Last Update: 170ct 2025

Autonomous Mobile

Robot Diploma Outline
ROS 2 and Modern C++

Module 1: ROS 2 Fundamentals and Communication

This module establishes the foundational knowledge of the ROS 2 architecture and communication
patterns.

e 1.1. Introduction & Environment Setup
o linroduction to ROS2 basics course
o ROS2 Workspace, create your first ros2 workspace
e 1.2. ROS 2 Core Concepts
o ROS2 nodes, Overview on nodes and communication models
o ROS2 packges, ROS2 packge types
o ROS2 CPP package file system, ROS2 python package file system
e 1.3. Communication: Topics & Services
o Publish subscribe model, Multi pub-sub example
o Server-Clinet comunication model, Multi server-client
e 1.4.ROS 2 Tools & CLI
Turtlesim pkg Overview and filesystem, run Turtlesim using ROS2 CLI (Nodes)
Discover Twist msg and topics using ROS2 CLI, move Turtlesim using teleop
publsih msg to ros topic using CLI, publsih msg to ros topic using RQT publisher
Services CLlI tools, call a service Using CLI, call a service Using RQT service caller
Discover RQT and rqt_graph plugin
e 1.5. Configuration and Launch
Introduction to ROS paramters, Paramters CLI with Turtlesim
spawn service in Turtlesim, clear service in turtlesim
Intorduction to Launch files, Launch File Configration and Types, Why pyhon For
ROS2 Launch files ?
o Introduction to Chatter APP launch file, Create Chatter APP launch file, build and
Run launch file

o O O O O

Module 2: Advanced ROS 2 Programming (C++ & Python)

This module covers the practical development of ROS 2 nodes in both C++ and Python, leveraging
core programming concepts.

e 2.1. C++ Node Development & Concepts
o Intoduction to Node creation using CPP
o C++ Concepts Review: classes and objects part 1 & 2, Class Inheritence part1 &
2, Classes conculusion

KreNten

o Intro to Bind Function, Bind function difintion and usage, bind with class callback
member fuction
simple CPP ROS2 node with timer [CPP Concept]
Create First CPP ROS Node Composition part 1 & 2
create executable files from CPP node files, add dependencies to manifest files
e 2.2. Chatter App Implementation (C++)
o Chatter App overview, create chatter App CPP ROS pkg
o write talker/listener CPP Node part1 & 2
o Build and run talker/listener CPP Node, Test and Debug talker/listener CPP Node in
[chatter App]
e 2.3. Chatter App Implementation (Python)
o Create Chatter APP ROS2 pyhon pkg
o write talker/listener python Node part1 & 2
o Build and run talker/listener python Node

Module 3: Robot Modeling and Simulation (URDF/Gazebo)

This module focuses on defining the robot's structure and testing its system in a simulated
environment.

e 3.1. Robot Description Format
o Introduction to URDF (Unified Robot Description Format)
o Defining the robot structure: Links, Joints, and Frames
o Using XACRO for modular and simplified URDF creation
o Adding Visual and Collision models (e.g., using STL files)
e 3.2. Coordinate Transforms (TF2)
o Understanding the Transform (TF2) System in ROS 2
o Publishing static and dynamic transforms (e.g., base_link to sensor_frame)
o Viewing the transform tree in RViz2
e 3.3. Gazebo Simulation
Introduction to Gazebol/lgnition as a dynamic simulator
Adding physics, properties, and world elements
Spawning the custom URDF robot in Gazebo
Using Gazebo ROS 2 Plugins (e.g., for differential drive or LiDAR)

o O O O

Module 4: Robot Kinematics and ROS 2 Control

This module covers the mathematical principles governing mobile robot motion and implements a
robust, industry-standard control architecture using the ros2_control framework for the
simulated robot.

4.1. Mobile Robot Kinematics (Theory)

e Introduction to Mobile Robot Types: Overview of common drive configurations (e.g.,
Differential Drive, Ackermann, Omnidirectional) and their applications.
e Differential Drive Kinematics:
o Deriving Forward Kinematics (mapping wheel speeds to robot body velocity:

x,y,07).

KreNten

o Deriving Inverse Kinematics (mapping robot body velocity to individual wheel
speeds: wL,wR).
e Odometry Principles:
o Theory of Dead Reckoning and calculating robot pose (x,y,0) from wheel encoder
data.
o Understanding and mitigating odometry drift and errors.

4.2. Low-Level Control Interface (Encoder & Command)

e Odometry Publisher Node: Developing a node (in C++ or Python) that simulates or reads
encoder data (wheel velocities/positions).

e Implementing the Odometry Calculation: Coding the Forward Kinematics equations to
convert wheel data into the robot's estimated pose.

e Publishing Odometry: Publishing the nav_msgs/0Odometry message on the /odom
topic.

e Publishing TF: Publishing the dynamic odom—base_link Transform using the odometry
data.

