May 2020

Offshore Transmission in New England: The Benefits of a Better-Planned Grid

STUDY AUTHORS Johannes Pfeifenberger Sam Newell Walter Graf

Copyright © 2019 The Brattle Group, Inc.

Project Scope and Approach

Anbaric retained Brattle to compare the potential costs of various offshore transmission options and recommend the most competitive and cost-effective options to enable offshore wind development in New England

We qualitatively and quantitatively examined two approaches to developing offshore transmission and associated onshore upgrades to reach New England's offshore wind (OSW) development goals

- 1. The **current approach** wherein OSW developers compete primarily on cost to develop incremental amounts of offshore generation and associated project-specific generator lead lines (GLLs)
- 2. An **alternative "planned" approach** wherein transmission is developed independently from generation. Offshore transmission and onshore upgrades are planned to minimize overall risks and costs.

We conduct analyses of potential OSW-interconnection configurations for two levels of future offshore wind development. While other transmission configurations are possible, those captured here are representative of likely outcomes

- The analyses reflect current trends in how and where developers cite generator lead lines
- We highlight an alternative outcome that is unlikely to occur without a planning process

Executive Summary

Executive Summary Motivation and policy goals

Thousands of MW of new clean resources would need to be built every year to meet decarbonization goals in New England – **possibly over 40,000 MW of OSW by 2050**

Developing these resources and associated transmission efficiently is essential for controlling customer costs

A key policy challenge is ensuring a pathway to enable the lowest-cost solutions for delivering new clean energy from source to population centers

New England Likely Needs 1,500 MW+ of OSW Additions <u>Every Year</u> to Achieve "80% by 2050" Decarbonization Goals

Portfolios Analyzed

EXECUTIVE SUMMARY

The current approach to offshore transmission will incur high costs

New England has already contracted for 3,112 MW of OSW. The next 3,600 MW* of OSW could still be developed under the status quo: with each developer constructing a GLL to an onshore point of interconnection (POI)

 To date, OSW developers have focused on identifying landing sites with the closest access to onshore grid

However, this existing approach is likely to lead to substantial onshore upgrade needs far sooner than assumed: already selected projects connecting to Cape Cod face up to \$787 million in onshore transmission upgrades and continuing this approach in the next procurements could lead to an additional \$1.7 billion in onshore upgrades**

Given the high cost and difficulty of building onshore transmission, a planned approach to developing the offshore grid can significantly reduce the need and costs for onshore upgrades, where there is a history of delays and budget overruns in New England

 Since 2002 major onshore transmission projects in New England have on average exceeded budgets by 79% with project duration exceeding five years***

A planned approach is likely to result in lower costs in both the near- and longer-term, by lowering risks and costs of onshore upgrades and increasing competition for both offshore transmission and generation

* Corresponds to currently-authorized procurement authority in MA and CT and potential demand from other states and 3rd parties, beyond the OSW that has already been procured in New England.

**See slides 15-17

*** New Hampshire Transmission, "Greater Boston Cost Comparison," January 2015

EXECUTIVE SUMMARY Anticipatory planning will lead to lower and more predictable costs

With a well-planned offshore grid, the overall transmission costs can be more closely estimated and phased-in over time

The current GLL approach may appear to have low initial costs but those will likely increase substantially after the "low hanging fruit" is picked, when real costs are revealed through costly onshore system upgrades.

Lack of well-planned transmission to achieve states' objectives has already created barriers for the deployment of clean energy in New England:

- Less than half of the 2,000 MW target Maine established for onshore wind resources have been built, largely due to transmission constraints
- While major new transmission projects for onshore wind were proposed, none have been built
- Five wind projects in Maine were cancelled due to prohibitive transmission upgrade costs
- Lack of a regional plan also imperils hydroelectricity imports from Canada

EXECUTIVE SUMMARY Role of public policy in informing regional transmission planning

The growth in offshore wind in New England is driven by state public policy goals and will be achieved through policy mechanisms.

When considering the transmission network needed to support offshore wind deployment, system planning for New England should consider current cumulative goals and a high-OSW future.

Individual states or groups of states can proactively plan for and procure portions of the needed transmission network; such a stateled procurement framework is provided in later slides.

Broader regional coordination among New England states and ISO-NE could help meet the policy objectives of the participating states, including planning and procurement of offshore and onshore transmission systems.

EXECUTIVE SUMMARY

There is precedent for planned development of offshore transmission

Other U.S. jurisdictions have planned transmission infrastructure to develop largescale onshore renewables. Examples include Texas (CREZ), California (Tehachapi Wind), MISO (Regional Multi-Value Projects), and several European countries. **New England could adopt a similar approach to planning transmission infrastructure to support offshore wind.**

As an example, Anbaric has proposed developing a southern New England OceanGrid that includes a vision to:

- Connect offshore wind directly to load centers and robust grid connections
- Meet needs identified by ISO-NE for new paths for offshore wind to integrate with existing system
- Avoid more than \$1 billion in onshore transmission upgrades

Source: Anbaric, "Southern New England OceanGrid."

EXECUTIVE SUMMARY Benefits of a planned offshore transmission approach

A planned transmission approach that jointly coordinates onshore and offshore transmission investments to serve New England's offshore wind needs provides significant benefits for the growing industry and electric customers.

Elements we examine	Our analysis indicates	Slides
 Total onshore + offshore transmission costs Onshore transmission upgrade costs (more risk) Offshore transmission costs (less risk) 	10% lower under planned approach65% lower under planned approach22% higher under planned approach	16 & 17
Losses over offshore transmission	40% lower under planned approach	12
Impact to fisheries and environment	49% less marine cable under planned approach	22
Generation-related production costs	Reach ~\$1 million/yr lower for 3,600 MW of OSW under planned approach	19
Customer costs of energy, excluding transmission	Reach \$20 million/yr lower for 3,600 MW of OSW under planned approach	19
Effect on generation and transmission competition	Increased competition under planned approach	18 & 20
Utilization of constrained landing points	Improved under planned approach	21
Utilization of existing lease areas	Improved under planned approach	23
Enabling third-party customers	Improved under planned approach	24

Analytical Approach

ANALYTICAL APPROACH We compare transmission configurations for two additional OSW expansion phases

We compare two transmission scenarios representative of configurations achievable under the "current" and "planned" approaches	Current GLL approach	Planned offshore- grid approach
We assume 3,112 MW of projects already procured in New England proceed as currently planned with GLLs under both scenarios	Gen-ties to interconnect Vineyard Wind, Mayflower Wind, Revolution Wind, and Park City Wind	
We first look at a <u>Phase 1</u> to interconnect an additional 3,600 MW of OSW, corresponding to currently- authorized procurement authority for MA (1,600 MW), CT (1,200 MW), and 800 MW of assumed procurements from other states and third-parties. We necessarily make assumptions about transmission routing and points of interconnection under the planned vs. current approach.	Continue GLL approach	Begin planned procurements
We then look at a <u>Phase 2</u> to add a total of 8,000+ MW of OSW beyond the amount already procured. The total Phase 2 represents the remaining estimated OSW capacity of existing New England lease areas (beyond those already-committed for projects in New England and New York + one additional 1,100MW project to NY)*	Continue GLL approach	Build on Phase 1 planned transmission configuration with additional planned transmission procurements

ANALYTICAL APPROACH Phase 1 (add 3,600 MW): Summary of the two transmission approaches

Current GLL Approach

- 9 x 400 MW High Voltage Alternating Current (HVAC) cable bundles:
 - 800 MW each at Montville, Kent Co. Brayton Pt. & Canal
 - 400 MW at Falmouth
- 694 miles of marine cabling
- 4.0% losses
- Significant onshore transmission overloads

Planned Offshore-Grid Approach

- 3 x 1,200 MW High Voltage Direct Current (HVDC) cable bundles
 - 1,200 MW each at Bridgeport, Brayton Pt. & Mystic
- 356 miles of marine cabling
- 2.4% losses
- Minimal onshore transmission overloads

Sources: Overloads based on GE analysis for Anbaric (Appendix B), which identified numerous within-zone overloads not identified in ISO-NE zonal analysis. Loss estimates based on vendor specifications and third-party sources

ANALYTICAL APPROACH Phase 2 (add 8,000+ MW): Summary of the two transmission approaches

Phase 2, Current Approach (add 8,200 MW)

- 9 x 466 MW HVAC cable bundles
 - 1,400 MW each at Montville, Kent Co., & Canal
- 1 x 400 MW HVAC project
 - 400 MW at Bourne
- 926 miles of marine cabling (1,620 total Phase 1+2)
- Major onshore transmission overloads

Phase 2, Planned Approach (add 8,600 MW)

- 3 x multiterminal HVDC projects
 - 2,000 MW to Waterford (1200 MW) & East Devon (800 MW)*
 - 1,600 MW to K St. (800 MW) & Woburn (800 MW)*
 - 1,000 MW to Bridgewater
 - 400 MW HVAC project to Kent Co. RI
- 474 miles of marine cabling (831 total Phase 1+2)

*Multiterminal HVDC injecting at two locations

Benefits of Planned Offshore Transmission

Benefits of Planned Offshore Transmission Avoid major overloads of the onshore grid resulting from current gen-tie approach

- To date, OSW developers have focused on landing sites with the closest access to onshore grid
- Already-procured projects connecting to Cape Cod face up to \$787 million in onshore upgrades*
- Regional procurement targets exceed available near-shore landing sites**
- Onshore upgrade costs should be included in a generator's bid, but we anticipate that costs are underestimated, in which case the additional costs could lead to problems completing the projects or increased costs for customers

* ISO-NE's Feasibility Study for interconnecting three projects totaling 2,400 MW to Cape Cod (QP 828) identifies \$227M in upgrade costs with a -50% to +200% range (\$113M to \$681M). Interconnecting an additional 400 MW associated with one of these projects (QP829) is estimated to cost an additional \$36M with a -50% to +200% range (\$18M to \$106M).

** ISO-NE has identified 5,800 MW of injection capability in SEMA, RI, and SECT, and existing state procurement targets already equal 5,900 MW

Benefits of Planned Offshore Transmission Planning ahead avoids onshore transmission upgrades that otherwise would be needed

Given the high cost and difficulty of building onshore transmission, a planned offshore grid can significantly reduce need and costs for onshore upgrades, where there is a history of delays and budget overruns in New England

- Major transmission projects in New England since 2002 have averaged budget overruns of 79% with average development times of over five years*
- One recent project in Southern New England the New England East-West Solution Interstate Reliability Project – took 9 years to complete

Customers benefit from better-planned offshore transmission through reduced cost and risk of onshore transmission upgrades

- Previous analysis indicates that delays of even one or two years could cost ratepayers \$350 to \$700 million*
- These uncertainties add substantial risks to the feasibility of the current approach; potentially adding \$1.1 billion in costs

Sources: CHA analysis of "Phase 1" transmission upgrade costs for Anbaric included in Appendix C. *New Hampshire Transmission, "Greater Boston Cost Comparison," January 2015. BENEFITS OF PLANNED OFFSHORE TRANSMISSION Total costs of transmission are expected to be lower under a planned approach

Even including the more costly offshore transmission equipment (\$3.3B vs \$2.7B for Phase 1), total costs of onshore upgrades plus offshore transmission to enable the next 3,600 MW of OSW are estimated to be lower under a planned than the current gen-tie approach

 Onshore upgrade costs of \$0.55B under planned approach vs \$1.7B under current approach)

The planned approach to building offshore transmission can enable significant longterm cost savings and avoid some of the higher risks associated with onshore upgrades Comparison of Total Onshore Plus Offshore Transmission Costs in Phase 1 (3,600 MW additional OSW)

Source for cost data: Onshore upgrade cost estimates based on GE and CHA analysis of "Phase 1" scenarios for Anbaric included in Appendices B and C. Estimate for offshore transmission equipment based on proprietary supplier information provided to Anbaric.

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Increased competition among offshore <u>transmission</u> developers

Offshore transmission developers would compete to build planned transmission. This direct competition would put downward pressure on costs to ratepayers (further lowering costs beyond that described on previous slides)

- Studies of <u>onshore</u> transmission indicate that competitive procurement enables "significant innovation and cost savings of 20–30%" relative to the costs incurred by incumbent transmission companies; the costs of conducting the competitive processes are small compared to the savings*
- Studies of <u>offshore</u> transmission costs in the U.K. similarly indicate that competition across independent offshore transmission owners reduced costs 20–30% compared to generator-owned transmission (driven by lower operating costs and financing costs from improved allocation of risk and reduced risk premium)**

Anticipated Cost Impact of Competition to Develop Offshore Transmission

Sources: * The Brattle Group, "Cost Savings Offered by Competition in Electric Transmission: Experience to Date and the Potential for Additional Customer Value," April 2019, Produced for LSP Transmission. ** Cambridge Energy Policy Associates, "Evaluation of OFTO Tender Round 2 and 3 Benefits," March 2016, Produced for Ofgem.

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Lower total system-wide generation costs and savings to customers

Based on analyses conducted by GE, the planned approach will yield system-wide generation cost savings, primarily from reduced transmission losses and reduced offshore wind curtailments

- After Phase 2 with an additional 8 GW of OSW in service, curtailments would be reduced from 13% in the current approach to 4% in the planned: equivalent to ~700 MW
- This yields generation cost savings that reach \$55 million per year-under the planned approach relative to the current approach for Phase 2

The planned approach would inject more of the OSW into higher-priced locations on the grid, further reducing customer costs

- GE's estimated customer savings of the planned approach reach ~\$20 million per year in Phase 1 and over \$300 million per year in Phase 2 in 2028
- Part of this is a value transfer from conventional generators to customers, not necessarily a reduction in total system costs (so is not shown in the chart)

One Year System-wide Generation Cost Savings of Planned Approach Compared to Current Approach

> Phase 2 \$55M

Phase 1

~\$1M

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Increased competition among OSW generation developers

Competition among developers of OSW generation would be enhanced, yielding a range of potential cost savings

Minimum savings

Higher potential savings

The planned, competitive approach would simplify a major strategic decision for developers

Today, developers must bid before they have accurate information about their transmission upgrade costs. Removing these risks from the offshore generation procurement should lead to lower bids because of the reduced risk premium alone

Ultimately, it could increase participation and competition in OSW solicitations.

In Europe, planned transmission approaches have enhanced head-to-head competition leading to **zero-subsidy bids** in recent procurements (see case study details in appendix)

We anticipate more willing bidders and more competition with increased access to transmission (though overall still limited by number of leaseholders)

BENEFITS OF PLANNED OFFSHORE TRANSMISSION More efficient use of constrained "cableapproach" routes

There are a limited number of landing sites for offshore wind transmission lines in New England

In the longer term, if each OSW project requires a separate cable connection to the onshore transmission system, viable cabling routes become constrained

A planned transmission approach can make better use of limited landing sites.

For example:

- Anbaric's analysis indicates that access routes to Brayton Point have space for only 2 physical cable bundles. Under the current gen-tie approach this would accommodate 2 x 400 MW HVAC interconnection cable bundles
- A planned approach utilizing HVDC cable bundles can deliver 1,200MW to Brayton Point with room for an additional HVDC cable bundle before reaching spacing constraints

Example: Interconnection Capacity under the Current and Planned Approaches

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Reduced impacts to fisheries and the environment

Better planning can reduce the cumulative effects of offshore transmission on fisheries and the environment

- Under a planned off-shore-grid approach, marine trenching can be reduced by almost 50% (based on Anbaric proposed cable routing)
- Offshore cables can be grouped in transmission corridors to minimize impact; this is not possible to enforce under the current (one-off, unplanned) approach

Minimizing the number of offshore platforms, cabling, and seabed disturbance reduces impacts on existing ocean uses and marine environments to the greatest practical extent Comparison of Total Length of Undersea Transmission Under Current and Planned Approaches by Phase 2 (8,000 MW + additional OSW)

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Realize the full potential of existing lease areas

Without a well-planned offshore grid, some of the existing offshore lease sites may not be economic to develop

- After developers interconnect the bulk of their lease sites, it may be cost prohibitive to interconnect the residual areas (of perhaps 50 MW to 250 MW each) using AC generator lead lines sized to carry ~400 MW each
- This increases the risk of inefficient use of lease sites and stranded assets

An offshore grid with well-located offshore collector stations would increase the likelihood that residual lease areas could be developed costeffectively, and that the full potential of all lease areas can be realized Developers May Find Residual Areas Uneconomic to Interconnect With Generator Lead Lines

Map Source: Massachusetts CEC, "<u>Massachusetts Offshore Wind</u> <u>Initiatives</u>," EBC Sixth Annual Offshore Wind Conference.

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Improved reliability and reduced OSW curtailments

Designing and building the offshore grid with networking capability preserves the option to create a meshed configuration to improve reliability and reduce curtailments in case of transmission outages

- For example: If three 1,200 MW HVDC converter stations were networked offshore, an outage of one line would still allow flowing full power in all hours when the total generation is less than 2,400 MW, resulting in only 4% of energy curtailed relative to no outages
- Under the current (non-meshed) gen-tie approach, an outage in any one of three lines would results in 33% reduction in delivered energy to the onshore system, causing significantly more curtailments than under a meshed configuration

Source: Anbaric analysis.

Notes: Several European countries are studying meshed DC configurations for use interconnecting OSW in the North Sea. Reference materials compiled by Curis et al., "Synthesis of available studies on offshore meshed HVDC grids," 2016.

