
Last Update: 17Oct 2025

Autonomous Mobile ​
Robot Diploma Outline​

ROS 2 and Modern C++

Module 1: ROS 2 Fundamentals and Communication

This module establishes the foundational knowledge of the ROS 2 architecture and communication
patterns.

●​ 1.1. Introduction & Environment Setup
○​ Iinroduction to ROS2 basics course
○​ ROS2 Workspace, create your first ros2 workspace

●​ 1.2. ROS 2 Core Concepts
○​ ROS2 nodes, Overview on nodes and communication models
○​ ROS2 packges, ROS2 packge types
○​ ROS2 CPP package file system, ROS2 python package file system

●​ 1.3. Communication: Topics & Services
○​ Publish subscribe model, Multi pub-sub example
○​ Server-Clinet comunication model, Multi server-client

●​ 1.4. ROS 2 Tools & CLI
○​ Turtlesim pkg Overview and filesystem, run Turtlesim using ROS2 CLI (Nodes)
○​ Discover Twist msg and topics using ROS2 CLI, move Turtlesim using teleop
○​ publsih msg to ros topic using CLI, publsih msg to ros topic using RQT publisher
○​ Services CLI tools, call a service Using CLI, call a service Using RQT service caller
○​ Discover RQT and rqt_graph plugin

●​ 1.5. Configuration and Launch
○​ Introduction to ROS paramters, Paramters CLI with Turtlesim
○​ spawn service in Turtlesim, clear service in turtlesim
○​ Intorduction to Launch files, Launch File Configration and Types, Why pyhon For

ROS2 Launch files ?
○​ Introduction to Chatter APP launch file, Create Chatter APP launch file, build and

Run launch file

Module 2: Advanced ROS 2 Programming (C++ & Python)
This module covers the practical development of ROS 2 nodes in both C++ and Python, leveraging
core programming concepts.

●​ 2.1. C++ Node Development & Concepts
○​ Intoduction to Node creation using CPP
○​ C++ Concepts Review: classes and objects part 1 & 2, Class Inheritence part1 &

2, Classes conculusion

○​ Intro to Bind Function, Bind function difintion and usage, bind with class callback
member fuction

○​ simple CPP ROS2 node with timer [CPP Concept]
○​ Create First CPP ROS Node Composition part 1 & 2
○​ create executable files from CPP node files, add dependencies to manifest files

●​ 2.2. Chatter App Implementation (C++)
○​ Chatter App overview, create chatter App CPP ROS pkg
○​ write talker/listener CPP Node part1 & 2
○​ Build and run talker/listener CPP Node, Test and Debug talker/listener CPP Node in

[chatter App]
●​ 2.3. Chatter App Implementation (Python)

○​ Create Chatter APP ROS2 pyhon pkg
○​ write talker/listener python Node part1 & 2
○​ Build and run talker/listener python Node

Module 3: Robot Modeling and Simulation (URDF/Gazebo)
This module focuses on defining the robot's structure and testing its system in a simulated
environment.

●​ 3.1. Robot Description Format
○​ Introduction to URDF (Unified Robot Description Format)
○​ Defining the robot structure: Links, Joints, and Frames
○​ Using XACRO for modular and simplified URDF creation
○​ Adding Visual and Collision models (e.g., using STL files)

●​ 3.2. Coordinate Transforms (TF2)
○​ Understanding the Transform (TF2) System in ROS 2
○​ Publishing static and dynamic transforms (e.g., base_link to sensor_frame)
○​ Viewing the transform tree in RViz2

●​ 3.3. Gazebo Simulation
○​ Introduction to Gazebo/Ignition as a dynamic simulator
○​ Adding physics, properties, and world elements
○​ Spawning the custom URDF robot in Gazebo
○​ Using Gazebo ROS 2 Plugins (e.g., for differential drive or LiDAR)

Module 4: Robot Kinematics and ROS 2 Control
This module covers the mathematical principles governing mobile robot motion and implements a
robust, industry-standard control architecture using the ros2_control framework for the
simulated robot.

