)

If the target string ends with Easy then it will return Match object,otherwise returns None.

In [54]:

In [55]:

Note:

If we want to ignore case then we have to pass 3rd argument re.IGNORECASE for search() function.

Eg:

res = re.search("easy$",s,re.IGNORECASE)

In [56]:

Target String ends with Easy

Target String Not ends with Easy

Target String ends with Easy

import re
s="Learning Python is Very Easy"
res=re.search("Easy$",s)
if res != None:
 print("Target String ends with Easy")
else:
 print("Target String Not ends with Easy")

import re
s="Learning Python is Very Easy"
res=re.search("easy$",s)
if res != None:
 print("Target String ends with Easy")
else:
 print("Target String Not ends with Easy")

import re
s="Learning Python is Very Easy"
res=re.search("easy$",s,re.IGNORECASE)
if res != None:
 print("Target String ends with Easy")
else:
 print("Target String Not ends with Easy")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 19/27

In [57]:

Date: 22-05-2020 Day 3

Example applications using Regular expressions

App 1: Write a Regular Expression to represent all Yava language (My own language) identifiers.

Rules:

1. The allowed characters are a-z,A-Z,0-9,#.

2. The first character should be a lower case alphabet symbol from a to k.

3. The second character should be a digit divisible by 3.

4. The length of identifier should be atleast 2.

Regular Expression

[a-k][3069][a-zA-Z0-9#]*

Write a python program to check whether the given string is Yava language identifier or not?

In [7]:

Target String Not ends with Easy

Enter Identifier to validate :a3
a3 is valid Yava Identifier

import re
s="Learning Python is Very Easy"
res=re.search("Easys$",s)
if res != None:
 print("Target String ends with Easy")
else:
 print("Target String Not ends with Easy")

import re
s = input('Enter Identifier to validate :')
m = re.fullmatch('[a-k][3069][a-zA-Z0-9#]*',s)
if m!= None:
 print(s,'is valid Yava Identifier')
else:
 print(s,'is not Yava Identifier')

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 20/27

In [8]:

In [9]:

In [10]:

In [11]:

App 2: Write a Regular Expression to represent all 10 digit mobile numbers.

Rules:

1. Every number should contains exactly 10 digits.

2. The first digit should be 7 or 8 or 9

Enter Identifier to validate :z3k5
z3k5 is not Yava Identifier

Enter Identifier to validate :a9@
a9@ is not Yava Identifier

Enter Identifier to validate :f3jkgjidu
f3jkgjidu is valid Yava Identifier

Enter Identifier to validate :a6kk9z##
a6kk9z## is valid Yava Identifier

import re
s = input('Enter Identifier to validate :')
m = re.fullmatch('[a-k][3069][a-zA-Z0-9#]*',s)
if m!= None:
 print(s,'is valid Yava Identifier')
else:
 print(s,'is not Yava Identifier')

import re
s = input('Enter Identifier to validate :')
m = re.fullmatch('[a-k][3069][a-zA-Z0-9#]*',s)
if m!= None:
 print(s,'is valid Yava Identifier')
else:
 print(s,'is not Yava Identifier')

import re
s = input('Enter Identifier to validate :')
m = re.fullmatch('[a-k][3069][a-zA-Z0-9#]*',s)
if m!= None:
 print(s,'is valid Yava Identifier')
else:
 print(s,'is not Yava Identifier')

import re
s = input('Enter Identifier to validate :')
m = re.fullmatch('[a-k][3069][a-zA-Z0-9#]*',s)
if m!= None:
 print(s,'is valid Yava Identifier')
else:
 print(s,'is not Yava Identifier')

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 21/27

Regular Expression

[7-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]

or

[7-9][0-9]{9}

or

[7-9]\d{9}

Write a Python Program to check whether the given number is valid mobile number or not?

In [13]:

In [15]:

In [16]:

**App 3: Write a regular expression to find the valid mobile number based on the following rules.

The mobile number may contain 10 digit or 11 digit or 12 digit or 13 digit also:

10 : 6 to 9, 9 digits ===> [6-9][0-9]{9}

Enter Number :9885768283
9885768283 is valid Mobile number

Enter Number :6754876589
6754876589 is not valid Mobile number

Enter Number :898989
898989 is not valid Mobile number

import re
s = input('Enter Number :')
m = re.fullmatch('[7-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[7-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[7-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 22/27

11: The first digit is 0 ===>0[[6-9][0-9]{9}

12: The first 2 digits should 91 ===>[9][1][6-9][0-9]{9}

13: The first 3 digits should be +91 ===>[+][9][1][6-9][0-9]{9}

Write a Python Program to check whether the given number is valid mobile number or not?

In [17]:

In [18]:

In [19]:

Enter Number :6098236876
6098236876 is valid Mobile number

Enter Number :07435637732
07435637732 is valid Mobile number

Enter Number :05903809282
05903809282 is not valid Mobile number

import re
s = input('Enter Number :')
m = re.fullmatch('[6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[0][6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[0][6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 23/27

In [20]:

In [21]:

In [22]:

In [23]:

App 4: Write a python program to extract all mobile numbers present in input.txt file where numbers are
mixed with normal text data.

Note: Executed in Editplus Editor

Assume that, input.txt file contains the following information.