BENEFITS OF PLANNED OFFSHORE TRANSMISSION Enabling third-party customers

An independent, open-access offshore grid can create opportunities for additional (non-mandated) OSW resources to be built at lower cost

- As OSW generation costs decrease, third-party customers have expressed interest in purchasing offshore wind, but even large individual customers are unlikely to purchase sufficient OSW to fully utilize an export cable sized to carry 400 MW of offshore wind. Developing smaller projects with larger export cables would be uneconomical
- An open access transmission system could serve as a platform for individual offshore-wind procurements of smaller sizes, enabling OSW development without statesponsored contracts
- A generation developer could build surplus transmission capacity into a project but would then likely have market power in selling to third parties, whereas independent transmission would require OSW generators to compete against each other to utilize independent transmission.

Case examples:

Microsoft and Google purchased 90 MW and 92 MW of OSW over independent transmission in the Netherlands and Belgium

The Texas CREZ served as a platform for third-party power purchase agreements (PPAs), enabling over 2 GW of onshore wind PPAs from 22 corporate buyers

In the Southwest Power Pool, ISO-planned transmission investment enabled 2.5 GW of corporate PPAs

Procurement Approach

We recommend a planned approach to offshore transmission

A planned approach leverages competition among transmission developers to build out a New England offshore transmission grid in a staged manner, enhances competition between off-shore wind generators, and leads to lowest costs

Utilizing GLLs has distinct disadvantages over planned offshore transmission. While the GLL approach may appear to offer* lower costs in the short run, it is not aligned with the public interest in the long run, leading to:

- Poorer use of limited onshore POIs
- Increased seabed disturbance
- Reduced competition for transmission and off-shore wind generation
- Higher onshore transmission upgrade costs and higher overall costs in the long run

Under the planned approach, OSW generation developers still will be able to participate in transmission procurements,** but must be willing to develop openaccess transmission for other leaseholders when participating in the transmission procurement (even if their generation bid is unsuccessful in the generation procurement)

^{*} Costs of transmission in bundled generation + transmission bids could also appear artificially low if bidders can shift costs from transmission to generation within projects

^{**} This would require functional or physical business separation

Implementing planned transmission procurements

The planned approach can be implemented through joint procurement of transmission and generation. The solicitation can build on prior New England state procurements of transmission for renewable energy, including the 2015 "Three State RFP" issued by MA, CT and RI, which included a Transmission Service Agreement model. The procurement can be initiated immediately, with selection of winning projects by 2021.

Example Implementation of Transmission and Generation Procurement

- 1. Identify preferred onshore POIs based on long-term plan
- 2. <u>Solicit transmission</u> developers to propose multiple fixed-price options for (bidderdetermined) offshore collector station (OCS) locations and POIs
- Evaluate transmission (Tx) bids considering cost, accessibility to lease areas, impacts on fisheries & environment and select a single winning bidder – but do not yet select final OCS location or POI
- **4.** <u>Solicit generation</u> developers to bid to interconnect to any of the OCS locations provided by winning Tx bidder
- 5. Evaluate OSW generation bids, considering total cost (generation + transmission) and other factors to select generation developer and OCS location

Example of transmission and generation procurement

<u>Transmission</u> developers propose collector station locations A - E

Each transmission developer bids a fixed price for one or more collector station locations

Transmission developer #1 selected; leaseholders bid <u>wind generation</u> 1-5 to collector stations A, B, C

Each generation developer bids a fixed price for one or more collector station locations

Selection of winning configuration

Wind farms 4 and 5 connecting to collector station C minimize costs of procuring specified MW quantity of offshore wind

Mitigating risk with separate generation and transmission procurements

The current GLL approach places development of generation and offshore transmission under a single developer, but leaves onshore upgrades with incumbent (onshore) transmission owners

- This approach reduces coordination risk between OSW and offshore transmission, but there remains project-on-project risk related to the completion of onshore upgrades
- Furthermore, the misalignment between generation developer incentives and public policy objectives increase risks to the overall offshore wind development effort (significant onshore upgrades, higher curtailment risk, less competition, and higher longterm costs)

The planned offshore grid model reduces risks that could inhibit achievement of overall OSW development goals, and can also address individual project-on-project risk through:

- Strong performance and completion incentives (rewards or penalties) for both transmission and generation developers to meet project deadlines
- Allowing generation developer to participate in transmission procurement, with the condition that the transmission will be open access
- Staggered transmission and generation project completion timelines (e.g., scheduling transmission project completion before generation)

Appendix A: Case Studies

Case Studies Offshore transmission network in Europe

- Both Germany and the Netherlands have implemented a planned transmission approach, with offshore transmission developed separately and in anticipation of new OSW generation
- Offshore transmission developed by TSO and paid for by electric ratepayers (as with other transmission infrastructure)
- This approach has already enabled 8,600
 MW of OSW connected to Germany and the Netherlands to date
- Approach has increased competition among OSW developers. Project costs have declined by over 50% in the last five years, leading to "subsidy free" PPAs for recent OSW in both Germany and the Netherlands

Existing Offshore Transmission Development in the North Sea

Case Studies Planning in the North Sea of Europe

- Planning ahead in the North Sea included analyses of "Radial" versus "Meshed" offshore grid
 - The North Seas Countries' Offshore Grid initiative (NSCOGI), formed in 2010, evaluated and facilitated coordinated development of a possible offshore grid that maximizes the efficient and economic use of renewable resources and infrastructure investments
 - Ten countries were represented by their energy ministries, supported by their Transmission System Operators, their regulators and the European Commission.
- A scenario-based planning approach was initiated in 2012; analysis then already showed benefits of having a planned meshed offshore system*
- More recent 2019 planning and analysis of very high OSW penetration in the North Seas (380 GW by 2050) indicates substantial benefits of meshed offshore grids: lowering the environmental burden, using infrastructure more efficiently, and reducing costs*

Models of Offshore Grid Development Considered

Case Studies Offshore transmission network in the U.K.

- To date, all OSW transmission in the UK has a radial design, with the transmission developed by the OSW developer and then sold to a separate transmission owner
- However, this approach is reaching its limits, as ad-hoc onshore interconnections are pushed further inland with increasing community impacts.
- Ofgem is currently studying and strongly considering implementing an offshore transmission network.

Ofgem Study of Possible Offshore Grid Design

- Various studies conducted by Ofgem, utilities, and industry groups show that such a coordinated design could lower overall transmission costs by 9 to 15 percent.
- An offshore grid to support 34 GW of capacity would cost £24.2 billion (\$31.5 billion), equivalent to a transmission cost of £5.36/\$6.98 per MWh

Case Studies Competitive Renewable Energy Zones (CREZ) in Texas

- \$7 billion transmission-first program
- Phased development of transmission enabled 18.5 GW wind from five "competitive renewable energy zones" to rest of state
- Allowed rapid merchant development of wind in W. Texas, reducing electricity costs by \$1.7 billion annually
- Process: ERCOT designed transmission system configurations to integrate each renewable energy zone through a staged, expandable approach. Desired configurations selected by PUC and developed by competitive transmission developers and incumbents

Oklahoma New Mexico Lubbock Texarkana El Paso Nacogdocher Lufkin **College Station** San Antonia H Rio Legend Victoria CREZ Zones Status Panhandle A Construction Corpus Christi **Gulf of Mexico** Not Started Panhandle B In Construction Central Completed Central West Cancelled or AcCamey Inactive

Texas CREZ Transmission Projects

Case Studies Tehachapi Renewable Transmission Project (TRTP) in California

- Tehachapi was identified as a high wind potential region in southern California almost 20 years ago
- California policy makers solicited interest in building wind in Tehachapi
- California ISO developed a transmission plan for the region
- The transmission enabled 4,500 MW renewable power development
- 250 circuit miles, \$2.1 billion cost
- Built by transmission developer, with costs allocated using existing CAISO transmission cost allocation system

CAISO TRTP Transmission Projects
Support from Other Stakeholders

"Separating transmission from generation procurement, while complex, has the potential to deliver optimal outcomes for consumers and the environment."

- Environmental Stakeholders*

"A separate contingent solicitation for structure installation offshore could result in greatly fewer impacts to fisheries, and must have the primary goal of developing a more efficient (less cable used) and better-sited structure in the water."

- Responsible Offshore Development Alliance

"By allowing for more options for consideration and fostering greater competition, a planned transmission system benefits the offshore wind industry, states, taxpayers, local communities, the environment, local businesses, and other stakeholders. To maximize benefits and the opportunities for scaling an offshore wind industry that can create thousands of good sustainable jobs, BOEM should facilitate making open access, planned transmission available as an option [...]"

- International Brotherhood of Electrical Workers

"[...] the size and speed of OSW installations could overwhelm and congest our current land-based coastal grid, damaging the industry's reputation and shortchanging its growth potential."

- Tufts Power Systems and Power Research Group

Prepared By

Hannes Pfeifenberger Principal, Boston

+1.617.234.5624 Hannes.Pfeifenberger@brattle.com

Mr. Pfeifenberger is an economist with a background in electrical engineering and 25 years of experience in the areas of electricity markets, regulation, and finance. Mr. Pfeifenberger specializes in electricity market design and energy policies, transmission pricing and costbenefit analyses, analysis and mitigation of market power, strategy and planning storage and generation asset valuation, ratemaking and incentive regulation, and contract disputes and commercial damages.

Sam Newell Principal, Boston

+1.617.234.5725 Sam.Newell@brattle.com

Dr. Newell is an expert in electricity wholesale markets, market design, generation asset valuation, integrated resource planning, and transmission planning. He supports clients throughout the United States in regulatory, litigation, and business matters. strategy He frequently provides testimony and expert reports to Independent System Operators (ISOs), the Federal Energy Regulatory Commission (FERC), state regulatory commissions, and the American Arbitration Association.

Walter Graf Associate, Boston

+1.617.234.5749 Walter.Graf@brattle.com

Dr. Graf is an Associate with expertise in electricity wholesale market design and analysis, load forecasting, and rate design. His work focuses on addressing economic issues facing regulators, market operators, and market participants in the electricity industry in the transition to a low-carbon supply mix. The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governments around the world. We aim for the highest level of client service and quality in our industry.

Our Practices and Industries

ENERGY & UTILITIES

Competition & Market Manipulation **Distributed Energy Resources Electric Transmission Electricity Market Modeling** & Resource Planning **Flectrification & Growth Opportunities Energy Litigation Energy Storage Environmental Policy, Planning** and Compliance **Finance and Ratemaking** Gas/Electric Coordination Market Design Natural Gas & Petroleum Nuclear Renewable & Alternative Energy

LITIGATION

Accounting Analysis of Market Manipulation Antitrust/Competition Bankruptcy & Restructuring **Big Data & Document Analytics Commercial Damages Environmental Litigation** & Regulation Intellectual Property International Arbitration International Trade Labor & Employment Mergers & Acquisitions Litigation **Product Liability** Securities & Finance Tax Controversy & Transfer Pricing Valuation White Collar Investigations & Litigation

INDUSTRIES

Electric Power Financial Institutions Infrastructure Natural Gas & Petroleum Pharmaceuticals & Medical Devices Telecommunications, Internet, and Media Transportation Water

Our Offices

THE POWER OF **ECONOMICS**

brattle.com

Offshore Transmission in New England: Benefits of a Better Planned Grid Appendix B

Transmission Security Analysis & Economic Production Cost Simulation

May 13, 2020

Overview of Planning Study Process & Methodology

Transmission Security Analysis

Purpose: Model and Evaluate Costs of Current vs. Planned Transmission Development for ISONE Offshore Wind

Modify ISONE Cases to Create OSW Buildout Base Cases(PSSE)

- » Scenario 1: Current HVAC Transmission Buildout
- » Scenario 2: Planned HVDC Transmission Buildout + Mystic Reliability Wind Link Project

Perform Transmission Security Analysis (TARA)

- » NERC Transmission Planning Performance Requirements TPL-001-4
- » NPPC Directory #1: Design and Operation of Bulk Power System

Economic Study Process & Methodology

Purpose: Compare Economic Production Cost Metrics in Current vs. Planned Transmission

Build¹ GE EC MAPS 4-Pool Database Model (PJM/NYISO/IESO/ISONE)

- » Base Case: Install 3.1 GW of Baseline OSW in ISONE
- » Scenario 1: Current HVAC Transmission Buildout (8.1 GW OSW)
- » Scenario 2: Planned HVDC Transmission Buildout (8.6 GW OSW) + Mystic Reliability Wind Link Project

Base Case Assumption: Six Transmission Upgrades

» Upgrades assumed as necessary to address 44% curtailment resulting from Base Case injections

Scenario 1 & 2 Include Reliability Upgrades from Base Case Injections

» Necessary transmission upgrades to meet NERC TPL Standards / NPCC Directory 1 Requirements

Key Production Cost Simulation Metrics for ISONE

- » Offshore Wind Curtailment (%)
- » Annual Average LMP (\$/MWh)
- » Annual Production Cost Savings (\$M)
- » Load Payment Savings (\$M)

¹ https://www.iso-ne.com/static-assets/documents/2019/05/a2_2019_economic_study_draft_scope_of_work_and_high_level_assumptions.pptx

Overview of Economic Study Process & Methodology

Comparison to ISONE Economic Study Methodology¹

GE EC Anbaric Study

More granular and closely mirrors modeling new transmission overloads needed to be addressed to interconnect offshore wind

- » Network Topology Nodal model allows detailed specific N-1 transmission contingency constraints
- » Transmission Constraints (Current) Interface transfer limits *and* specific transmission element constraints (N-0 and N-1)
- Transmission Constraints (Offshore Wind Buildout) Model additional constraints (N-O and N-1) based on updated power flow analysis to more accurately capture future congestion patterns
 ISO Commitment & Dispatch
 Nodal Model

¹ https://www.iso-ne.com/static-assets/documents/2020/02/a6_nescoe_2019_Econ_8000.pdf

Offshore Wind Point-of-Interconnection List

Scenario 1 AC vs Scenario 2 HVDC Buildout

**Baseline 800 MW at Bourne 345 kV POI modele	ed at Canal 345	kV & Bourne 115 kV	Additional MWs Added to Baseline					
	Bus	Baseline Offshore	Scenario 1: Cu	rrent - Radial AC	Scenario 2: Planned	- Offshore HVDC Grid		
POI Substation Name	Number	Wind	Phased 2024	Full 2028	Phased 2024	Full 2028		
Footprint (Salem Harbor 115kV)	114417						σ	
Woburn 345 kV	110756					800	Q	
Mystic 345 kV	110759				1200	1200	2	
K Street 345 kV	110790					800	R	
Bridgewater 345 kV	115446					970	>	
Pilgrim (alternate to Footprint) 115 kV	110783						E	
Canal 345 kV	111193	600**	1100	2500			2	
West Barnstable 345 kV	111134	1600					2	
Bourne 115 kV	111217	200**	100	445			ž	
Brayton Point 345 kV	114734		800	800	1200	1200	A	
Kent County 345 kV	117301	704	800	2200		418	1	
Montville 345 kV	119180		800	2200			ŏ	
Millstone/WaterfordCT 345 kV	119194					1200	-	
New Haven (alternate to Kent Co)							$\backslash \leq$	
East Devon 345 kV	119389					800	N	
Singer/BridgeportCT 345 kV	123626				1200	1200		
Incremental MW Total to Onshore POIs		3104	3600	8145	3600	8588		
POIs		2	5	5	3	9		

Phased 2024 reflects next procurement round based on existing authorizations for MA (1600 MW), CT (1200 MW) and additional demand from other New England states and third parties

Full 2028 reflects development of full 14.5 GW estimated capacity of ISONE offshore lease areas. 2028 was chosen to remain within ISONE projections. Injection volumes in 2028 were based on assumed losses of 8% for Scenario 1 and 3% for Scenario 2. Subsequent revision of assumed losses to 4% for Scenario 1 and 2.4% for Scenario 2 would increase total 2028 injections to 8,499MW for Scenario 1 and 8,641MW for Scenario 2. Larger additional injections in Scenario 1 are not anticipated to change results significantly, as marginal injections at constrained POIs would have minimal system-wide impacts.

Millstone 1200 MW assumes continuing operation of Millstone Nuclear Plant in 2030, retirement of Unit 2 or 3 could enable additional offshore wind injection

Base Case Baseline OSW Buildout Map

- **Baseline POI** 1
- 3.104 GW »
- 3 POIs: »

WELLFLEET

ORLEANS

- Α. Bourne 345 kV
- Β. W. Barnstable 345 kV
- Kent County 345 kV C.

May 13, 2020 6

Transmission Security Results

TARA Analysis

Confidential. Not to be copied, distributed, or reproduced without prior approval.