4.1. Mobile Robot Kinematics (Theory)

●​ Introduction to Mobile Robot Types: Overview of common drive configurations (e.g.,
Differential Drive, Ackermann, Omnidirectional) and their applications.

●​ Differential Drive Kinematics:
○​ Deriving Forward Kinematics (mapping wheel speeds to robot body velocity:

x˙,y˙​,θ˙).

○​ Deriving Inverse Kinematics (mapping robot body velocity to individual wheel
speeds: ωL​,ωR​).

●​ Odometry Principles:
○​ Theory of Dead Reckoning and calculating robot pose (x,y,θ) from wheel encoder

data.
○​ Understanding and mitigating odometry drift and errors.

4.2. Low-Level Control Interface (Encoder & Command)

●​ Odometry Publisher Node: Developing a node (in C++ or Python) that simulates or reads
encoder data (wheel velocities/positions).

●​ Implementing the Odometry Calculation: Coding the Forward Kinematics equations to
convert wheel data into the robot's estimated pose.

●​ Publishing Odometry: Publishing the nav_msgs/Odometry message on the /odom
topic.

●​ Publishing TF: Publishing the dynamic odom→base_link Transform using the odometry
data.

4.3. Integrating with ros2_control and Simulation

●​ Introduction to ros2_control: Architecture overview (Controller Manager, Hardware
Interface, Controllers).

●​ Creating the ROS 2 Control Configuration: Defining the hardware components (left/right
wheel joints) and interfaces (position, velocity, effort).

●​ Integrating with Gazebo/Ignition: Using the ros2_control Gazebo plugin (or
equivalent) to expose the simulated robot's joint interfaces to the ROS 2 system.

●​ Configuring the Differential Drive Controller: Creating the YAML configuration file for the
diff_drive_controller, including kinematics parameters (wheel radius, track width)
and PID gains.

4.4. Executing and Testing ROS 2 Control

●​ Launch File Update: Modifying the launch file to start the controller_manager and
load the diff_drive_controller.

●​ Controlling the Robot:
○​ The diff_drive_controller automatically subscribes to /cmd_vel (a

geometry_msgs/Twist message).
○​ Testing control by publishing Twist messages to /cmd_vel via the CLI and seeing

the robot move in Gazebo.
●​ Verification:

○​ Monitoring the diff_drive_controller state and published odometry.
○​ Comparing the robot's odometry with its true pose in the Gazebo simulator.
○​ Debugging common issues: Inverse kinematics errors and parameter tuning.

Module 5: Sensor Fusion and Advanced Localization (EKF)
This new module introduces probabilistic robotics to achieve a more robust and accurate estimate
of the robot's pose by combining data from multiple sensors.

●​ 5.1. Introduction to Probabilistic Robotics
○​ Understanding the need for Sensor Fusion and the limitations of Odometry.
○​ Introduction to the Kalman Filter and the Extended Kalman Filter (EKF).

●​ 5.2. Sensor Data Preparation
○​ Reviewing IMU Data: Understanding the sensor_msgs/Imu message (linear

acceleration, angular velocity, orientation).
○​ Interfacing with a Simulated IMU Sensor (or real hardware).
○​ Data Conditioning: Handling noise, biases, and sensor misalignment.

●​ 5.3. Implementing the Extended Kalman Filter (EKF)
○​ Introduction to the robot_localization package.
○​ Configuring the EKF Node (using YAML parameters) to fuse:

1.​ Odometry (nav_msgs/Odometry) for position/velocity.
2.​ IMU (sensor_msgs/Imu) for orientation/angular velocity.

○​ Understanding the →base_link transform and its relationship to the control loop.
●​ 5.4. Testing and Visualization

○​ Launching the EKF node and observing the fused pose on the
/odometry/filtered topic.

○​ Visualizing the improved localization accuracy in RViz2.
○​ Tuning covariance matrices and filter parameters for optimal performance.

Module 6: DDS, Quality of Service (QoS), and Node
Lifecycle
This module provides the necessary deep dive into the middleware layer and advanced node
management required for a reliable, real-time system.