4.3. Integrating with ros2_control and Simulation

e Introduction to ros2_control: Architecture overview (Controller Manager, Hardware
Interface, Controllers).

e Creating the ROS 2 Control Configuration: Defining the hardware components (left/right
wheel joints) and interfaces (position, velocity, effort).

e Integrating with Gazebollgnition: Using the ros2_control Gazebo plugin (or
equivalent) to expose the simulated robot's joint interfaces to the ROS 2 system.

e Configuring the Differential Drive Controller: Creating the YAML configuration file for the
diff_drive_controller, including kinematics parameters (wheel radius, track width)
and PID gains.

4.4. Executing and Testing ROS 2 Control

e Launch File Update: Modifying the launch file to start the controller_manager and
load the diff_drive_controller.
e Controlling the Robot:
o Thediff_drive_controller automatically subscribes to /cmd_vel (a
geometry_msgs/Twist message).
o Testing control by publishing Twist messages to /cmd_vel via the CLI and seeing
the robot move in Gazebo.
e Verification:
o Monitoring the diff_drive_controller state and published odometry.

o Comparing the robot's odometry with its true pose in the Gazebo simulator.
o Debugging common issues: Inverse kinematics errors and parameter tuning.

Module 5: Sensor Fusion and Advanced Localization (EKF)

This new module introduces probabilistic robotics to achieve a more robust and accurate estimate
of the robot's pose by combining data from multiple sensors.

KreNten

e 5.1. Introduction to Probabilistic Robotics
o Understanding the need for Sensor Fusion and the limitations of Odometry.
o Introduction to the Kalman Filter and the Extended Kalman Filter (EKF).
e 5.2. Sensor Data Preparation
o Reviewing IMU Data: Understanding the sensor_msgs/Imu message (linear
acceleration, angular velocity, orientation).
o Interfacing with a Simulated IMU Sensor (or real hardware).
o Data Conditioning: Handling noise, biases, and sensor misalignment.
¢ 5.3. Implementing the Extended Kalman Filter (EKF)
o Introduction to the robot_localization package.
o Configuring the EKF Node (using YAML parameters) to fuse:
1. Odometry (nav_msgs/0dometry) for position/velocity.
2. IMU (sensor_msgs/Imu) for orientation/angular velocity.
o Understanding the —base_link transform and its relationship to the control loop.
e 5.4 Testing and Visualization
o Launching the EKF node and observing the fused pose on the
/odometry/filtered topic.
o Visualizing the improved localization accuracy in RViz2.
o Tuning covariance matrices and filter parameters for optimal performance.

Module 6: DDS, Quality of Service (QoS), and Node
Lifecycle

This module provides the necessary deep dive into the middleware layer and advanced node
management required for a reliable, real-time system.

e 6.1. Introduction to DDS (Data Distribution Service)
o DDS as the ROS 2 Middleware: Understanding its role in networking and data
transport.
o ROS 2 Abstraction: The concept of RMW (ROS Middleware) and the various DDS
vendors (Fast RTPS, Cyclone DDS, etc.).
o DDS Discovery: How nodes and topics find each other in a distributed network.
e 6.2. Quality of Service (QoS) Policies
o Understanding the need for QoS in real-time systems.
o Key QoS Settings:
m History: Keep Last vs. Keep All.
m Reliability: Best Effort vs. Reliable (Crucial for service and action
communications).
m Durability: Transient Local vs. Volatile (Important for map data).
m Liveliness and Deadline: Configuring real-time guarantees.
o Implementing and testing QoS settings in C++ and Python publishers/subscribers.
e 6.3. Managed Nodes and Node Lifecycle
o Introduction to Lifecycle Nodes and the need for deterministic startup/shutdown.
o Lifecycle States: Understanding the sequence (Unconfigured, Inactive, Active,
Finalized).
o Lifecycle Transitions: Implementing the callbacks for transitions like configure,
activate, and deactivate.
o System Management: Using the 1ifecycle_manager in launch files to
coordinate the startup of critical components (like Nav2 servers) for predictable
behavior.

KreNten

Module 7: Perception and Autonomous Navigation (Nav2)

This final module integrates all elements to achieve true autonomy.

e 6.1. Sensor Integration and SLAM
o Interfacing with LiDAR and publishing sensor_msgs/LaserScan.
o Using the SLAM Toolbox for 2D map creation.
e 6.2. The Nav2 Stack and Localization
o Nav2 Architecture and Core Components (Planner, Controller, Behavior Tree).
o AMCL (Adaptive Monte Carlo Localization): Using AMCL to localize the robot on
a pre-built map using LiDAR data.
e 6.3. Path Planning and Execution
o Configuring Global Planners (e.g., A*) and Local Controllers (e.g., DWA).
o Sending navigation goals using RViz2 and a custom Action Client Node.
e 6.4. Final Project Integration
o Creating a final, comprehensive launch file to run the entire stack: Robot Model,
ros2_control, EKF, SLAM/AMCL, and Nav2.