N-1 Results

TARA Analysis

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Overloaded Monitored Elements in Scenario 1 <u>Phased</u> OSW Buildout (2024)

Overloaded Transmission Elements (27)

- New Overloads (10)
- Overloaded in Base Case <u>AND</u> OSW (13)
- Overloaded in Base Case, Worse in OSW (4)

Overloaded Transmission Elements by kV:

- 345 kV Branches (11)
- 115 kV Branches (29)

		2024 OSW	Scenario 2			Mitigated by
		Buildout	Base Case			Transmission
Monitored Facility	kV	AC Loading %	AC Loading %	Rating (MVA)	Frequency	Project
111133 CARVER 345 111193 CANAL 345 1	345	143	< 85%	1221	5	A
110814 BRIGHTON B 115 110855 WASH_TAP 511 115 1	115	129	< 85%	150	251	NONE
110813 BRIGHTON A 115 110854 WASH_TAP 510 115 1	115	129	< 85%	150	251	NONE
110782 JORDAN ROAD 345 111193 CANAL 345 1	345	128	< 85%	1446	5	А
110855 WASH_TAP 511 115 110887 BAKER ST PS2 115 1	115	123	< 85%	150	386	NONE
110854 WASH_TAP 510 115 110886 BAKER ST PS1 115 1	115	123	< 85%	150	386	NONE
111133 CARVER 345 111134 W BARNSTABLE 345 1	345	118	< 85%	1016	259	NONE
110853 COLBURN 511 115 110855 WASH_TAP 511 115 1	115	118	99	140	1	NONE
110852 COLBURN 510 115 110854 WASH_TAP 510 115 1	115	118	99	140	1	NONE
110887 BAKER ST PS2 115 110889 BAKER ST B 115 1	115	114	95	205	9	NONE
110886 BAKER ST PS1 115 110888 BAKER ST A 115 1	115	114	95	205	9	NONE
111133 CARVER 345 115013 NGR_356_NST 345 1	345	112	< 85%	1410	8	А
110786 STOUGHTON 345 110790 K STREET 1 345 2	345	111	< 85%	675	9	NONE
110786 STOUGHTON 345 110790 K STREET 1 345 1	345	110	91	675	5	NONE
111149 HORSEPDTP108 115 111156 VALLEYNB 108 115 1	115	109	< 85%	246	3	А
111133 CARVER 345 115036 NGR_331_NST 345 1	345	104	< 85%	1156	4	А
110780 WEST WALPOLE 345 115008 NST_331_NGR 345 1	345	104	< 85%	1156	4	А
111142 VALLEYNB 113 115 111158 HORSEPDTP113 115 1	115	103	< 85%	246	2	А
111158 HORSEPDTP113 115 111217 BOURNE 115 1	115	103	< 85%	246	2	А
111155 WAREHAM 108 115 111156 VALLEYNB 108 115 1	115	101	< 85%	246	2	А
111152 WAREHAM 113 115 111318 TREMONT 113 115 1	115	100	< 85%	246	2	А
111142 VALLEYNB 113 115 111152 WAREHAM 113 115 1	115	100	< 85%	246	2	А
111149 HORSEPDTP108 115 111217 BOURNE 115 1	115	101	88	354	1	А
110888 BAKER ST A 115 110892 HYDE PARK B 115 1	115	137	118	235	1	NONE
110889 BAKER ST B 115 110891 HYDE PARK A 115 1	115	136	116	235	1	NONE
110893 NEEDHAM 115 110894 DOVER MA 115 1	115	115	108	385	5	NONE
111137 TREMONT S 115 111155 WAREHAM 108 115 1	115	119	102	246	1	А

Transmission Project Code:

- A) Canal Stoughton 345 kV
- B) Brayton Point West Medway 345 kV
- C) Monvale Kent County 345 kV

Overloaded Monitored Elements in Scenario 1 <u>Full</u> OSW Buildout (2028)

Overloaded Transmission Elements (60)

- New Overloads (42)
- Overloaded in Base Case <u>AND</u> OSW (17)
- Overloaded in Base Case, Worse in OSW (1)

Overloaded Transmission Elements by kV:

- 345 kV Branches (22)
- 115 kV Branches (32)
- Transformers (6)

Transmission Project Code:

A) Canal - Stoughton 345 kV

- B) Brayton Point West Medway 345 kV
- C) Monvale Kent County 345 kV

		2028 OSW	Scenario 2			Mitigated by
		Buildout	Base Case			Transmission
Monitored Facility	kV	AC Loading %	AC Loading %	Rating (MVA)	Frequency	Project
111133 CARVER 345 111193 CANAL 345 1	345	217	< 85%	1221	33	A
110782 JORDAN ROAD 345 111193 CANAL 345 1	345	192	< 85%	1446	888	A
110814 BRIGHTON B 115 110855 WASH_TAP 511 115 1	115	171	< 85%	150	372	NONE
110813 BRIGHTON A 115 110854 WASH_TAP 510 115 1	115	170	< 85%	150	371	NONE
111149 HORSEPDTP108 115 111156 VALLEYNB 108 115 1	115	165	< 85%	246	58	A
111142 VALLEYNB 113 115 111158 HORSEPDTP113 115 1	115	158	< 85%	246	11	A
111158 HORSEPDTP113 115 111217 BOURNE 115 1	115	158	< 85%	246	11	A
111155 WAREHAM 108 115 111156 VALLEYNB 108 115 1	115	157	< 85%	246	8	A
111133 CARVER 345 115013 NGR_356_NST 345 1	345	156	< 85%	1410	847	A
111142 VALLEYNB 113 115 111152 WAREHAM 113 115 1	115	156	< 85%	246	9	A
111152 WAREHAM 113 115 111318 TREMONT 113 115 1	115	156	< 85%	246	9	A
110855 WASH_TAP 511 115 110887 BAKER ST PS2 115 1	115	152	< 85%	150	303	NONE
110854 WASH_TAP 510 115 110886 BAKER ST PS1 115 1	115	152	< 85%	150	303	NONE
111137 TREMONT S 115 111155 WAREHAM 108 115 1	115	148	< 85%	246	5	A
111133 CARVER 345 115036 NGR_331_NST 345 1	345	144	< 85%	1156	22	A
110780 WEST WALPOLE 345 115008 NST_331_NGR 345 1	345	144	< 85%	1156	22	A
110852 COLBURN 510 115 110854 WASH_TAP 510 115 1	115	141	99	140	1	NONE
110853 COLBURN 511 115 110855 WASH_TAP 511 115 1	115	141	99	140	1	NONE
110781 HOLBROOK 345 115009 NGR_335_NST 345 1	345	139	< 85%	1410	35	A
110786 STOUGHTON 345 110790 K STREET 1 345 2	345	138	< 85%	675	893	NONE
110786 STOUGHTON 345 110790 K STREET 1 345 1	345	137	< 85%	675	17	NONE
110886 BAKER ST PS1 115 110888 BAKER ST A 115 1	115	136	< 85%	205	359	NONE
110887 BAKER ST PS2 115 110889 BAKER ST B 115 1	115	136	< 85%	205	359	NONE
110782 JORDAN ROAD 345 115011 NGR_342_NST 345 1	345	132	< 85%	1855	11	A
110834 HIGH ST 510 115 110836 K STREET 1 115 1	115	130	< 85%	190	45	NONE
110835 HIGH ST 511 115 110837 K STREET 2 115 1	115	129	< 85%	190	48	NONE
111133 CARVER 345 111134 W BARNSTABLE 345 1	345	129	< 85%	1016	100	NONE
110830 KINGSTN ST W 115 110836 K STREET 1 115 2	115	125	< 85%	190	29	NONE
111136 KINGSTON 115 115006 NGR_191_NST 115 1	115	124	< 85%	165	2	NONE
110830 KINGSTN ST W 115 110836 K STREET 1 115 1	115	124	< 85%	190	29	NONE
115446 BRIDGEWATER 345 115451 BRIDGEWATER 115 2	345	122	< 85%	472	1	А
111149 HORSEPDTP108 115 111217 BOURNE 115 1	115	121	< 85%	354	4	А
110772 W MEDWAY B 345 115014 NGR_357_NST 345 2	345	118	< 85%	1315	1	NONE
119168 HADDAM NECK 345 119180 MONTVILE 364 345 1	345	118	< 85%	1884	8	С
110836 K STREET 1 115 110790 K STREET 1 345 1	345	117	< 85%	750	7	NONE
110837 K STREET 2 115 110790 K STREET 1 345 1	345	117	< 85%	750	8	NONE
115011 NGR_342_NST 345 115447 AUBURN ST 345 1	345	116	< 85%	2108	5	А
110814 BRIGHTON B 115 110815 N. CAMBRIDGE 115 1	115	114	< 85%	231	4	NONE
115008 NST_331_NGR 345 115036 NGR_331_NST 345 1	345	113	< 85%	1466	8	A
115446 BRIDGEWATER 345 115451 BRIDGEWATER 115 1	345	112	< 85%	515	1	A
110813 BRIGHTON A 115 110989 BLAIR POND 115 1	115	111	< 85%	231	1	NONE
113950 SANDY POND 345 114027 SANDY PD T1 99.0 1	345	111	86	572	1	NONE
110888 BAKER ST A 115 110892 HYDE PARK B 115 1	115	110	< 85%	235	3	NONE
110889 BAKER ST B 115 110891 HYDE PARK A 115 1	115	110	< 85%	235	3	NONE
113264 MILLBURY 345 113265 WACHUSETT 345 1	345	108	< 85%	1609	1	NONE
110900 HOLBROOK 115 110908 E.HOLBRK TAP 115 1	115	107	< 85%	548	2	A
119194 MILLSTONE 345 119209 HADDAM 345 1	345	107	< 85%	1884	6	С
110791 HYDE PARK 115 110788 HYDE PARK 345 1	345	107	89	600	8	NONE
117001 WEST FARNUM 345 117301 KENT COUNTY 345 2	345	107	< 85%	1918	4	С
113950 SANDY POND 345 113951 TEWKSBURY 345 1	345	107	< 85%	1918	6	NONE
110770 W MEDWAY A 345 110794 W MEDWAY A 230 1	345	107	< 85%	585	9	NONE
117330 JOHNSTON_171 115 117334 RISE 171_TAP 115 1	115	106	< 85%	446	2	В
117001 WEST FARNUM 345 117301 KENT COUNTY 345 1	345	106	< 85%	1918	4	С
110832 KINGSTN ST A 115 110835 HIGH ST 511 115 1	115	106	< 85%	190	4	NONE
110833 KINGSTN ST B 115 110834 HIGH ST 510 115 1	115	105	< 85%	190	4	NONE
110781 HOLBROOK 345 110786 STOUGHTON 345 1	345	105	< 85%	1649	1	A
115013 NGR_356_NST 345 115446 BRIDGEWATER 345 1	345	104	< 85%	2108	4	A
110908 E.HOLBRK TAP 115 115020 NG451-536NST 115 1	115	102	< 85%	588	1	A
110893 NEEDHAM 115 110894 DOVER MA 115 1	115	101	< 85%	385	1	NONE
117327 DRUMROCK 115 117379 DRUMROCK T5 99.0 1	115	116	113	107	1	С

Overloaded Monitored Elements in Scenario 2 <u>Phased</u> & <u>Full</u> OSW Buildout (2024 & 2028)

Overloaded Transmission Elements (1 & 4)

- New Overloads (1 in 2024 & 4 in 2028)
- No Pre-existing Overloads Worse with OSW

2	0	2	4

		2024 OSW	Scenario 2		
		Buildout	Base Case		
Monitored Facility	kV	AC Loading %	AC Loading %	Rating (MVA)	Frequency
110758 N. CAMBRIDGE 345 110759 MYSTIC MA 345 1	345	113	< 85%	596	2

Overloaded Transmission Elements by kV:

- 345 kV Branches (1 in 2024 & 2 in 2028)
- 115 kV Branches (0 in 2024 & 2 in 2028)

2028

		2028 OSW	Scenario 2		
		Buildout	Base Case		
Monitored Facility	kV	AC Loading %	AC Loading %	Rating (MVA)	Frequency
110888 BAKER ST A 115 110892 HYDE PARK B 115 1	115	115	100	235	1
110889 BAKER ST B 115 110891 HYDE PARK A 115 1	115	113	97	235	1
119441 NU_3921_UI 345 119480 NORWALK 345 1	345	107	< 85%	1133	3
119428 NU_3280_UI 345 119480 NORWALK 345 1	345	107	< 85%	1133	3

N-1-1 Results

TARA Analysis

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Overview of N-1-1 Methodology

Relevant Notes for TARA Analysis

N-1-1 analysis focuses on the next 3.6 GW offshore wind injection most immediately relevant N-1-1 analysis for the full 8+ GW build out was beyond the scope of this analysis

NERC

» Allows Non-Consequential Load-Shedding for non-generator first contingency loss in N-1-1

NPCC

- » For simplicity, Bulk Power System (BPS) Assumption for ISONE: 200kV+
- » Actual ISONE BPS list contains many elements below 200kV