●​ 6.1. Introduction to DDS (Data Distribution Service)
○​ DDS as the ROS 2 Middleware: Understanding its role in networking and data

transport.
○​ ROS 2 Abstraction: The concept of RMW (ROS Middleware) and the various DDS

vendors (Fast RTPS, Cyclone DDS, etc.).
○​ DDS Discovery: How nodes and topics find each other in a distributed network.

●​ 6.2. Quality of Service (QoS) Policies
○​ Understanding the need for QoS in real-time systems.
○​ Key QoS Settings:

■​ History: Keep Last vs. Keep All.
■​ Reliability: Best Effort vs. Reliable (Crucial for service and action

communications).
■​ Durability: Transient Local vs. Volatile (Important for map data).
■​ Liveliness and Deadline: Configuring real-time guarantees.

○​ Implementing and testing QoS settings in C++ and Python publishers/subscribers.
●​ 6.3. Managed Nodes and Node Lifecycle

○​ Introduction to Lifecycle Nodes and the need for deterministic startup/shutdown.
○​ Lifecycle States: Understanding the sequence (Unconfigured, Inactive, Active,

Finalized).
○​ Lifecycle Transitions: Implementing the callbacks for transitions like configure,

activate, and deactivate.
○​ System Management: Using the lifecycle_manager in launch files to

coordinate the startup of critical components (like Nav2 servers) for predictable
behavior.

Module 7: Perception and Autonomous Navigation (Nav2)
This final module integrates all elements to achieve true autonomy.

●​ 6.1. Sensor Integration and SLAM
○​ Interfacing with LiDAR and publishing sensor_msgs/LaserScan.
○​ Using the SLAM Toolbox for 2D map creation.

●​ 6.2. The Nav2 Stack and Localization
○​ Nav2 Architecture and Core Components (Planner, Controller, Behavior Tree).
○​ AMCL (Adaptive Monte Carlo Localization): Using AMCL to localize the robot on

a pre-built map using LiDAR data.
●​ 6.3. Path Planning and Execution

○​ Configuring Global Planners (e.g., A*) and Local Controllers (e.g., DWA).
○​ Sending navigation goals using RViz2 and a custom Action Client Node.

●​ 6.4. Final Project Integration
○​ Creating a final, comprehensive launch file to run the entire stack: Robot Model,

ros2_control, EKF, SLAM/AMCL, and Nav2.

Module 8: Microcontroller Hardware Control
This module covers connecting the high-level ROS 2 system on the Raspberry Pi to a low-level
microcontroller (like an ESP32 or Arduino) that directly controls the robot's motors.

●​ 8.1. The Two-Brain Approach
○​ Why use two computers? We split the work. The Raspberry Pi is the "smart

brain" running complex ROS 2 tasks like navigation. The microcontroller (MCU) is
the "muscle brain," handling the fast, real-time job of spinning motors precisely.

○​ They communicate over a simple serial (USB) connection.
●​ 8.2. Programming the Microcontroller

○​ The firmware on the MCU has two main jobs:
■​ Listen for commands: It receives target wheel speeds from the Raspberry

Pi (e.g., "left wheel, spin at 5 rad/s").
■​ Control motors & report back: It uses a PID control loop to accurately

drive the motors and reads wheel encoders to measure the actual speed,
sending this data back to the Pi.

●​ 8.3. Bridging to ros2_control
○​ We create a special C++ node on the Raspberry Pi called a Hardware Interface.
○​ This node acts as a translator:

■​ It takes velocity commands from the ROS 2 navigation system.
■​ It converts them into simple serial commands for the microcontroller.
■​ It reads the encoder data from the serial port and publishes it as standard

ROS 2 odometry messages.

●​ 8.4. Final Integration and Testing
○​ We update the robot's configuration file to tell ros2_control to use our new

hardware interface translator.
○​ With everything running, we can now send a Twist message to the /cmd_vel

topic, and the physical robot will move. This confirms that the high-level ROS 2
commands are successfully controlling the low-level hardware.