Enter Number :917543420987
917543420987 is valid Mobile number

Enter Number :938763425678
938763425678 is not valid Mobile number

Enter Number :+917485920584
+917485920584 is valid Mobile number

Enter Number :-919876543287
-919876543287 is not valid Mobile number

import re
s = input('Enter Number :')
m = re.fullmatch('[9][1][6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[9][1][6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[+][9][1][6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

import re
s = input('Enter Number :')
m = re.fullmatch('[+][9][1][6-9][0-9]{9}',s)
if m!= None:
 print(s,'is valid Mobile number')
else:
 print(s,'is not valid Mobile number')

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 24/27

C:\Pythonpractice>type iput.txt

Hello this is prathap with mobile number 9885768283

hello this is karthi with mobile number 8787878787

hello this is sahasra iwth mobile number 9101919178

999999999999 aand 963374944994

In []:

Output

Hello this is prathap with mobile number 9885768283

hello this is karthi with mobile number 8787878787

hello this is sahasra with mobile number 9101919178

In []:

Output

Extracted all Mobile Numbers into output.txt

If you want to see the contents of output.txt file, use the following command,

C:\Pythonpractice>type output.txt

9885768283

8787878787

9101919178

9999999999

9633749449

import re
f1=open("input.txt","r")
f2=open("output.txt","w")
for line in f1:
 print(line)

import re
f1=open("input.txt","r")
f2=open("output.txt","w")
for line in f1:
 list=re.findall("[7-9]\d{9}",line)
 for n in list:
 f2.write(n+"\n")
print("Extracted all Mobile Numbers into output.txt")
f1.close()
f2.close()

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 25/27

App 5. Write a Python Program to check whether the given mail id is valid gmail id or not?

In [3]:

In [4]:

App 6. Write a python program to check whether given car registration number is valid Telangana State
Registration number or not?

In [5]:

In [6]:

Enter Mail id:prathapnaidu81@gmail.com
Valid Mail Id

Enter Mail id:prathapnaidu81
Invalid Mail id

Enter Vehicle Registration Number:TS07EA7777
Valid Vehicle Registration Number

Enter Vehicle Registration Number:AP07EA7898
Invalid Vehicle Registration Number

import re
s=input("Enter Mail id:")
m=re.fullmatch("\w[a-zA-Z0-9_.]*@gmail[.]com",s)
if m!=None:
 print("Valid Mail Id");
else:
 print("Invalid Mail id")

import re
s=input("Enter Mail id:")
m=re.fullmatch("\w[a-zA-Z0-9_.]*@gmail[.]com",s)
if m!=None:
 print("Valid Mail Id");
else:
 print("Invalid Mail id")

import re
s=input("Enter Vehicle Registration Number:")
m=re.fullmatch("TS[012][0-9][A-Z]{2}\d{4}",s)
if m!=None:
 print("Valid Vehicle Registration Number");
else:
 print("Invalid Vehicle Registration Number")

import re
s=input("Enter Vehicle Registration Number:")
m=re.fullmatch("TS[012][0-9][A-Z]{2}\d{4}",s)
if m!=None:
 print("Valid Vehicle Registration Number");
else:
 print("Invalid Vehicle Registration Number")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 26/27

In [8]:

App 7. Python Program to check whether the given mobile number is valid OR not (10 digit OR 11 digit
OR 12 digit)

In [10]:

In [11]:

Exercices

1. Write a Python program to collect all .com urls from the given text file.

2. Write a Python program to display all .txt file names from the given directory.

In []:

Enter Vehicle Registration Number:TS123ek5678
Invalid Vehicle Registration Number

Enter Mobile Number:09885768283
Valid Mobile Number

Enter Mobile Number:919885768283
Valid Mobile Number

import re
s=input("Enter Vehicle Registration Number:")
m=re.fullmatch("TS[012][0-9][a-zA-Z]{2}\d{4}",s)
if m!=None:
 print("Valid Vehicle Registration Number");
else:
 print("Invalid Vehicle Registration Number")

import re
s=input("Enter Mobile Number:")
m=re.fullmatch("(0|91)?[7-9][0-9]{9}",s)
if m!=None:
 print("Valid Mobile Number");
else:
 print("Invalid Mobile Number")

import re
s=input("Enter Mobile Number:")
m=re.fullmatch("(0|91)?[7-9][0-9]{9}",s)
if m!=None:
 print("Valid Mobile Number");
else:
 print("Invalid Mobile Number")

21/05/2020 Regular Expressions

localhost:8890/notebooks/Desktop/COMPLETE PYTHON/PythonCourse/Regular Expressions.ipynb 27/27

	COVERPAGE
	Python Programming (A0593193) COVERPAGE
	SYLLABUS - PYTHON PROGRAMMING

	UNIT 1
	UNIT 1
	2. Python Operators

	UNIT 2
	UNIT 2
	4. Flow Control

	UNIT 3
	5. Strings - Part 1
	5. Strings Part 2

	UNIT 4
	6. List Data Type
	7. Tuple Data Type

	UNIT 5
	8. Set Data Type
	9. Dictionary Data Type

	UNIT 6
	10. Functions
	11.Modules
	12. Regular Expressions JN