Overloaded Monitored Elements in Scenario 1

NPCC Criteria

NERC Criteria

OSW Dverloaded Monitored Element OSW Buildout AC %Loading Total N-1-1 Contingency (MVA) Base Case AC Combinations or Makes Existin Overload Wor 11133 CARVER 345 11193 CANAL 345 1 194.5 1221 3305 less than 85% 110786 STOUCHTON 345 110790 KSTREET 1 345 2 176.8 675 10474 100 110786 STOUCHTON 345 110790 KSTREET 1 345 1 176.6 675 10474 100 110786 STOUCHTON 345 110790 KSTREET 1 345 1 165.6 1446 1734 less than 85% 11133 CARVER 345 115036 NGR 331, NGT 345 1 144.1 1156 16 less than 85% 11133 CARVER 345 115036 NGR 331, NGT 345 1 130.3 144.0 13 less than 85% 11926 MLIDEN K 345 119180 MONTVILE 344 345 1 132.4 1884 104 less than 85% 11924 MLISTONE 345 11920 HADDA M 345 1 124.8 1884 104 less than 85% 121400 NE 603, NY 138 129343 NRTHYP 1 188 1 124.8 1884 less than 85% 121400 NE 603 NY 138 129343 NRT						New Overload
Out Total NPT Total NPT Total NPT Total NPT Buildout CK Rating Contingency Base Case AC Makes Existin Diverloaded Monitored Element %Loading (MVA) Combinations %Loading Overload Wor 111133 CARVER 345 11193 CANUA 345 1 194.5 1221 3035 Eess than 85% 110786 STOUGHTON 345 11193 CANUA 345 1 174.6 675 1417 100 110782 CRONA ROAD 345 11193 CANUA 345 1 143.8 1156 16 less than 85% 110782 CRONA NCAD 345 115008 NST 331, NGT 345 1 143.8 1156 16 less than 85% 11133 CARVER 345 115008 NST 331, NGT 345 1 135.2 1884 382 less than 85% 111313 CARVER 345 115008 NST 331, NGT 345 1 126.9 13 less than 85% 11133 CARVER 345 115008 NST 331, NGT 345 1 126.9 13 less than 85% 112020 NE GOL, NY 138 129343 NRTHYT P 138 1 124.4 191 less than 85% 121		0514/		Total N-1-1		or
Buildout AC, Kating Contingency Base Case AL, Makes Existin 0verloaded Monitored Element %Loading (MVA) Combinations %Loading Overload Wor 111133 CARVER 345 111193 CANAL 345 1 194.5 1221 3305 less than 85% 0 110786 STOUGHTON 345 10790 KSTREET 1 345 2 176.8 675 10474 100 110786 STOUGHTON 345 10790 KSTREET 1 345 1 176.6 675 10474 100 110786 STOUGHTON 345 11790 KSTREET 1 345 1 144.1 1156 16 less than 85% 110780 KTOUGHTON 345 115008 NGR 331, NGR 345 1 143.8 1156 16 less than 85% 119126 MLDRONE 345 115013 NGR 356, NST 345 1 124.3 1884 104 less than 85% 119124 MLISTONE 345 112013 NGR 356, NST 345 1 124.4 191 less than 85% 121400 NE 603 NY 138 129343 NRTHPT P 188 1 124.4 191 less than 85% 121400 NE 603 NY 138 129343 NRTHPT P 188 1 124.4 191 less than 85% 131305		0.500		10(011)-1-1		
Overloaded Monitored Element %Loading (MVA) Combinations %Loading Overload Wor 111133CARVER 345 11193 CANK 345 1 194.5 1221 3305 lessthan 85% 110786 STOUGHTON 345 10790 KSTREET 345 1 174.6 675 10474 100 110782 STOUGHTON 345 1155.6 1446 1734 lessthan 85% 110782 JCRANR ROAD 345 1 144.1 1156 16 lessthan 85% 110780 STOUGHTON 345 1 143.8 1135.2 1884 3832 lessthan 85% 110780 VEXPLOE 455 11900 MONTVILE 364 345 1 125.9 1382 7 lessthan 85% 119132 CARVER 345 19209 HADDAM 345 1 124.8 184 104 less than 85% 121400 NE 602 NY 138 129343 NRTHPT P 188 1214.0 191 less than 85% 121400 NE 602 NY 138 1293.4 111.8 128		Buildout AC	Rating	Contingency	Base Case AC	wakes Existing
111133 CARVER 345 111193 CANAL 345 1 194.5 1221 3305 less than 85% 110786 STOUGHTON 345 10790 K STREET 1 345 1 174.6 675 10174 100 110786 STOUGHTON 345 110790 K STREET 1 345 1 174.6 675 4117 100 110786 STOUGHTON 345 110780 K STREET 1 345 1 165.6 1446 1724 less than 85% 110780 WEST WALPOLE 345 115008 NKR 331, NGR 345 1 143.8 1156 less than 85% less than 85% 119168 HADDAM NECK 345 119108 ONNTVILE 363 345 1 130.3 1410 13 less than 85% 119124 MILSTONE 345 119209 HADDAM 345 1 124.8 1884 104 less than 85% 121409 NE 60.1, NY 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 NE 60.1, NY 138 129434 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 NE 60.1, NY 138 129434 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 NE 60.1, NY 138 129434 NRTHPT P 138 1 124.4 191 1 less than 85% <	Verloaded Monitored Element	%Loading	(MVA)	Combinations	%Loading	Overload Worse
110786 STOUCHTON 345 110790 K STREET 1 345 2 176.8 675 10474 100 110786 STOUCHTON 345 110790 K STREET 1 345 1 174.6 675 4117 100 110786 STOUCHTON 345 110790 K STREET 1 345 1 156.6 1446 173.4 less than 85% 111133 CARVER 345 115036 NGR 331, NGT 345 1 144.1 1156 16 less than 85% 119166 HADDAM NECK 345 119180 MONTVILE 364 345 1 135.2 1884 138.2 ress than 85% 119173 CARVER 345 115031 NGR 356, NT 345 1 130.3 1410 13 less than 85% 119194 MILSTONE 345 119209 HADDAM 345 1 122.4 191 1 less than 85% 121400 N EGO NV 138 129343 NRTHPT P 188 1 124.4 191 1 less than 85% 121400 N EGO NV 138 129343 NRTHPT P 188 1 124.4 191 1 less than 85% 121400 N EGO NV 138 129243 NRTHPT P 188 1 124.4 191 1 less than 85% 12140 N EGO NV 138 129243 NRTHPT P 188 1 124.8 191 less than 85% 1 12140 N EGO NV 138 129243 NRTHPT P 188 1 128.4 188 less than 85% 1	11133 CARVER 345 111193 CANAL 345 1	194.5	1221	3305	less than 85%	
110786 STOUGHTON 345 110790 KSTREFT 345 1 174.6 675 4117 100 110782 (ORDAN ROAD 345 111193 CANLA 345 1 165.6 1446 1774 less than 85% 111133 CARVER 345 115036 NGR 331_NST 345 1 144.1 1156 16 less than 85% 110782 (ORDAM NECX 345 115008 NST 345 1 143.8 1156 16 less than 85% 110780 WEST WALPOLE 345 115008 NST 345 1 135.2 1884 382.2 less than 85% 111333 CARVER 345 115003 NST 345 1 120.3 1410 13 less than 85% 119727 NE 398 NV 345 12624 PHTVLEY 345 1 125.9 1382 7 less than 85% 121408 NE 602_NV 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 NE 602_NV 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 NE 602_NV 138 129343 NRTHPT P 138 1 121.8 142 6 less than 85% 13264 MILLBURY 345 113265 WACHUSETT 345 1 118.9 1609 16 less than 85% 13264 MILLBURY 345 113026 NRG, 331 NST 345 1 113.6 1466 12 less than 85% 131264 MILLBURY 4	10786 STOUGHTON 345 110790 K STREET 1 345 2	176.8	675	10474	100	
110782 JORDAN ROAD 345 111193 CANAL 345 1 1155.6 1446 1734 less than 85% 110782 AVEX 345 110508 NGR 331, NGR 345 1 144.1 1156 16 less than 85% 110780 WEST WALPOLE 345 115008 NGR 331, NGR 345 1 143.8 1156 16 less than 85% 11133 CARVER 345 115013 NGR 356, NST 345 1 135.2 1884 3832 less than 85% 11133 CARVER 345 115013 NGR 356, NST 345 1 125.9 1382 7 less than 85% 119924 NILTSONE 345 11209 HADDAM 345 1 124.8 1884 104 less than 85% 121400 NE 602, NY 138 129343 NRTHPT P 188 1 124.4 191 less than 85% 12140 NE 603, NY 138 129343 NRTHPT P 188 2 121.8 118 less than 85% 12140 NE 603, NY 138 129343 NRTHPT P 188 2 121.8 142.8 less than 85% 12140 NE 603, NY 138 129343 NRTHPT P 188 3 123.2 191 1 less than 85% 12140 NE 603, NY 138 129343 NRTHPT P 188 3 123.2 191 1 less than 85% 131350 SANDY POND 345 1 114.6 144.8 less than 85% less than 85% less than 85%	10786 STOUGHTON 345 110790 K STREET 1 345 1	174.6	675	4117	100	
111132 CARVER 345 1141.1 1156 16 less than 85% 110780 WET WAUPOLE 345 1135.2 1884 3832 less than 85% 119168 HADDAM NECK 345 1135.2 1884 3832 less than 85% 119168 HADDAM NECK 345 1135.2 1884 3832 less than 85% 119172 NE 386 NY 345 125.9 1382 7 less than 85% 119172 NE 385 1973 PA 345 112.4 191 1 less than 85% 121409 NE 002 NY 138 1294.3 191 1 less than 85% 12140 NE 003 NY 138 1293.4 NTHPT P 188 121.8 191 1 less than 85% 113266 MILLBURY 345 13551 TEW/SEBURY 345 121.8 148 6 less than 85% 113264 MILLBURY 345 13555 116.7 less than 85% less than 85% less than 85% 110770 W MEDWAY A 345 114.7 1884 18 less than 85% less than 85% less than 85% less than 85%	10782 JORDAN ROAD 345 111193 CANAL 345 1	165.6	1446	1734	less than 85%	
110780 WEST WALPOLE 345 115008 NST 331_NGR 345 1 143.8 1156 16 less than 85% 111131G ARDAM NECK 345 119180 MONTVILE 364 345 1 130.3 1410 13 less than 85% 111133 CARVER 345 115013 NGR 356_NST 345 1 130.3 1410 13 less than 85% 111924 MLDSTORE 345 11920 HADDAM 345 1 122.9 1382 7 less than 85% 111924 MLSTORE 345 11920 HADDAM 345 1 124.8 1884 104 less than 85% 121409 N.E GO1_NY 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 N.E GO1_NY 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 N.E GO1_NY 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121409 N.E GO1_NY 138 129343 NRTHPT P 138 1 124.8 191 less than 85% 11326 MADK POND 345 11 121.8 1918 97 less than 85% 11326 MALDEWY 345 11 121.8 142.8 less than 85% 11326 MALDEWY 345 11 121.8 142.8 less than 85% 11326 MALDEWY 345 11 121.8 142.8 less than 85% 1131.8 142.8 le	11133 CARVER 345 115036 NGR_331_NST 345 1	144.1	1156	16	less than 85%	
119186 HADDAM NECK 345 119180 MONTYUE 364 345 1 135.2 1884 3832 less than 85% 11133 CAPKER 345 115013 NGR 356, NGT 345 1 130.3 1410 13 less than 85% 119272 NE 398, NY 345 126294 PLTVLLEY 345 1 125.9 1382 7 less than 85% 119194 MILLSTONE 345 119209 HADDAM 345 1 124.4 1984 104 less than 85% 121408 NE (60, NY 138 129343 NRTHPT P 138 1 124.4 191 1 less than 85% 121410 NE (60, NY 138 129343 NRTHPT P 138 2 124.0 191 less than 85% 121410 NE (60, NY 138 129343 NRTHPT P 138 3 123.2 191 less than 85% 113266 MILLBURY 345 113255 TEWKSDURY 345 1 121.8 128 6 less than 85% 113264 MILLBURY 345 113255 WACHUSET 345 1 114.7 1884 18 less than 85% 10707 W MEDWAY A 345 115036 NGR 331 NST 345 1 113.6 1466 12 less than 85% 101912 NLER 345 107040 VERNON Y 345 1 112.8 1912 less than 85% NOT Overloaded Du 119128 VEEM 345 113950 SANDY POND 345 1 109.6 1626 6 less than 85% NOT Overloaded in B	10780 WEST WALPOLE 345 115008 NST_331_NGR 345 1	143.8	1156	16	less than 85%	
111133 CARVER 345 1103 1410 13 1est han 85% 111133 CARVER 345 11259 1382 7 less than 85% 11972 NE, 398, NV 345 345 2204 PLTVLEY 345 1259 1382 7 less than 85% 119194 MILLSTONE 345 11209 NE, 602, NV 138 138 12943 NRTHPT P 138 1244.0 191 1 less than 85% 121400 NE, 602, NV 138 138 12943 NRTHPT P 138 124.2 191 1 less than 85% 12140 NE, 602, NV 138 138 12943 NRTHPT P 138 121.2 191 1 less than 85% 113350 SANDY POND 345 1391 TEW/SEWEW 345 1 121.8 1426 less than 85% 113264 MILLBURY 345 131264 MILLSTONE 345 1 111.7 585 327 9 1191381 MONTVILE 371 345 119149 A1 188 15008 NST, 331, NGR 345 115036 NGR, 331 NST 345 1 113.6 1466 12 less than 85% New Overloads DU 119129 KLEEN 345 119142 SCOVILLE RCK 345 1 109.2 1611 3 less than 85% NOT Overloaded in Ba 113265 MACHUSETT <	19168 HADDAM NECK 345 119180 MONTVILE_364 345 1	135.2	1884	3832	less than 85%	
119272 NE_389_NY 345 12529 1382 7 less than 85% 119194 MILLSTONE 345 124.8 1884 104 less than 85% 121400 NE_601_NY 138 12934 NICHYPT P 138 124.4 191 1 less than 85% 121400 NE_602_NY 138 129343 NRTHPT P 138 124.2 191 1 less than 85% 12140 NE_603_NY 138 129343 NRTHPT P 138 123.2 191 1 less than 85% 113950 SANDY POND 345 1321.4 191 less than 85% less than 85% 1139259 LONG MTN 345 1321.8 142.8 6 less than 85% 1139259 LONG MTN 345 1321.8 142.8 6 less than 85% 110770 W MEDWAYA 345 1 114.7 1884 18 less than 85% 104191 NU_331, VEL 345 10744 MEDWAYA 345 1 124.6 less than 85% 104191 NU_331, VEL 345 1 112.6 121 less than 85% less than 85% 104191 NU_331, VEL 345	11133 CARVER 345 115013 NGR_356_NST 345 1	130.3	1410	13	less than 85%	
119194 MILLSTONE 345 11924 1248 1244 1248 104 less than 85% 121408 NE, GOJ, NY 138 12943 NRTHPT P 138 1 1244 less than 85% 121409 NE, GOZ, NY 138 12943 NRTHPT P 138 1 1244 less than 85% 121400 NE, GOZ, NY 138 12943 NRTHPT P 138 1 1214 less than 85% 12140 NE, GOZ, NY 138 12943 NRTHPT P 138 1 1214 less than 85% 113950 SANDY POND 345 1 1214.8 168 fless than 85% 113264 MILLBURY 345 13555 WACHUSETT 345 1 114.7 184 18 less than 85% 110770 W MEDWAY A 345 1 114.6 1491 41 88 1 1 11914 less than 85% Scenario 10 SW bull NOV Overloads DU 1 1128 1 1 less than 85% NOV Overloads DU 1 1 1 1 NOT Overloads DU 1 1 1 1 1 1 1	19272 NE_398_NY 345 126294 PLTVLLEY 345 1	125.9	1382	7	less than 85%	
121408 NE_601_NY 138 129343 NRTHPT P 138 12 144 191 1 less than 85% 121408 NE_602_NY 138 129343 NRTHPT P 138 2 1240 0 191 1 less than 85% 121410 NE_603_NY 138 129343 NRTHPT P 138 3 123.2 191 1 less than 85% 113950 SANDY POND 345 113951 TEWKSDURY 345 1 121.8 1918 97 less than 85% 1139259 LONG MIN 345 113256 WACHUSETT 345 1 112.8 1428 6 less than 85% 110770 W MEDWAYA 345 119294 MILLSTONE 345 1 114.7 1585 52.7 9.1 119181 MONTVILE 371 345 119194 MILLSTONE 345 1 114.6 1491 48 119129 KLEEN 345 115036 NGR 331 NST 345 1 113.6 1466 12 less than 85% 104191 NU_381 JVEL 345 11904 SUDJSNU 381, NJ 345 1 109.2 1611 3 less than 85% 113265 WACHUSETT 345 11 109.2 1611 3 less than 85% 113265 WACHUSETT 345 11 107.1 1635 13 less than 85% 113265 WACHUSETT <	19194 MILLSTONE 345 119209 HADDAM 345 1	124.8	1884	104	less than 85%	
121409 NE_602_NY 188 129343 NRTHPT P 188 2 124.0 191 1 less than 85% 121410 NE_603 NY 138 12343 NRTHPT P 188 3 123.2 191 1 less than 85% 113950 SANDY POND 345 113951 TEWKSBURY 345 1 121.8 1918 97 less than 85% 113264 MILBURY 345 113255 WACHUSETT 345 1 111.8 1609 16 less than 85% 110700 W MEDWAY A 345 110794 W MEDWAY A 230 1 117.6 585 327 91 119181 MONTVIE 371 345 1109194 MILISTONE 345 1 114.7 1884 18 less than 85% 110700 W EBWAY A 345 115036 NGR 331 NST 345 1 112.8 1912 less than 85% New Overloads Du 119128 KLEMT 345 113042 COVILE RCK 345 1 112.8 1912 less than 85% NOT Overloaded in 8a 113265 WACHUSETT 345 113950 SANDY POND 345 1 109.6 1626 6 less than 85% NOT Overloaded in 8a 113265 WACHUSETT 345 113950 SANDY POND 345 1 108.0 1635 13 less than 85% NOT Overloaded in 8a 113245 WALHUSET 345 113950 SANDY POND 345 1 107.1 1647 1 less than 85% 119428 SCUVILE RCK 345 119208 DESECK 345 1 </td <td>21408 NE_601_NY 138 129343 NRTHPT P 138 1</td> <td>124.4</td> <td>191</td> <td>1</td> <td>less than 85%</td> <td></td>	21408 NE_601_NY 138 129343 NRTHPT P 138 1	124.4	191	1	less than 85%	
121410.NE_603_NY_138 12943 NRTHPT P 138 1232 191 1 less than 85% 113950 SANDY POND 345 11351 TEWKSURY 345 1 121.8 1918 97 less than 85% 1139259 LONG MTN 345 11351 TEWKSURY 345 1 121.8 1918 97 less than 85% 113256 VACHUSETT 345 11 121.8 118.9 1609 less than 85% 113070 W MEDWAY A 345 11094 W MEUXAY A 230 1 117.6 585 527 91 119181 MONTVILE 371 345 119194 MILLSTONE 345 1 114.4 184 18 less than 85% 119192 KLEN 345 119194 MILLSTONE 345 1 113.6 1466 12 less than 85% 119192 KLEN 345 119142 KOULL RCK 345 1 112.8 1912 15 less than 85% 113265 WACHUSETT 345 11 109.2 1611 3 less than 85% Scenario 1 OSW Buil 104159 NU 350 LONEY POND 345 1 107.3 1697 11 less than 85% Iess than 85% 123637 ESHORE 9X 345 11920 BESECK 345 1 107.1 1884 less than 85% Iess than 85% 123637 ESHORE 9X	21409 NE_602_NY 138 129343 NRTHPT P 138 2	124.0	191	1	less than 85%	
113950 SANDY POND 345 113951 TEWKSBURY 345 1 121.8 1918 97 less than 85% 119259 LONG MTN 345 113265 WACHUSETT 345 1 121.8 1428 6 less than 85% 113264 MILLBURY 345 113265 WACHUSETT 345 1 112.1.8 1428 6 less than 85% 110770 W MEDWAY A 345 113265 WACHUSETT 345 1 118.9 1009 16 less than 85% 10170 W MEDWAY A 345 110740 WHEDWAY A 320 1 117.6 585 327 91 19181 MONTVIE 371 345 107940 WEDWAY A 345 1 114.6 1491 41 88 119128 VIEET 345 113046 X451 1 112.8 1912 less than 85% Scenario 1 OSW MEDWAY 101228 VIEET 345 113950 SANDY POND 345 1 109.6 1626 6 less than 85% 104159 NU 326_NGR 345 113950 SANDY POND 345 1 109.6 1635 13 less than 85% 104159 NU 326_NGR 345 113950 SANDY POND 345 1 107.1 1617 1 less than 85% 113452 SWACHUSET 345 113007 1 1617 1 less than 85% 119142 SCOVILE RCK 345 119208 BESICK 345 1 107.1 184 8 less tha	21410 NE_603_NY 138 129343 NRTHPT P 138 3	123.2	191	1	less than 85%	
119259 LONG MTN 345 119272 ME 398, NY 345 1 121.8 1428 6 less than 85% 113264 MILLBURY 345 113264 MILLBURY 345 113264 less than 85% 113264 MILLBURY 345 113264 1117.6 585 327 91 119181 MONTVILE 371 345 119194 MILLSTONE 345 1 114.7 1884 18 less than 85% 1191928 LEW 345 15036 NGR, 331 NGT 345 1 114.6 1491 41 88 119129 KLEM 345 15036 NGR, 331 NST 345 1 113.6 1466 12 less than 85% New Overloads DU 19129 KLEM 345 113265 XOLVUE RCK 345 1 109.2 1611 3 less than 85% NOT Overloaded in Ba 113265 WACHUSETT 345 11935 NU 375 NON 2455 1 107.1 1635 13 less than 85% 11942 SCOVILE RCK 345 1 107.1 1617 3 less than 85% 11942 SCOVILE RCK 345 1 107.1 1884 8 less than 85% 11942 SCOVILE RCK 345 <td>13950 SANDY POND 345 113951 TEWKSBURY 345 1</td> <td>121.8</td> <td>1918</td> <td>97</td> <td>less than 85%</td> <td></td>	13950 SANDY POND 345 113951 TEWKSBURY 345 1	121.8	1918	97	less than 85%	