Module 9: Robot Hardware Integration (Raspberry Pi)
This module covers the practical steps of setting up a Raspberry Pi as the onboard computer for
the mobile robot, bridging the gap from simulation to a physical system.

●​ 9.1. Hardware Selection and Preparation
○​ Why Raspberry Pi?: Benefits for robotics (cost, form factor, GPIO, community).
○​ Choosing a Model: Comparing Raspberry Pi 4 vs. 5 (RAM, processing power).
○​ Essential Peripherals: Selecting an appropriate SD card, power supply, and cooling

solution.
●​ 9.2. OS Installation and Headless Setup

○​ Choosing an Operating System: Ubuntu Server (e.g., 22.04 LTS) for ROS 2
compatibility.

○​ Flashing the OS Image: Using the Raspberry Pi Imager.
○​ Headless Configuration: Enabling SSH and configuring Wi-Fi for remote access

without a monitor.
●​ 9.3. Onboard Software Installation

○​ Installing ROS 2: Following the official steps for Debian packages on an ARM64
architecture.

○​ Environment Configuration: Sourcing ROS 2 and adding it to .bashrc for
persistence.

○​ Building a Test Workspace: Compiling a simple C++ publisher to verify the toolchain
and ROS 2 installation.

●​ 9.4. Networking and Remote Development
○​ Configuring a Static IP Address for reliable network discovery.
○​ Distributed ROS 2 System: Setting up communication between the Raspberry Pi

and a development workstation using ROS_DOMAIN_ID.
○​ Remote Workflow: Using Visual Studio Code with the Remote-SSH extension to

edit, compile, and run code directly on the Pi.

Module 10: Robot Assembly: Mechanical & Electrical
This module provides a practical, hands-on guide to building the physical robot from individual
components. 🛠️

●​ 8.1. Bill of Materials (BOM) & Tools:
○​ Reviewing the complete list of required parts: chassis, motors, encoders, motor

driver, microcontroller, Raspberry Pi, sensors, battery, etc.
○​ Overview of essential tools: soldering iron, multimeter, wire strippers, screwdrivers.

●​ 8.2. Mechanical Assembly:
○​ Step-by-step instructions for assembling the robot's chassis.
○​ Mounting the DC motors, wheels, and wheel encoders.
○​ Attaching the caster wheel for stability.

●​ 8.3. Electrical Wiring & Power System:
○​ Creating a power distribution system from the battery.
○​ Using buck converters to supply the correct voltage (e.g., 5V) to the Raspberry Pi

and microcontroller.
○​ Wiring the motor driver to the microcontroller and motors.

●​ 8.4. Integrating Electronics & Sensors:
○​ Securely mounting the Raspberry Pi, microcontroller, and motor driver to the

chassis.
○​ Connecting the LiDAR and IMU sensors to the Raspberry Pi.
○​ Finalizing the build with clean cable management to ensure reliability.

	Last Update: 17Oct 2025
	Autonomous Mobile ​Robot Diploma Outline​ROS 2 and Modern C++
	Module 1: ROS 2 Fundamentals and Communication
	This module establishes the foundational knowledge of the ROS 2 architecture and communication patterns.
	Module 2: Advanced ROS 2 Programming (C++ & Python)
	Module 3: Robot Modeling and Simulation (URDF/Gazebo)
	Module 4: Robot Kinematics and ROS 2 Control
	4.1. Mobile Robot Kinematics (Theory)
	4.2. Low-Level Control Interface (Encoder & Command)
	4.3. Integrating with ros2_control and Simulation
	4.4. Executing and Testing ROS 2 Control

	Module 5: Sensor Fusion and Advanced Localization (EKF)
	Module 6: DDS, Quality of Service (QoS), and Node Lifecycle
	Module 7: Perception and Autonomous Navigation (Nav2)
	Module 8: Microcontroller Hardware Control
	Module 9: Robot Hardware Integration (Raspberry Pi)
	Module 10: Robot Assembly: Mechanical & Electrical