Module 8: Microcontroller Hardware Control

This module covers connecting the high-level ROS 2 system on the Raspberry Pi to a low-level
microcontroller (like an ESP32 or Arduino) that directly controls the robot's motors.

e 8.1. The Two-Brain Approach
o Why use two computers? We split the work. The Raspberry Pi is the "smart
brain" running complex ROS 2 tasks like navigation. The microcontroller (MCU) is
the "muscle brain," handling the fast, real-time job of spinning motors precisely.
o They communicate over a simple serial (USB) connection.
e 8.2. Programming the Microcontroller
o The firmware on the MCU has two main jobs:

m Listen for commands: It receives target wheel speeds from the Raspberry
Pi (e.g., "left wheel, spin at 5 rad/s").

m Control motors & report back: It uses a PID control loop to accurately
drive the motors and reads wheel encoders to measure the actual speed,
sending this data back to the Pi.

e 8.3. Bridging to ros2_control
o We create a special C++ node on the Raspberry Pi called a Hardware Interface.
o This node acts as a translator:

m It takes velocity commands from the ROS 2 navigation system.

m It converts them into simple serial commands for the microcontroller.

m It reads the encoder data from the serial port and publishes it as standard
ROS 2 odometry messages.

KreNten

e 8.4. Final Integration and Testing
o We update the robot's configuration file to tell ros2_control to use our new
hardware interface translator.
o With everything running, we can now send a Twist message to the /cmd_vel
topic, and the physical robot will move. This confirms that the high-level ROS 2
commands are successfully controlling the low-level hardware.

Module 9: Robot Hardware Integration (Raspberry Pi)

This module covers the practical steps of setting up a Raspberry Pi as the onboard computer for
the mobile robot, bridging the gap from simulation to a physical system.

e 9.1. Hardware Selection and Preparation
o Why Raspberry Pi?: Benefits for robotics (cost, form factor, GPIO, community).
o Choosing a Model: Comparing Raspberry Pi 4 vs. 5 (RAM, processing power).
o Essential Peripherals: Selecting an appropriate SD card, power supply, and cooling
solution.
9.2. OS Installation and Headless Setup
o Choosing an Operating System: Ubuntu Server (e.g., 22.04 LTS) for ROS 2
compatibility.
Flashing the OS Image: Using the Raspberry Pi Imager.
Headless Configuration: Enabling SSH and configuring Wi-Fi for remote access
without a monitor.
e 9.3. Onboard Software Installation
o Installing ROS 2: Following the official steps for Debian packages on an ARM64
architecture.
o Environment Configuration: Sourcing ROS 2 and adding it to .bashrc for
persistence.
o Building a Test Workspace: Compiling a simple C++ publisher to verify the toolchain
and ROS 2 installation.
9.4. Networking and Remote Development
o Configuring a Static IP Address for reliable network discovery.
o Distributed ROS 2 System: Setting up communication between the Raspberry Pi
and a development workstation using ROS_DOMAIN_ID.
o Remote Workflow: Using Visual Studio Code with the Remote-SSH extension to
edit, compile, and run code directly on the Pi.

Module 10: Robot Assembly: Mechanical & Electrical

This module provides a practical, hands-on guide to building the physical robot from individual
components. X

e 8.1. Bill of Materials (BOM) & Tools:

o Reviewing the complete list of required parts: chassis, motors, encoders, motor

driver, microcontroller, Raspberry Pi, sensors, battery, etc.

o Overview of essential tools: soldering iron, multimeter, wire strippers, screwdrivers.
e 8.2. Mechanical Assembly:

o Step-by-step instructions for assembling the robot's chassis.

o Mounting the DC motors, wheels, and wheel encoders.

o Attaching the caster wheel for stability.

KreNten

e 8.3. Electrical Wiring & Power System:
o Creating a power distribution system from the battery.
o Using buck converters to supply the correct voltage (e.g., 5V) to the Raspberry Pi
and microcontroller.
o Wiring the motor driver to the microcontroller and motors.
e 8.4. Integrating Electronics & Sensors:
o Securely mounting the Raspberry Pi, microcontroller, and motor driver to the
chassis.
Connecting the LIiDAR and IMU sensors to the Raspberry Pi.
Finalizing the build with clean cable management to ensure reliability.

KreNten

	Last Update: 17Oct 2025
	Autonomous Mobile ​Robot Diploma Outline​ROS 2 and Modern C++
	Module 1: ROS 2 Fundamentals and Communication
	This module establishes the foundational knowledge of the ROS 2 architecture and communication patterns.
	Module 2: Advanced ROS 2 Programming (C++ & Python)
	Module 3: Robot Modeling and Simulation (URDF/Gazebo)
	Module 4: Robot Kinematics and ROS 2 Control
	4.1. Mobile Robot Kinematics (Theory)
	4.2. Low-Level Control Interface (Encoder & Command)
	4.3. Integrating with ros2_control and Simulation
	4.4. Executing and Testing ROS 2 Control

	Module 5: Sensor Fusion and Advanced Localization (EKF)
	Module 6: DDS, Quality of Service (QoS), and Node Lifecycle
	Module 7: Perception and Autonomous Navigation (Nav2)
	Module 8: Microcontroller Hardware Control
	Module 9: Robot Hardware Integration (Raspberry Pi)
	Module 10: Robot Assembly: Mechanical & Electrical