113264 MILLBURY 345 113265 WACHUSETT 345 1 118.9 160 16 less than 85% 110770 W MEDWAYA 345 1 117.6 585 327 91 119181 MONTVILE 345 119194 MILLSTONE 345 1 114.7 1884 18 less than 85% 104191 NU_381, VEL 345 10740 V ERDWAYA 345 1 114.6 1491 41 88 105008 NCT 331 NCR 345 1 113.6 1466 12 less than 85% Scenario 1 05W Buil 1019129 KLEEN 345 119142 SCOVILLE RCK 345 1 109.2 1611 3 less than 85% 113265 WACHUSETT 345 1 109.2 1611 3 less than 85% 113265 WACHUSETT 345 1 107.3 1697 11 less than 85% 12365 SWACHUSETT 345 1 107.1 617 7 less than 85% 119168 HADDMAN NECK 345 1 107.1 617 7 less than 85% 119168 HADDMAN NECK 345 1 107.1 184 8 less t	19259 LONG MTN 345 119272 NE_398_NY 345 1	121.8	1428	6	less than 85%	
110770 W MEDWAY A 345 110794 W MEDWAY A 230 1 117.6 585 327 91 119181 MONTVILE 371 345 119194 MILISTONE 345 1 114.7 1884 18 less than 85% 115036 NONTVIE 345 1 114.6 1491 41 88 115008 NST 331 NG 345 1 113.6 1466 12 less than 85% 119129 KLEEM 345 1013.04 112.8 1912 Less than 85% NOT Overloaded in 8a 113265 WACHUSETT 345 13950 SANDY POND 345 1 109.6 1635 13 less than 85% 113265 WACHUSETT 345 1192.6 1635 13 less than 85% 104159 NU 326 NOR 345 107.3 1697 11 less than 85% 113265 WACHUSETT 345 1107.1 1617 7 less than 85% 119142 SCOVILE RCK 345 192.0 1617 1884 8 less than 85% 119142 SCOVILE RCK 345 1107.1 1884 8	13264 MILLBURY 345 113265 WACHUSETT 345 1	118.9	1609	16	less than 85%	
119181 MONTVILE 371 345 119194 MILLISTONE 345 1 114.7 1884 18 less than 85% 104191 NU 381 VEI 345 107040 VERNON VT 345 1 114.6 1491 41 88 119120 KLEEN 345 119142 SCOVILLE RCK 345 1 113.6 1466 12 less than 85% Scenario 1 50W Buil 104191 NU 381 VEI 345 10195 NU 381, NU 345 1 113.6 1466 12 less than 85% Scenario 1 50W Buil 104191 NU 381 VEI 345 10415 NU 381, NU 345 1 109.6 1626 6 less than 85% Scenario 1 50W Buil 104159 NU 381, VEI 345 10195 NU 381, NU 345 1 109.2 1611 3 less than 85% NOT Overloaded in 8a 104159 NU 326, NCR 345 113950 SANDY POND 345 1 107.3 1697 11 less than 85% NOT Overloaded in 8a 12637 ESHORE 9X 345 122638 ESHORE TELEM 345 1 107.1 617 7 less than 85% 119168 HADDAM NECK 345 11 107.0 1884 8 less than 85% 110780 HUID NOB NGR, 336, NST 345 1 105.8 166 less than 85% 110780 HUID NOB NGR, 336, NST 345 1 105.8 164 4 less than 85% 110780 HUID NOB NGR, 336, NST 345 1 105.8 164 4 less than 85% 119420 KU	10770 W MEDWAY A 345 110794 W MEDWAY A 230 1	117.6	585	327	91	
104191 NU_381_VEL_345 107040 VENNON VT_345 1 114.6 1491 41 88 115008 NST_331_NGR_345 115036 NGR_331_NST_345 1 113.6 1466 12 less than 85% Scenario 1 OSW Bull 1019129 KLEN 345 119142 SCOVILLE RCK 345 1 112.8 1912 115 less than 85% Scenario 1 OSW Bull 1019129 KLEN 345 10195 NU_381_NU_345 1 109.6 1626 6 less than 85% Scenario 1 OSW Bull 101326 WLER M45 10195 NU_380_NND POND 345 1 109.6 1626 6 less than 85% Scenario 1 OSW Bull 103265 WLCHWET 7455 113950 SANDP POND 345 1 109.0 1635 13 less than 85% Isstem 85% 104159 NU_326_NGR 345 113950 SANDP POND 345 1 107.1 617 7 less than 85% Isstem 85% 126367 ESHORE 78 VA5 12363 BENDRE TELEM 345 1 107.1 1684 8 less than 85% Isstem 85% 119142 SCOVILLE RCK 345 119220 BESECK 345 1 107.1 1884 8 less than 85% Isstem 85% 119142 SCOVILLE RCK 345 115009 NGR 335_NST 345 1 105.9 1410 14 less than 85% Isstem 85% Isstem 85% Isstem 85% Isstem 85%	19181 MONTVILE_371 345 119194 MILLSTONE 345 1	114.7	1884	18	less than 85%	
115008 NST, 331, NGR, 345, 115036 NGR, 331, NST, 345, 1 113.6 1466 12 less than 85% New Overloads Du 119129 KLEEN 345, 119142 SCOVILLE RCK 345, 1 112.8 1912 15 less than 85% NCT Overloads Du 113126 WACHUSETT 345, 119142 SCOVILLE RCK 345, 1 109.6 1626 6 less than 85% NCT Overloaded Du 113265 WACHUSETT 345, 113950 SANDY POND 345, 1 109.2 1611 3 less than 85% ISCOTIVATE RCK 345, 1 107.3 1633 1853 NCT Overloaded Du 113265 WACHUSETT 345, 113950 SANDY POND 345, 1 107.3 1697 11 less than 85% 12942 SCOVILLE RCK 345, 119230 BESPORT ETLEM 345, 1 107.1 1884 8 less than 85% 119142 SCOVILLE RCK 345, 119230 SOLTHINGTON 345, 1 107.0 1884 8 less than 85% 110781 HORENOK 345, 115015 NGR, 3361, NST 345, 1 105.8 166 less than 85% 110780 HORENOK 345, 115015 NGR, 3361, NST 345, 1 105.8 166 less than 85% 110780 HORENOK 345, 115015 NGR, 3361, NST 345, 1 105.8 164 4 less than 85% 110708 HORENOK 345, 115015 NGR, 345, 1 105.8 1649 4 less than 85%	04191 NU_381_VEL 345 107040 VERNON VT 345 1	114.6	1491	41	88	
119122 KLEEN 345 119142 SCOVILLE RCK 345 112.8 1912 15 less than 85% Scenario 1 05W Buil 104191 NU_381_VEL 345 104195 NU_381_NU 345 1 109.6 1626 6 less than 85% NOT Overloaded in Ba 13265 WACHUSETT 345 113950 SANDY POND 345 1 109.2 1611 3 less than 85% 101435 NU_325_NCR 345 113950 SANDY POND 345 1 108.0 1635 13 less than 85% 123637 ESHORE 9X 345 113950 SANDY POND 345 1 107.1 617 7 less than 85% 123637 ESHORE 9X 345 113920 BESECK 345 1 107.1 617 7 less than 85% 119142 SCOVILLE RCK 345 119220 BESECK 345 1 107.1 1884 8 less than 85% 119142 SCOVILLE RCK 345 119220 BESECK 345 1 107.9 1410 14 less than 85% 110780 MEDI RCK 345 119220 BESECK 345 1 105.8 1665 16 less than 85% 110780 MEDI WALLERCK 345 11914 MILLSTONE 345 1 105.8 1649 4 less than 85% 119902 NU_365 UI 345 112626 SINGER 345 1 104.2	15008 NST_331_NGR 345 115036 NGR_331_NST 345 1	113.6	1466	12	less than 85%	New Overloads Due to
104191 NU_381_VEL_345 104195 NU_381_NU_345 1 109.6 1626 6 less than 85% 113265 WACHUSETT 345 113950 SANDY POND 345 1 109.2 1611 3 less than 85% 104159 NU_326_NGR_345 113950 SANDY POND 345 1 108.0 1635 13 less than 85% 113265 WACHUSETT 345 113950 SANDY POND 345 1 108.0 1635 13 less than 85% 119142 SCOVILLE RCK 345 11968 HADDAM NECK 345 1 107.1 1697 11 less than 85% 119142 SCOVILLE RCK 345 119220 BESECK 345 1 107.1 1697 11 less than 85% 119142 SCOVILLE RCK 345 119220 SEECK 345 1 107.1 1884 8 less than 85% 119142 SCOVILLE RCK 345 115009 NGR 335_NST 345 1 107.9 1410 14 less than 85% 110781 HOLBROOK 345 115005 NGR 336_LNST 345 1 105.8 166 less than 85% 110780 WETWAUPOEL 345 115005 NGR 336_LNST 345 1 105.8 1649 4 less than 85% 110708 WETWAUPOEL 345 11026 STINGER 345 1 104.6 1797 15 less than 85% 119402 NU_3165_UI 345 123626 SINGER 345 1 104.2 1074 9 87 <t< td=""><td>19129 KLEEN 345 119142 SCOVILLE RCK 345 1</td><td>112.8</td><td>1912</td><td>15</td><td>less than 85%</td><td>Scenario 1 OSW Buildout,</td></t<>	19129 KLEEN 345 119142 SCOVILLE RCK 345 1	112.8	1912	15	less than 85%	Scenario 1 OSW Buildout,
113265 WACHUSETT 345 113950 SANDY POND 345 1 109.2 1611 3 less than 85% 104159 NU_326, ORG 345 113950 SANDY POND 345 1 108.0 1635 13 less than 85% 119142 SCOVILLE RCK 345 119168 HADDAM NECK 345 1 107.3 1697 11 less than 85% 123637 ESHORE 9X 345 123638 ESHORE TELEM 345 1 107.1 617 7 less than 85% 119168 HADDAM NECK 345 11 107.1 617 7 less than 85% 119168 HADDAM NECK 345 119202 BESECK 345 1 107.1 1884 8 less than 85% 110781 HOLBROOK 345 119202 BESECK 345 1 107.0 1884 8 less than 85% 110781 HOLBROOK 345 115015 NGR, 3361.NST 345 1 105.8 164 less than 85% 110780 WEST WALPOLE 345 115015 NGR, 3361.NST 345 1 105.8 1649 4 less than 85% 110970 WAST WALPOLE 345 115015 NGR 345 1 104.6 1797 15 less than 85% 119070 MANCHESTER 345 112026 SINGER 345 1 104.2 1074 9 87 <td>04191 NU_381_VEL 345 104195 NU_381_NU 345 1</td> <td>109.6</td> <td>1626</td> <td>6</td> <td>less than 85%</td> <td>NOT Overloaded in Base Case</td>	04191 NU_381_VEL 345 104195 NU_381_NU 345 1	109.6	1626	6	less than 85%	NOT Overloaded in Base Case
104159 NU_326_NGR_345_113950 SANDY POND_345_1 108.0 1635 13 less than 85% 119142 SCOVILLE RCK 345_119168 HADDAM NECK 345_1 107.3 1697 11 less than 85% 119142 SCOVILLE RCK 345_119208 BESHORE TELEM 345_1 107.1 617 7 less than 85% 119142 SCOVILLE RCK 345_119220 BESECK 345_1 107.1 184 8 less than 85% 119142 SCOVILLE RCK 345_119220 BESECK 345_1 107.1 1884 8 less than 85% 110781 HOLBROOK 345_115009 NGR_335_NST 345_1 105.9 1410 14 less than 85% 110780 HEVE NAPDICI 345_110786 STOUGHTON 345_1 105.8 1665 16 less than 85% 110780 HEVE NAPDICI 345_110786 STOUGHTON 345_1 105.8 1649 4 less than 85% 119708 WEVE NAPDICI 345_110786 STOUGHTON 345_1 104.6 1797 15 less than 85% 119402 NU_3165_UI 345_123626 SINGER 345_1 104.2 1074 9 87 119415 NU_3619_UI 345_1132626 SINGER 345_1 104.2 1074 9 87 119420 NU_3165_UI 345_1132626 SINGER 345_1 10	13265 WACHUSETT 345 113950 SANDY POND 345 1	109.2	1611	3	less than 85%	
119142 SCOVILLE RCK 345 1110168 HADDAM NECK 345 1 107.3 1697 11 less than 85% 123637 ESHORE 9X 345 123638 ESHORE TELEM 345 1 107.1 617 7 less than 85% 123637 ESHORE 9X 345 123238 ESHORE TELEM 345 1 107.1 1884 8 less than 85% 119168 HADDAM NECK 345 119220 BESECK 345 1 107.0 1884 8 less than 85% 110781 HOLBROOK 345 119233 SOUTHINGTON 345 1 105.9 1410 14 less than 85% 110780 HOLBROOK 345 115015 NGR, 3361, NST 345 1 105.8 166 less than 85% 110780 WID WAUPLOEL 345 110786 STOUCHTON 345 1 105.8 1664 4 less than 85% 119077 MANCHESTER 345 119194 MILLSTONE 345 1 104.6 1797 15 less than 85% 119070 JUS5 LUI 345 12626 SINGER 345 1 104.2 1074 9 87 11941S NU_3 2626 SINGER 345 1 104.2 1074 9 87 119420 WJ 2626 SINGER 345 1 104.2 1074 9 87 119420 WJ 31626 SINGER 345 1 <td< td=""><td>04159 NU_326_NGR 345 113950 SANDY POND 345 1</td><td>108.0</td><td>1635</td><td>13</td><td>less than 85%</td><td></td></td<>	04159 NU_326_NGR 345 113950 SANDY POND 345 1	108.0	1635	13	less than 85%	
123637 ESHORE 9X 345 123637 107.1 617 7 less than 85% 119168 HADDAM NECK 345 1107.1 1884 8 less than 85% 119168 CADAM NECK 345 1107.1 1884 8 less than 85% 119142 SCOVILLE RCK 345 1107.0 1884 8 less than 85% 110782 MAP BLACKSTN 345 1107.0 1884 8 less than 85% 110785 ANP BLACKSTN 345 1105.9 1410 14 less than 85% 110780 MST WALPOLE 345 1105.8 1685 16 less than 85% 110700 WST WALPOLE 345 1104.5 1797 15 less than 85% 119902 NU 3165 J01426 SINGER 345 104.2 1074 9 87 11942S NU 3619_UI 345 1204.2 1074 9 87 119402 NU 3165_UI 345 1204.2 1074 9 87 119402 NU 3619_UI 345 1204.2 1074 9	19142 SCOVILLE RCK 345 119168 HADDAM NECK 345 1	107.3	1697	11	less than 85%	
119168 HADDAM NECK 345 119220 BESECK 345 1 107.1 1884 8 less than 85% 119142 SCOVILLE RCK 345 119220 BESECK 345 1 107.0 1884 8 less than 85% 119142 SCOVILLE RCK 345 115003 NGR 335 .NST 345 1 105.9 1410 14 less than 85% 110781 HOLBROOK 345 115003 NGR 335 .NST 345 1 105.9 1410 14 less than 85% 110780 WEST WALPOEL 345 115005 NGR 335 .NST 345 1 105.8 166 less than 85% 110780 WEST WALPOEL 345 110786 STOUGHTON 345 1 105.8 1649 4 less than 85% 119070 MANCHESTER 345 119194 MILLSTONE 345 1 104.6 1797 15 less than 85% 119402 NU 3165 .UI 345 123626 SINGER 345 1 104.2 1074 9 87 119415 NU 3619 .UI 345 123626 SINGER 345 1 104.2 1074 9 87 119425 NU 3619 .UI 345 112626 SINGER 345 1 104.2 1074 9 87 119420 MLDAM 345 112626 SINGER 345 1 103.9 1884 11 less than 85% 123636 ESHORT ELEME 345 1 102.9 642 2 less than 85% <td>23637 ESHORE 9X 345 123638 ESHORE TELEM 345 1</td> <td>107.1</td> <td>617</td> <td>7</td> <td>less than 85%</td> <td></td>	23637 ESHORE 9X 345 123638 ESHORE TELEM 345 1	107.1	617	7	less than 85%	
119142 SCOVILLE RCK 345 119233 SOUTHINGTON 345 1 107.0 1884 8 less than 85% 110781 HOLBROOK 345 115009 NGR 335_NST 345 1 105.9 1410 14 less than 85% 110781 HOLBROOK 345 115009 NGR 335_NST 345 1 105.9 1410 14 less than 85% 110785 AVB LACKSTN 345 115015 NGR 3363_NST 345 1 105.8 1685 16 less than 85% 110780 WEST WALPOLE 345 110786 STOUGHTON 345 1 105.8 1649 4 less than 85% 119070 MANCHESTER 345 119194 MILLSTONE 345 1 104.6 1797 15 less than 85% 119402 NU_3165_U 345 122626 SINGER 345 1 104.2 1074 9 87 119402 NU_3165_U 345 122626 SINGER 345 1 104.2 1074 9 87 119209 HADDAM 345 112020 BESECK 345 1 103.9 1884 11 less than 85% 12366 ESHORE 8X 345 123626 BINGER 1345 1 102.9 642 2 less than 85%	19168 HADDAM NECK 345 119220 BESECK 345 1	107.1	1884	8	less than 85%	
110781 HOLBROOK 345 115009 NGR 355 1 105.9 1410 14 less than 85% 110785 ANP BLACKSTN 345 150780 NGR 3361 105.8 1685 16 less than 85% 110780 WEST WALPOLE 345 105.8 1649 4 less than 85% 110780 WEST WALPOLE 345 104.6 1797 15 less than 85% 119070 MANCHESTER 345 1 104.6 1797 15 less than 85% 119402 NU_3615_UI 345 1204.2 1074 9 87 119402 NU_3619_UI 345 1204.2 1074 9 87 119402 NU_3619_UI 345 1202.0 ESECK 345 103.9 1884 11 less than 85% 12366 ESINGER 83 345 102.9 642 2 less than 85% 12366 ESINGER 83 345 102.9 642 2 less than 85%	19142 SCOVILLE RCK 345 119233 SOUTHINGTON 345 1	107.0	1884	8	less than 85%	
110785 ANP BLACKSTN 345 15015 NGR, 3361_NST 345 1 105.8 16 1ess than 85% 110780 WEST WALPOLE 435 110786 STOUCHTON 345 1 105.8 1649 4 less than 85% 119077 MANCHESTER 345 119194 MILLSTONE 345 1 104.6 1797 15 less than 85% 119077 MANCHESTER 345 12562 SINGER 345 1 104.6 1797 15 less than 85% 119087 NU J165_UI 345 12626 SINGER 345 1 104.2 1074 9 87 119405 NU J3625_UI 345 12626 SINGER 345 1 104.2 1074 9 87 119405 NU J3626 SINGER 345 1 104.2 1074 9 87 12930 BENDRE TELEM 545 1 104.2 1074 9 87 12930 BENDRE TELEM 345 1 103.9 1884 11 less than 85% 123636 ESHORE TELEM 345 1 102.9 642 2 less than 85%	10781 HOLBROOK 345 115009 NGR_335_NST 345 1	105.9	1410	14	less than 85%	
110780 WEST WALPOLE 345 110786 STOUGHTON 345 1 105.8 1649 4 less than 85% 11907 MANCHESTER 345 119142 MULSTONE 345 1 104.6 1797 15 less than 85% 119027 MASCOLESTER 345 1 104.6 1797 15 less than 85% 119402 MUSTOSCU 345 12042 1074 9 87 119402 NU 3619 UI 345 1203.9 1884 11 less than 85% 119209 HADDAM 345 1203.9 1884 11 less than 85% 123636 ESHORE TELEM 345 102.9 642 2 less than 85%	10785 ANP BLACKSTN 345 115015 NGR_3361_NST 345 1	105.8	1685	16	less than 85%	
119077 ANACHESTER 345 119144 1104.6 1797 15 less than 85% 119402 NU_3165_UI 345 12362 Singler 345 1 104.2 1074 9 87 119415 NU_3619_UI 345 123626 Singler 345 1 104.2 1074 9 87 119415 NU_3619_UI 345 12362 Singler 345 1 104.2 1074 9 87 119415 NU_3619_UI 345 12362 Singler 345 1 104.2 1074 9 87 119209 HADDAM 345 112020 BESECK 345 1 103.9 1884 11 Less than 85% 123636 ESINGER 345 1 102.9 642 2 Less than 85%	10780 WEST WALPOLE 345 110786 STOUGHTON 345 1	105.8	1649	4	less than 85%	
119402 NU_3165_UI 345 123626 SINGER 345 1 104.2 1074 9 87 119415 NU_3619_UI 345 123626 SINGER 345 1 104.2 1074 9 87 119209 HADDAM 345 1122020 BESECK 345 1 104.2 1074 9 87 113209 HADDAM 345 112200 BESECK 345 1 103.9 1884 11 less than 85% 123636 ESHORE EX 638 ESHORE TELEM 345 1 102.9 642 2 less than 85%	19077 MANCHESTER 345 119194 MILLSTONE 345 1	104.6	1797	15	less than 85%	
119415 NU_3619_UI 345 123626 SINGER 345 1 104.2 1074 9 87 119209 HADDAM 345 112202 BESECK 345 1 103.9 1884 11 less than 85% 123636 ESHORE REX 345 11 102.9 642 2 less than 85%	19402 NU 3165 UI 345 123626 SINGER 345 1	104.2	1074	9	87	
119209 HADDAM 345 119220 BESECK 345 1 103.9 1884 11 less than 85% 123636 ESHORE 8X 345 123638 102.9 642 2 less than 85%	19415 NU 3619 UI 345 123626 SINGER 345 1	104.2	1074	9	87	
123636 ESHORE 8X 345 123638 ESHORE TELEM 345 1 102.9 642 2 less than 85%	19209 HADDAM 345 119220 BESECK 345 1	103.9	1884	11	less than 85%	
	23636 ESHORE 8X 345 123638 ESHORE TELEM 345 1	102.9	642	2	less than 85%	
110782 JORDAN ROAD 345 115011 NGR 342 NST 345 1 102.6 1855 4 less than 85%	10782 JORDAN ROAD 345 115011 NGR 342 NST 345 1	102.6	1855	4	less than 85%	
119389 EAST DEVON 345 119402 NU 3165 UI 345 1 101.7 1106 2 less than 85%	19389 EAST DEVON 345 119402 NU 3165 UI 345 1	101.7	1106	2	less than 85%	
119389 EAST DEVON 345 119415 NU_3619_UI 345 1 101.7 1106 2 less than 85%	19389 EAST DEVON 345 119415 NU_3619_UI 345 1	101.7	1106	2	less than 85%	
104151 LAWRENCE RD 345 104159 NU 326_NGR 345 1 101.1 1747 1 less than 85%	04151 LAWRENCE RD 345 104159 NU_326_NGR 345 1	101.1	1747	1	less than 85%	
110786 STOUGHTON 345 110788 HYDE PARK 345 1 100.6 676 1 less than 85%	10786 STOUGHTON 345 110788 HYDE PARK 345 1	100.6	676	1	less than 85%	
110786 STOUGHTON 345 110790 K STREET 1 345 2 196.0 675 82 115	10786 STOUGHTON 345 110790 K STREET 1 345 2	196.0	675	82	115	
110786 STOUGHTON 345 110790 K STREET 1 345 1 193.7 675 46 114	10786 STOUGHTON 345 110790 K STREET 1 345 1	193.7	675	46	114	
119389 EAST DEVON 345 119415 NU 3619 UI 345 1 143.0 1106 1 121	19389 EAST DEVON 345 119415 NU 3619 UI 345 1	143.0	1106	1	121	
119389 EAST DEVON 345 119402 NU_3165_UI 345 1 143.0 1106 1 121 Overloaded in Base	19389 EAST DEVON 345 119402 NU_3165_UI 345 1	143.0	1106	1	121	Overloaded in Base Case,
119415 NU_3619_UI_345 123626 SINGER_345 1142.21074 1121 Worse with Scenario	19415 NU_3619_UI 345 123626 SINGER 345 1	142.2	1074	1	121	worse with Scenario 1 OSW
119402 NU 3165 UI 345 123626 SINGER 345 1 142.2 1074 1 121 Buildout	19402 NU 3165 UI 345 123626 SINGER 345 1	142.2	1074	1	121	Buildout
119428 NU 3280 UI 345 119480 NORWALK 345 1 109.6 1133 1 103	19428 NU 3280 UI 345 119480 NORWALK 345 1	109.6	1133	1	103	
119441 NU 3921 UI 345 119480 NORWALK 345 1 109.2 1133 1 103	19441 NU 3921 UI 345 119480 NORWALK 345 1	109.2	1133	1	103	

					New Overload
	osw		Total N-1-1		or
	Buildout AC	Pating	Contingency	Base Case AC	Makes Existing
	Buildout AC	(a a) (a)	contingency	Dase case Ac	
Overloaded Monitored Element	%Loading	(MVA)	Combinations	%Loading	Overload Worse
110814 BRIGHTON B 115 110855 WASH_TAP 511 115 1	174.2	150	7814	91	
110813 BRIGHTON A 115 110854 WASH_TAP 510 115 1	174.1	150	7806	91	
110855 WASH_TAP 511 115 110887 BAKER ST PS2 115 1	166.0	150	7851	100	
110854 WASH_TAP 510 115 110886 BAKER ST PS1 115 1	166.0	150	7848	100	
110786 STOUGHTON 345 110790 K STREET 1 345 2	160.4	675	588	100	
111133 CARVER 345 111193 CANAL 345 1	159.9	1221	63	less than 85%	
110786 STOUGHTON 345 110790 K STREET 1 345 1	158.3	675	164	99	
110888 BAKER ST A 115 110892 HYDE PARK B 115 1	142.4	235	59	98	
110782 JORDAN ROAD 345 111193 CANAL 345 1	141.9	1446	83	less than 85%	
110889 BAKER ST B 115 110891 HYDE PARK A 115 1	140.7	235	61	96	
110886 BAKER ST PS1 115 110888 BAKER ST A 115 1	137.5	205	952	89	
110887 BAKER ST PS2 115 110889 BAKER ST B 115 1	137.5	205	951	89	
104900 NORTH KEENE 115 104902 KEENE 115 1	121.9	135	2	less than 85%	
110835 HIGH ST 511 115 110837 K STREET 2 115 1	121.6	190	8	less than 85%	
110834 HIGH ST 510 115 110836 K STREET 1 115 1	121.1	190	8	less than 85%	
104935 CHESTNUT HIL 115 104946 VERNONROAD_T 115 1	120.0	234	1	less than 85%	
113950 SANDY POND 345 113951 TEWKSBURY 345 1	118.1	1918	4	less than 85%	
110830 KINGSTN ST W 115 110836 K STREET 1 115 1	117.7	190	5	less than 85%	
110830 KINGSTN ST W 115 110836 K STREET 1 115 2	117.7	190	5	less than 85%	
110893 NEEDHAM 115 110894 DOVER MA 115 1	116.9	385	185	100	
111149 HORSEPDTP108 115 111156 VALLEYNB 108 115 1	115.2	246	15	less than 85%	New Overlands Durate
104913 A152_T 115 104924 WESTPORT 115 1	113.5	234	1	less than 85%	New Overloads Due to
104924 WESTPORT 115 104935 CHESTNUT HIL 115 1	113.5	234	1	less than 85%	NOT Overlanded in Pace Care
104895 TUTTLE HILL 115 104900 NORTH KEENE 115 1	111.6	135	2	less than 85%	NOT Overloaded in base case
104891 JACKMAN 115 104895 TUTTLE HILL 115 1	111.3	135	2	less than 85%	
110836 K STREET 1 115 110790 K STREET 1 345 1	110.4	750	1	less than 85%	
110837 K STREET 2 115 110790 K STREET 1 345 1	110.4	750	1	less than 85%	
119718 MONTVILLE 115 119181 MONTVILE_371 345 2	110.3	527	254	less than 85%	
104191 NU_381_VEL 345 104195 NU_381_NU 345 1	109.6	1626	1	less than 85%	
111142 VALLEYNB 113 115 111158 HORSEPDTP113 115 1	109.4	246	15	less than 85%	
111158 HORSEPDTP113 115 111217 BOURNE 115 1	109.4	246	15	less than 85%	
117330 JOHNSTON_171 115 117334 RISE 171_TAP 115 1	108.8	446	53	less than 85%	
104191 NU_381_VEL 345 107040 VERNON VT 345 1	108.1	1491	7	88	
111155 WAREHAM 108 115 111156 VALLEYNB 108 115 1	107.9	246	14	less than 85%	
119168 HADDAM NECK 345 119180 MONTVILE_364 345 1	107.5	1884	216	less than 85%	
111142 VALLEYNB 113 115 111152 WAREHAM 113 115 1	107.0	246	14	less than 85%	
111152 WAREHAM 113 115 111318 TREMONT 113 115 1	107.0	246	14	less than 85%	
113264 MILLBURY 345 113265 WACHUSETT 345 1	106.3	1609	1	less than 85%	
110770 W MEDWAY A 345 110794 W MEDWAY A 230 1	105.9	585	3	less than 85%	
117331 JOHNSTON 172 115 117360 RISE 172 TAP 115 1	103.6	446	3	less than 85%	
104159 NU 326 NGR 345 113950 SANDY POND 345 1	102.2	1635	1	less than 85%	
110814 BRIGHTON B 115 110815 N. CAMBRIDGE 115 1	102.2	231	2	less than 85%	
110785 ANP BLACKSTN 345 115015 NGR_3361_NST 345 1	101.0	1685	1	less than 85%	
110791 HYDE PARK 115 110788 HYDE PARK 345 1	100.3	600	1	less than 85%	
110855 WASH_TAP 511 115 110887 BAKER ST PS2 115 1	187.5	150	60	119	
110854 WASH_TAP 510 115 110886 BAKER ST PS1 115 1	187.5	150	60	119	Overloaded in Base Case,
110786 STOUGHTON 345 110790 K STREET 1 345 2	178.5	675	3	108	Worse with Scenario 1 OSW
110786 STOUGHTON 345 110790 K STREET 1 345 1	176.7	675	3	107	Buildout
110893 NEEDHAM 115 110894 DOVER MA 115 1	124.5	385	55	109	

Overloaded Monitored Elements in Scenario 2

					New Overload
	OSW		Total N-1-1		or
	Buildout AC	Rating	Contingency	Base Case AC	Makes Existing
Overloaded Monitored Element	%Loading	(MVA)	Combinations	%Loading	Overload Worse
110758 N. CAMBRIDGE 345 110759 MYSTIC MA 345 1	174.1	596	22	less than 85%	
110758 N. CAMBRIDGE 345 110759 MYSTIC MA 345 2	147.6	705	10	less than 85%	
110786 STOUGHTON 345 110790 K STREET 1 345 2	120.7	675	1	less than 85%	New Overlands Due to
110786 STOUGHTON 345 110790 K STREET 1 345 1	120.1	675	1	less than 85%	Scopario 2 OSW Buildout
119428 NU_3280_UI 345 119480 NORWALK 345 1	111.1	1133	52	less than 85%	NOT Overleaded in Pase Case
119441 NU_3921_UI 345 119480 NORWALK 345 1	111.1	1133	52	less than 85%	NOT Overloaded III base case
119181 MONTVILE_371 345 119194 MILLSTONE 345 1	106.7	1884	14	less than 85%	
114734 BRAYTN POINT 345 114900 BERRY STREET 345 1	104.4	1157	2	less than 85%	
119428 NU_3280_UI 345 119480 NORWALK 345 1	177.5	1133	1	102	Overloaded in Base Case,
119441 NU_3921_UI 345 119480 NORWALK 345 1	177.5	1133	1	102	Worse with Scenario 2 OSW

NPCC Criteria

NERC Criteria

					New Overload
	OSW		Total N-1-1		or
	Buildout AC	Rating	Contingency	Base Case AC	Makes Existing
Overloaded Monitored Element	%Loading	(MVA)	Combinations	%Loading	Overload Worse
115743 GRAND ARMY 115 115744 Z1_TAP 115 1	117.9	446	1	less than 85%	New Overleads Due to
115743 GRAND ARMY 115 115745 Y2_TAP 115 1	117.9	446	1	less than 85%	Scoparia 2 OSW Buildout
115711 SOMERSET 115 115744 Z1_TAP 115 1	108.0	446	1	less than 85%	NOT Overleaded in Pase Case
115711 SOMERSET 115 115745 Y2_TAP 115 1	108.0	446	1	less than 85%	NOT Overloaded in Base Case

Economic Production Cost Results

GE-MAPS Analysis

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Necessary Transmission Upgrades Assumption

What happens with no transmission upgrades in the Base Case with 3.1 GW OSW?

- Initial MAPS simulation showed 44% OSW curtailment at West Barnstable POI
- Curtailment is way too high and not a realistic starting point

Six transmission segments where upgrades necessary for reasonable starting point in **Base Case**, which are similar to the upgrades proposed in the QP828 Feasibility Study:

- Carver West Barnstable 345 kV Line (399)
- West Barnstable Mashpee 115 kV (137) and Otis Bourne 115 kV Line (107)
- West Barnstable 345/115 kV Transformer
- Bourne Horse Depot Valley NB 115 kV Line (108)

Powerflow						ings	
From Bus Number & Name To Bus			us Number & Name	Ckt	Initial	Upgrade	Upgrade Description
111134	W BARNSTABLE345.00	111135	W BARNSTABLE115.00	1	604	1585	2nd Larger Parallel Transformer
111133	CARVER 345.00	111134	W BARNSTABLE345.00	1	1016	1585	Reconductor Line
111214	OTIS 115.00	111217	BOURNE 115.00	1	407	431	Reconductor Line
111135	W BARNSTABLE115.00	111215	MASHPEE 137 115.00	1	244	488	Parallel or Reconductor Line
111149	HORSEPDTP108115.00	111156	VALLEYNB 108115.00	1	246	291	Reconductor Line
111149	HORSEPDTP108115.00	111217	BOURNE 115.00	1	246	291	Reconductor Line

Transmission Upgrades Assumed in Base Case

Transmission Upgrades for Reliability (NERC/NPCC)

Transmission upgrades modeled in respective offshore wind buildout scenarios required to mitigate N-1-1 transmission security violations according to NERC TPL Standards and NPCC Directory 1 Criteria

Scenario 1

- West Barnstable K Street 345 kV
- West Barnstable Mashpee Hatchville Fallmouth Tap 115 kV
- West Barnstable Bourne Canal Valley Wareham Tremont 115 kV
- Johnson Rise 115 kV

Scenario 2

- Mystic North Cambridge Woburn 345 kV
- Norwalk Singer 345 kV

Annual Offshore Wind Generation Curtailment

Occurs when transmission constraints cause reduced generation output below full capability

Average ISONE Curtailment

- Base Case: 3% in 2024 & 2028* •
- Scenario 1: 0.5% in 2024; 12.9% in 2028
- Scenario 2: 1.4% in 2024; 3.7% in 2028 •

Max Offshore Wind Generation Curtailment:

- Base Case: 6% (West Barnstable 1600MW) •
- In 2024, Scenario 1 & 2 have relatively low curtailment % • of OSW POIs, all OSW curtailment is located in SEMA
- In 2028, Scenario 1 top OSW POI curtailment is • significantly higher (Scenario 1: 34% vs Scenario 2: 14%)
- In 2028, Scenario 1 showed curtailment > 5% in multiple • areas: SEMA and CT; only SWCT for Scenario 2
- Scenario 2 OSW buildout does not result in any additiona • West Barnstable POI curtailment compared to Base Case

		Ave	erage ISO-I	NE Curtailn	nent
Year	Technology Type	Base_S1	Base_S2	OSW_S1	OSW_S2
2024	Offshore	3.0%	3.0%	0.5%	1.4%
2024	Onshore	0.1%	0.1%	0.1%	0.1%
2028	Offshore	2.9%	3.0%	12.9%	3.7%
2028	Onshore	0.1%	0.1%	0.2%	0.8%

tion Curtailment	Percent Curtailment by ISO-NE Offshore Site						
ation Curtaliment:	Simulation Year	POI	MAPS Area	Base_S1	Base_S2	OSW_S1	OSW_S2
t Barnstable 1600MW)		Bourne	SEMAA	0%	0%	0%	0%
2 has a set of the last set of the set $0/$		Brayton Point	SEMAA			0%	0%
2 have relatively low curtailment %		Canal	SEMAA	0%	0%	0%	0%
curtailment is located in SEMA	2024	Kent County	RIA	0%	0%	0%	0%
		Montville	СТА			0%	001
p OSW POI curtailment is		Mystic	BOSTONA				0%
		Singer Bridgeport	SWCIA	C 0/	C 1/	10/	C 0/
cenano 1. 34% vs Scenano 2. 14%)		Reurpo	SEIVIAA	٥% ۵%	6% 0%	1%	0%
nowed curtailment > 5% in multiple		Bourne Brayton Point	SEMAA	0%	0%	0%	2%
		Bridgewater	SEMAA			070	2 /0 1 %
only SWCT for Scenario 2		Canal	SEMAA	0%	0%	34%	1%
out does not result in any additional		East Devon	SWCTA	0/0	0/0	5170	£%
		K Street	BOSTONA				1%
curtailment compared to Base Case	2028	Kent County	RIA	0%	0%	1%	1%
		Millstone	СТА				3%
		Montville	СТА			13%	
		Mystic	BOSTONA				0%
		Singer Bridgeport	SWCTA				14%
		West Barnstable	SEMAA	6%	6%	6%	6%
*2018 ISONE averaged 2% onshore wind curtailment		Woburn	BOSTONA				2%

Annual ISONE Production Cost Savings

- Production cost savings for both Scenario 1 & 2 are similar in 2024
- In 2028, Scenario 2 shows more production cost savings than Scenario 1 (difference of **\$55M**)

ISO-NE Production Cost (\$M)				
Year	Base_Case	Base_S2	OSW_S1	OSW_S2
2024	\$1,774	\$1,776	\$1,489	\$1,492
2028	\$2,064	\$2,062	\$1,500	\$1,443

	Production Cost Savings (\$M)			
Year	OSW_S1	OSW_S2		
2024	\$285	\$284		
2028	\$564	\$619		

Annual ISONE Zonal LMP Change

Locational Marginal Price (LMP) = Marginal Cost of Electricity + Transmission Congestion Cost + Cost of Losses

In 2028, More Uniform Zonal LMP Decrease in Scenario 2 than Scenario 1 is an indication of:

- More efficient and cost-effective use of added cheap energy from OSW
- Less transmission congestion moving cheap OSW energy
- More load payment savings

Load Payment Savings

Electricity Load Payment = Marginal Cost of Electricity (\$/MWh) x System Demand (MWh)

Offshore Transmission in New England: Benefits of a Better Planned Grid

Appendix C: System Upgrades Required for 2024 Offshore Wind Connection

Dwayne Basler, PE CHA Consulting May 7, 2020

System Upgrades Required for 2024 Offshore Wind Connection – *Unplanned* vs *Planned* Transmission

- 1. Summary of Results
- 2. Analysis Details
- 3. Overload Maps
 - A. Unplanned interconnection
 - *B. Planned* interconnection
- 4. System Upgrade Costs
 - A. Unit Costs
 - *B.* Unplanned interconnection
 - C. Planned interconnection
- 5. Transmission Overload Tables

Dwayne Basler, PE CHA Consulting May 7, 2020

Summary of Results

Phase 1 (2024) of the *Unplanned* (also referred to in this study as the *current approach*) offshore wind interconnection described in General Electric's 'Anbaric Offshore Wind POI Transmission Security Analysis' would create approximately four times as many facility overloads as a *Planned* interconnection resulting in significantly higher interconnection costs.

Extensive transmission system siting and construction to mitigate overloads for an *Unplanned* Offshore Wind interconnection in New England would be challenging and could require ten or more years to complete based on similar projects in the region.

Unplanned scenario overlaods:

- West Barnstable to the North (to K-Street)
- Boston area
- West Barnstable to the West (Tremont and Falmouth Tap paths)
- Connecticut and Rhode Island

Planned scenario overloads:

- Mystic North Cambridge Woburn
- Connecticut

	Planned	Unplanned
	Transmission	Transmission
Overloaded Lines (>110%)	6	47
Overloaded Substation Equipment (>110%)	4	17
Overloaded Lines (<110%)	11	44
Overloaded Substation Equipment (<110%)	3	6
(Note: overloads <110% are not included on the New England maps.)		
Total Overloaded Facilities	24	114

The cost of transmission system upgrades are estimated to be:

		<u>Midpoint</u>
Unplanned transmission system	\$1.2B - \$2.3B	\$1.7B
Planned transmission system	\$390M - \$710M	\$550M

- Costs are order of magnitude to illustrate the differences between an Unplanned and Planned transmission interconnection only. Mitigation options have not been verified by power flow analysis, routing assessment, or detailed engineering.
- Ranges have been established for illustrative purposes only and not to imply a level of precision. For example, <u>+</u>25% was applied to the project averages in the *Greater Boston Cost Comparison, NHT Analysis* using New England Comparables January 2015; however, that analysis identified a larger variability in project costs.
Analysis Details

- General Electric Power Flow studies using NERC and NPCC N-1-1 criteria identified transmission overloads for a Phase 1 (2024) *Planned* and *Unplanned* interconnection of offshore wind projects.
- NERC N-1-1 overloads were verified to be a subset of the NPCC N-1-1 overloads. The overload percentages in this analysis are NPCC criteria overloads.
- Transmission line lengths were estimated to be 1.2 times the straight line distances between substations.
- Pre-existing overloads were not included. For example, the West Barnstable to Carver transmission line was overloaded in the Base Case and therefore is not included in either the *Planned* or *Unplanned* interconnection scenarios.
- Overloads less than 110% are listed separately to simplify the mitigation cost analysis.
- Transmission system upgrades required for the *Unplanned* scenario being approximately four times more extensive would result in a much longer time to complete which could result in increased costs. These increased costs have *not* been included in this analysis.
- Extreme Event analysis (NPCC Directory 1) such as Loss of ROW contingencies would require some new transmission lines to be on new ROWs rather than constructed on existing ROWs. This would result in increased costs and time to complete. This is consistent with ISO-NE conclusions in **2019 Economic Study Offshore Wind Transmission** Interconnection Analysis, March 18, 2020. A 50% factor was included for the West Barnstable to Stoughton 345kV overhead transmission line to account for construction in a new ROW.

High Street SS Kingston Street SS Brighton SS K Street

Baker Street SS Needham SS

Dover SS West Medway SS West Walpole SS

> Dupont SS Auburn SS

> > Bridgewater SS

Kingston SS Brook Street SS

Ser.

Carver SS

Tremont SS

Wareham SS /alley SS Horse Pond Tap Bourne SS

West Barnstable SS

Hatchville SS Almouth Tap SS Mashpee SS

New England Overloads – Unplanned Transmission System (2024) – slide 1 of 2

50 overloads less than 110% not shown

Johnston SS Rise SS

115kV overhead transmission line 115kV underground transmission line 345kV overhead transmission line 345kV underground transmission line

New England Overloads – Unplanned Transmission System (2024) – slide 2 of 2

50 overloads less than 110% not shown

115kV overhead transmission line
115kV underground transmission line
345kV overhead transmission line
345kV underground transmission line

New England Overloads – Planned Transmission System (2024) – slide 1 of 2

14 overloads less than 110% not shown

115kV overhead transmission line 115kV underground transmission line 345kV overhead transmission line 345kV underground transmission line

New England Overloads – Planned Transmission System (2024) – slide 2 of 2

14 overloads less than 110% not shown

115kV overhead transmission line 115kV underground transmission line 345kV overhead transmission line 345kV underground transmission line

System Upgrade Costs – Unit Costs

Overhead

345

115/69

Underground

345

115

\$12M

\$5.4M

\$19.5M

\$16.9M

- *New transmission lines -* costs were determined using the *Greater Boston Cost Comparison*, *NHT* Unit Costs (per mile) - New Lines Analysis using New England Comparables January 2015 (https://www.iso-ne.com/staticassets/documents/2015/02/a2 nht greater boston cost analysis public.pdf). The 115kV per mile overhead line costs were not included in the 2015 New England analysis so a 45% cost ratio (115kV to 345kV) was used; \$5.4M/mile (basis: Transmission Cost Estimation Guide MTEP19, Section 4, https://cdn.misoenergy.org/20190212%20PSC%20Item%2005a%20Transmission%20Cost%20Estimation %20Guide%20for%20MTEP%202019 for%20review317692.pdf).
- *Transmission reconductoring* (overhead lines only) costs were determined using 30% 70% of the ٠ new line average construction cost (this assumes some new structures would be required for the larger conductors and to meet current NESC design criteria)
- **Transmission lines overloaded to less than 110%** a mitigation cost range of \$200K \$500K was applied ٠ to each line. Thermal ratings could be limited by smaller conductors on some spans, sag limiting spans, encroachments, conservative ratings methodology inconsistent with ISONE PP7, or limiting substation equipment (breakers, switches, connectors, system protection, ...). Transmission lines could be rerated a variety of ways to achieve sufficient ratings. While mitigation for some transmission lines would exceed this cost, the assumed cost range is conservative. Precise mitigation costs would likely *increase* the cost differential between the *Planned* and *Unplanned* scenarios.
- **Overloaded substation equipment** costs for overloaded equipment could vary considerably; an ٠ overloaded auto transformer or phase shifter could cost \$10M while overloaded substation breakers and disconnect switches would cost much less. Costs were determined using a cost range of \$200K-\$10M per overload. Note that many of the overloads are transformers or phase shifters.

System Upgrade Costs - Unplanned

- The *Unplanned* scenario overloads are in the following areas:
 - West Barnstable to the North (to K-Street)
 - Boston area
 - West Barnstable to the West (Tremont and Falmouth Tap paths)
 - Connecticut and Rhode Island
- Analysis Assumptions:
 - A new transmission line from West Barnstable to Stoughton to K-street will resolve other overloads in the Boston area (several overloaded lines and substation facilities). If this is *not* the case, significant additional costs will result since many of the transmission lines in the Boston area are underground. Refer to the first diagram on the next slide.
 - The *High Street to K-street* and *Kingston St to K-street* overloads would be mitigated by a new 115kV underground line from *Kingston St to K-street*.
 - Overhead transmission line overloads could be mitigated by reconductoring.

- .	Overloaded Lines (>110%)	<u>OL %</u>	Voltage
Boston	110786 STOUGHTON 345 110790 K STREET 1 345 2	160.4	345kV UG
A	110786 STOUGHTON 345 110790 K STREET 1 345 1	158.4	345kV UG
Area	110854 WASH_TAP 510 115 110886 BAKER ST PS1 115 1	161.9	115kV UG
Overlands	110855 WASH_TAP 511 115 110887 BAKER ST PS2 115 1	161.9	115kV UG
Overioaus	110814 BRIGHTON B 115 110855 WASH_TAP 511 115 1	154.8	115kV UG
	110813 BRIGHTON A 115 110854 WASH_TAP 510 115 1	154.8	115kV UG
	110888 BAKER ST A 115 110892 HYDE PARK B 115 1	144.3	115kV UG
	110834 HIGH ST 510 115 110836 K STREET 1 115 1	142.6	115kV UG
	110889 BAKER ST B 115 110891 HYDE PARK A 115 1	140.4	115kV UG
	110893 NEEDHAM 115 110894 DOVER MA 115 1	128.4	115kV UG
	110835 HIGH ST 511 115 110837 K STREET 2 115 1	126.9	115kV UG
	110830 KINGSTN ST W 115 110836 K STREET 1 115 2	122.6	115kV UG
	110830 KINGSTN ST W 115 110836 K STREET 1 115 1	122.6	115kV UG
	110853 COLBURN 511 115 110855 WASH_TAP 511 115 1	121.7	115kV OH
	110852 COLBURN 510 115 110854 WASH_TAP 510 115 1	121.7	115kV OH

Overloads from West Barnstable to the West

Overloaded Lines (>110%)	<u>OL %</u>	Voltage
111217 BOURNE 115 111226 CANAL 126 115 1	157.9	115kV OH
111217 BOURNE 115 111222 CANAL 121 115 1	157.0	115kV OH
111158 HORSEPDTP113 115 111217 BOURNE 115 1	143.2	115kV OH
111142 VALLEYNB 113 115 111158 HORSEPDTP113 115 1	143.1	115kV OH
111155 WAREHAM 108 115 111156 VALLEYNB 108 115 1	141.2	115kV OH
111142 VALLEYNB 113 115 111152 WAREHAM 113 115 1	141.1	115kV OH
111152 WAREHAM 113 115 111318 TREMONT 113 115 1	139.9	115kV OH
111149 HORSEPDTP108 115 111156 VALLEYNB 108 115 1	138.9	115kV OH
111137 TREMONT S 115 111155 WAREHAM 108 115 1	137.9	115kV OH
111135 W BARNSTABLE 115 111215 MASHPEE 137 115 1	136.0	115kV OH
111217 BOURNE 115 111219 CANAL 120 115 1	132.1	115kV OH
111135 W BARNSTABLE 115 111217 BOURNE 115 1	122.9	115kV OH
111209 HATCHVILLE 115 111212 MASHPEE 136 115 1	122.1	115kV OH
111149 HORSEPDTP108 115 111217 BOURNE 115 1	116.6	115kV OH

Connecticut Overload

20587 NU_1588_CMEC 115 120596 CMEC_1588_NU 115 1	127.7	115kV OH
--	-------	----------

Rhode Island Overloads

117330 JOHNSTON_171 115 117334 RISE 171_TAP 115 1	124.4	115kV OH
117331 JOHNSTON_172 115 117360 RISE 172_TAP 115 1	122.1	115kV OH

System Upgrade Costs - Unplanned

		Voltage	Miles or Units	Cost/Mile (Low)	Cost/Mile (High)	Cost/Mile (Midpoint)	Cost (Low)	Cost (High)	Cost (Midpoint)
1	West Barnstable to Stoughton to K-Street - New Line								
	Overhead portion (on new ROW)	345kV OH	60	\$ 13,500,000.00	\$ 22,500,000.00	\$ 18,000,000.00	\$ 810,000,000.00	\$ 1,350,000,000.00	\$ 1,080,000,000.00
	Underground portion	345kV UG	16.8	\$ 14,625,000.00	\$ 24,375,000.00	\$ 19,500,000.00	\$ 245,700,000.00	\$ 409,500,000.00	\$ 327,600,000.00
2	Kingston St to K-street - New Line								
	Underground	115KV UG	1.8	\$ 12,675,000.00	\$ 21,125,000.00	\$ 16,900,000.00	\$ 22,815,000.00	\$ 38,025,000.00	\$ 30,420,000.00
3	Eastern Massachusetts - Reconductoring								
	West Barnstable to Mashpee	115kV OH	9	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 14,580,000.00	\$ 34,020,000.00	\$ 24,300,000.00
	Mashpee to Hatchville	115kV OH	5.16	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 8,359,200.00	\$ 19,504,800.00	\$ 13,932,000.00
	Hatchville to Falmouth Tap	115kV OH	2.28	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 3,693,600.00	\$ 8,618,400.00	\$ 6,156,000.00
	West Barnstable to Bourne	115kV OH	14.58	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 23,619,600.00	\$ 55,112,400.00	\$ 39,366,000.00
	Bourne to Canal	115kV OH	3	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 4,860,000.00	\$ 11,340,000.00	\$ 8,100,000.00
	Bourne to Valley	115kV OH	3.12	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 5,054,400.00	\$ 11,793,600.00	\$ 8,424,000.00
	Valley to Wareham	115kV OH	5.52	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 8,942,400.00	\$ 20,865,600.00	\$ 14,904,000.00
	Wareham to Tremont	115kV OH	4.56	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 7,387,200.00	\$ 17,236,800.00	\$ 12,312,000.00
4	Rhode Island - Reconductoring								
	Johnston to Rise	115kV OH	2.76	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 4,471,200.00	\$ 10,432,800.00	\$ 7,452,000.00
5	Connecticut - Reconductoring								
	Colony to North Wallingford	115kV OH	3.12	\$ 1,620,000.00	\$ 3,780,000.00	\$ 2,700,000.00	\$ 5,054,400.00	\$ 11,793,600.00	\$ 8,424,000.00
7	Overloaded lines {less than 110%}	345/115kV	46	\$ 200,000.00	\$ 500,000.00	\$ 350,000.00	\$ 9,200,000.00	\$ 23,000,000.00	\$ 16,100,000.00
8	Substation Overloads	345/115kV	23	\$ 200,000.00	\$ 10,000,000.00	\$ 5,100,000.00	\$ 4,600,000.00	\$ 230,000,000.00	\$ 117,300,000.00
	Total Cost Estimate Range						\$ 1,178,337,000	\$ 2,251,243,000.00	\$ 1,714,790,000.00

System Upgrade Costs - Planned

- The *Planned* scenario overloads are in the following areas:
 - Mystic North Cambridge Woburn
 - Connecticut
- Analysis Assumptions:
 - A new underground transmission line from Mystic to North Cambridge to Woburn would be required to resolve overloads out of Mystic.
 - Overhead transmission line overloads could be mitigated by reconductoring.
 - Underground transmission line overloads (Norwalk to Singer) would require a new 345kV underground transmission line.

Connecticut Overloads

119441 NU_3921_UI	345 119480 NORWALK	345 1	160.3	345kV UG
119428 NU_3280_UI	345 119480 NORWALK	345 1	160.4	345kV UG

Boston	Ove	Overloaded Lines (>110%)								
	110758 N. CAMBRID	GE 345 110759 MYSTIC MA	345 1	190.2	345kV UG					
Area	110758 N. CAMBRID	GE 345 110759 MYSTIC MA	345 2	160.6	345kV UG					
	110756 WOBURN	345 110758 N. CAMBRIDGE	345 2	117.4	345kV UG					
Overloads	110756 WOBURN	345 110758 N. CAMBRIDGE	345 1	117.4	345kV UG					

System Upgrade Costs - Planned

		Voltage	Miles or Units	Co	ost/Mile (Low)	C	ost/Mile (High)	Co	ost/Mile (Midpoint)	Cost (Low)	Cost (High)	<u>c</u>	Cost (Midpoint)
1	Boston Area - New Lines												
	Mystic to North Cambridge to Woburn	345kV UG	10.56	\$	14,625,000.00	\$	24,375,000.00	\$	19,500,000.00	\$ 154,440,000.00	\$ 257,400,000.00	\$	205,920,000.00
2	Norwalk to Singer - New UG Line	345kV UG	15.54	\$	14,625,000.00	\$	24,375,000.00	\$	19,500,000.00	\$ 227,272,500.00	\$ 378,787,500.00	\$	303,030,000.00
3	Overloaded lines {less than 110%}	345/115kV	15	\$	200,000.00	\$	500,000.00	\$	350,000.00	\$ 3,000,000.00	\$ 7,500,000.00	\$	5,250,000.00
4	Substation Overloads	345/115kV	7	\$	200,000.00	\$	10,000,000.00	\$	5,100,000.00	\$ 1,400,000.00	\$ 70,000,000.00	\$	35,700,000.00
	Total Cost Estimate Range									\$ 386,112,500.00	\$713,687,500.00	\$	549,900,000.00

Unplanned Transmission Overloads (>110%)

Overloaded Lines (>110%)	<u>OL %</u>	Voltage	Overloaded Lines (>110%)	<u>OL %</u>	<u>Voltage</u>		Overloaded Substation Equipment (>110%)	<u>OL %</u>
1 110786 STOUGHTON 345 110790 K STREET 1 345 2	160.4	345kV UG	26 111142 VALLEYNB 113 115 111158 HORSEPDTP113 115 1	143.1	115kV OH	1 111	11226 CANAL 126 115 111193 CANAL 345 1	160.5
2 110786 STOUGHTON 345 110790 K STREET 1 345 1	158.4	345kV UG	27 111158 HORSEPDTP113 115 111217 BOURNE 115 1	143.2	115kV OH	2 119	19718 MONTVILLE 115 119181 MONTVILE_371 345 2	153.0
3 111133 CARVER 345 111193 CANAL 345 1	152.8	345kV OH	28 111155 WAREHAM 108 115 111156 VALLEYNB 108 115 1	141.2	115kV OH	3 119	19718 MONTVILLE 115 119180 MONTVILE_364 345 1	148.8
4 110782 JORDAN ROAD 345 111193 CANAL 345 1	148.8	345kV OH	29 117330 JOHNSTON_171 115 117334 RISE 171_TAP 115 1	124.4	115kV OH	4 111	11222 CANAL 121 115 111193 CANAL 345 1	139.0
5 111133 CARVER 345 115036 NGR_331_NST 345 1	139.4	345kV OH	30 111217 BOURNE 115 111219 CANAL 120 115 1	132.1	115kV OH	5 117	17301 KENT COUNTY 345 117332 KENT COUNTY 115 8	124.4
6 110780 WEST WALPOLE 345 115008 NST_331_NGR 345 1	138.6	345kV OH	31 110853 COLBURN 511 115 110855 WASH_TAP 511 115 1	121.7	115kV OH	6 117	17301 KENT COUNTY 345 117332 KENT COUNTY 115 4	122.1
7 110772 W MEDWAY B 345 115012 NGR_344_NST 345 1	136.4	345kV OH	32 110852 COLBURN 510 115 110854 WASH_TAP 510 115 1	121.7	115kV OH	7 114	14734 BRAYTN POINT 345 114742 BRAYTN POINT 115 1	132.3
8 110781 HOLBROOK 345 115009 NGR_335_NST 345 1	133.2	345kV OH	33 117331 JOHNSTON_172 115 117360 RISE 172_TAP 115 1	122.1	115kV OH	8 115	L5447 AUBURN ST 345 115452 AUBURN ST 115 1	130.8
9 110782 JORDAN ROAD 345 115011 NGR_342_NST 345 1	131.6	345kV OH	34 111136 KINGSTON 115 111144 BROOK STREET 115 1	118.6	115kV OH	9 110	L0887 BAKER ST PS2 115 110889 BAKER ST B 115 1	125.3
10 115008 NST_331_NGR 345 115036 NGR_331_NST 345 1	127.7	345kV OH	35 111149 HORSEPDTP108 115 111217 BOURNE 115 1	116.6	115kV OH	10 110	L0886 BAKER ST PS1 115 110888 BAKER ST A 115 1	125.3
11 111133 CARVER 345 115013 NGR_356_NST 345 1	124.9	345kV OH	36 120587 NU_1588_CMEC 115 120596 CMEC_1588_NU 115 1	127.7	115kV OH	11 115	L5450 E BRGWTR_E20 115 115451 BRIDGEWATER 115 1	117.4
12 115013 NGR_356_NST 345 115446 BRIDGEWATER 345 1	124.1	345kV OH	37 111217 BOURNE 115 111226 CANAL 126 115 1	157.9	115kV OH	12 110	L0836 K STREET 1 115 110790 K STREET 1 345 1	116.4
13 110781 HOLBROOK 345 110786 STOUGHTON 345 1	115.8	345kV OH	38 111217 BOURNE 115 111222 CANAL 121 115 1	157.0	115kV OH	13 110	L0837 K STREET 2 115 110790 K STREET 1 345 1	116.4
14 115011 NGR_342_NST 345 115447 AUBURN ST 345 1	115.8	345kV OH	39 115449 DUPONT 115 115452 AUBURN ST 115 1	113.3	115kV OH	14 111	11269 IND PRK 112T 115 111319 INDUST_PK112 115 1	113.0
15 110888 BAKER ST A 115 110892 HYDE PARK B 115 1	144.3	115kV UG	40 111209 HATCHVILLE 115 111212 MASHPEE 136 115 1	122.1	115kV OH	15 114	14742 BRAYTN POINT 115 114907 BP XFMR 115 115 1	113.9
16 110834 HIGH ST 510 115 110836 K STREET 1 115 1	142.6	115kV UG	41 111135 W BARNSTABLE 115 111217 BOURNE 115 1	122.9	115kV OH	16 110	10791 HYDE PARK 115 110788 HYDE PARK 345 1	110.0
17 110854 WASH_TAP 510 115 110886 BAKER ST PS1 115 1	161.9	115kV UG	42 111135 W BARNSTABLE 115 111215 MASHPEE 137 115 1	136.0	115kV OH	17 111	11134 W BARNSTABLE 345 111135 W BARNSTABLE 115	262.4
18 110855 WASH_TAP 511 115 110887 BAKER ST PS2 115 1	161.9	115kV UG	43 111142 VALLEYNB 113 115 111152 WAREHAM 113 115 1	141.1	115kV OH			
19 110814 BRIGHTON B 115 110855 WASH_TAP 511 115 1	154.8	115kV UG	44 111152 WAREHAM 113 115 111318 TREMONT 113 115 1	139.9	115kV OH			
20 110813 BRIGHTON A 115 110854 WASH_TAP 510 115 1	154.8	115kV UG	45 111149 HORSEPDTP108 115 111156 VALLEYNB 108 115 1	138.9	115kV OH			
21 110889 BAKER ST B 115 110891 HYDE PARK A 115 1	140.4	115kV UG	46 111137 TREMONT S 115 111155 WAREHAM 108 115 1	137.9	115kV OH			
22 110830 KINGSTN ST W 115 110836 K STREET 1 115 2	122.6	115kV UG	47 111136 KINGSTON 115 115006 NGR_191_NST 115 1	130.6	115kV OH			
23 110830 KINGSTN ST W 115 110836 K STREET 1 115 1	122.6	115kV UG						
24 110893 NEEDHAM 115 110894 DOVER MA 115 1	128.4	115kV UG						
25 110835 HIGH ST 511 115 110837 K STREET 2 115 1	126.9	115kV UG						

Unplanned Transmission Overloads (<110%)

	Overloaded Lines (<110%)	<u>OL %</u>		Overloaded Lines (<110%)	<u>OL %</u>		Overloaded Substation Equipment (<110%)	<u>OL %</u>
1	110866 MEDWAY 115 110879 HOLLISTON 115 1	109.7	24	113950 SANDY POND 345 113951 TEWKSBURY 345 1	104.4	1	115446 BRIDGEWATER 345 115451 BRIDGEWATER 115 2	104.4
2	110870 FRAMINGHAM 115 110871 SPEEN STREET 115 1	110.6	25	111257 HIGH_HL_111 115 111268 INDUSTRL PRK 115 1	102.4	2	110770 W MEDWAY A 345 110794 W MEDWAY A 230 1	102.4
3	115450 E BRGWTR_E20 115 115452 AUBURN ST 115 1	108.9	26	110922 CANTON 509_T 115 114764 S RANDLPH509 115 1	103.0	3	111219 CANAL 120 115 111193 CANAL 345 1	103.0
4	115448 BELMONT_F19 115 115451 BRIDGEWATER 115 1	108.7	27	120434 BRISTOL CT 115 120444 FORESTVIL 25 115 1	103.9	4	115447 AUBURN ST 345 115452 AUBURN ST 115 2	103.9
5	110894 DOVER MA 115 110895 WEST WALPOLE 115 1	108.5	28	110900 HOLBROOK 115 110908 E.HOLBRK TAP 115 1	101.9	5	110900 HOLBROOK 115 110781 HOLBROOK 345 1	101.9
6	110868 SHERBORN 115 110879 HOLLISTON 115 1	108.2	29	123221 ELM WEST A 115 123780 WEST RIVER A 115 1	103.0	6	115446 BRIDGEWATER 345 115451 BRIDGEWATER 115 1	103.0
7	110832 KINGSTN ST A 115 110835 HIGH ST 511 115 1	107.6	30	123222 ELM WEST B 115 123782 WEST RIVER B 115 1	103.0			
8	110889 BAKER ST B 115 110893 NEEDHAM 115 1	106.8	31	110830 KINGSTN ST W 115 110849 CARVER ST 13 115 1	102.2			
9	110833 KINGSTN ST B 115 110834 HIGH ST 510 115 1	106.6	32	110830 KINGSTN ST W 115 110848 CARVER ST 12 115 1	102.2			
10	110900 HOLBROOK 115 114764 S RANDLPH509 115 1	107.4	33	110849 CARVER ST 13 115 110851 SCOTIA ST513 115 1	101.5			
11	119718 MONTVILLE 115 119957 NU_1090_CMEC 115 1	109.0	34	110920 CANTON 508_T 115 114765 S RANDLPH508 115 1	103.1			
12	123163 GRAND AVENUE 115 123782 WEST RIVER B 115 2	108.2	35	110848 CARVER ST 12 115 110850 SCOTIA ST512 115 1	101.4			
13	123163 GRAND AVENUE 115 123780 WEST RIVER A 115 1	107.9	36	110900 HOLBROOK 115 114765 S RANDLPH508 115 1	102.4			
14	111139 CARVER 115 111144 BROOK STREET 115 1	105.6	37	110786 STOUGHTON 345 110788 HYDE PARK 345 1	101.0			
15	110811 WATERTWN 520 115 110987 WALT PS-D 115 1	105.5	38	100150 SECT 83C TAP 115 100212 HEYWOOD ROAD 115 1	100.9			
16	110812 WATERTWN 521 115 110988 WALT PS-E 115 1	105.5	39	117351 HARTFORD AVE 115 117353 PUTNAM PK_71 115 1	103.1			
17	110811 WATERTWN 520 115 110926 ELECTRIC AVE 115 1	104.7	40	117333 PHILLIP 83_T 115 117336 FRANKLIN SQ 115 1	103.0			
18	110812 WATERTWN 521 115 110926 ELECTRIC AVE 115 1	104.7	41	120470 SOTHNGTN50_R 115 120938 CANAL CT 115 1	102.2			
19	115448 BELMONT_F19 115 115452 AUBURN ST 115 1	104.6	42	120227 DOOLEY 115 120236 WEST SIDE 115 1	101.7			
20	113271 WYMNGRDN57_T 115 113909 CENTECH_E157 115 1	104.2	43	113924 HUDSON 115 115040 NGR_H160_HLP 115 1	100.2			
21	113271 WYMNGRDN57_T 115 113286 MILLBURY 115 1	104.2	44	111209 HATCHVILLE 115 111407 FAL TAP 136 115 1	104.7			

Planned Transmission Overloads (>110%)

	Overloaded Lines (>110%)	<u>OL %</u>	Voltage		Overloaded Substation Equipment (>110%)	<u>OL %</u>
1	110758 N. CAMBRIDGE 345 110759 MYSTIC MA 345 1	190.2	345kV UG	1	114734 BRAYTN POINT 345 114742 BRAYTN POINT 115 1	200.4
2	110758 N. CAMBRIDGE 345 110759 MYSTIC MA 345 2	160.6	345kV UG	2	114742 BRAYTN POINT 115 114907 BP XFMR 115 115 1	170.9
3	119441 NU_3921_UI 345 119480 NORWALK 345 1	160.3	345kV UG	3	114734 BRAYTN POINT 345 114907 BP XFMR 115 115 3	119.4
4	119428 NU_3280_UI 345 119480 NORWALK 345 1	160.4	345kV UG	4	114734 BRAYTN POINT 345 114907 BP XFMR 115 115 2	116.6
5	110756 WOBURN 345 110758 N. CAMBRIDGE 345 2	117.4	345kV UG			
6	110756 WOBURN 345 110758 N. CAMBRIDGE 345 1	117.4	345kV UG			

Planned Transmission Overloads (<110%)

	Overloaded Lines (<110%)	<u>OL %</u>		Overloaded Substation Equipment (<110%)	<u>OL %</u>
1	116360 PLEASANT 115 116364 BLANDFORD 115 1	105.2	1	110759 MYSTIC MA 345 110818 MYSTIC MA 115	106.2
2	121337 NORWALK 115 121457 GLENBROOK 115 1	103.2	2	110759 MYSTIC MA 345 110818 MYSTIC MA 115	2 105.0
3	121337 NORWALK 115 121457 GLENBROOK 115 2	103.2	3	110799 WOBURN 115 110756 WOBURN 345 1	102.3
4	116356 WOODLAND 115 116360 PLEASANT 115 1	104.0			
5	100150 SECT 83C TAP 115 100212 HEYWOOD ROAD 115 1	100.9			
6	110813 BRIGHTON A 115 110926 ELECTRIC AVE 115 1	100.7			
7	110814 BRIGHTON B 115 110926 ELECTRIC AVE 115 1	100.7			
8	110888 BAKER ST A 115 110892 HYDE PARK B 115 1	100.5			
9	114734 BRAYTN POINT 345 114900 BERRY STREET 345 1	103.7			
10	110833 KINGSTN ST B 115 110834 HIGH ST 510 115 1	104.7			
11	110832 KINGSTN ST A 115 110835 HIGH ST 511 115 1	104.6			