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Abstract

The intensity or level of climate risk
hazards in terms of magnitude and
frequency, as well as geometric
complexity, is also increased by climate
change. The appropriate model for
predicting climate risk is highly relevant as
well as informative for developing a
climate-resilient plan. The currently
available climate risk prediction model,
although incorporated with physics, is
perfect and claims accuracy in long-term
predictions but acts as a reactive model
with resolution requirements; therefore,
the currently used climate risk prediction
model in the SD plans is inefficient for
conducting risk assessment at the local
level. The advances in Al/ML technology
have led to the evolution of the paradigm
shift in developing innovative solutions for
dealing with climate risk prediction
difficulties and made easier to manage the
big data at the multiple sources effectively.
The conclusion of the paper is drawn at the
end after determining the relevance to the
scope in dealing with the future
developments in Al-assisted climate risk
prediction in the SD plans.
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1. Introduction

This is a problem for the world in
contemporary society and has major
effects on the environment, economic
systems, as well as human settlements.

This is because natural occurrences such as
floods, drought, heat waves, and storms
are rising in their occurrences. The worst
affected areas in the world in relation to
the issue of climate change are the
remotest areas. This is because such areas
rely on their climatic condition for their
survival. This may include agriculture.
Major cities in the world are also affected.

Preciseness in the forecast of climate risk
is the most crucial factor in the process of
build-out. Not only the approach will assist
in the forecast of climate risk but also it
will make sure that the risk is at a
minimum. The traditional approach which
can be followed for the forecast of climate
risk is the numerical simulations of climate
risk based on the laws of physics. The
developments of artificial intelligence
models to forecast climate risk are trends
in the methodologies of climate risk
forecast.

This paper has the objective of reviewing
Al models related to climate risk
predictions. The objective is to determine
the role played by climate risk models
using Al within the process of improving
resilience.

2. Literature Review

This is a problem faced by the world at
present and has serious effects on the
environment, economic systems, and
human settlements. This is attributed to the
fact that natural occurrences such as
flooding, drought, heat, and storms are on
the increase. The remote areas of the world
are mostly affected by climate change.
This is attributed to the fact that these
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regions rely on the climate for their
survival. Examples include agriculture.
The major cities in the world are also
affected.

The forecasting of climate risk in the
build-out process of resilience should be
highly accurate, as the approach in place
would not only assist in the forecasting
process but also help minimize the risks to
the barest minimum. Traditionally, the
forecasting of climate risk has been treated
numerically by simulation and using the
fundamental  approach to  physics.
Currently, the development of approaches
using artificial intelligence encompasses
the trends that are associated with the
forecasting of climate risk.This review
paper reviews Al models that are available
in regard to the predictions of climate risk.
This paper will seek to establish the
contribution of the Al climate risk model
towards resilience.

3. Methodology
3.1 Data Collection and Preprocessing

The type of artificial intelligence that
might ideally be applicable in the
prediction of the risks involved in climate
change can make use of the integration of
the knowledge that has been acquired in
various forms. This type of knowledge
involves the collection of facts or
information that is associated with the
environment, flooding, drought, and the
risks involved in storms.

1. Historical Weather Data

The past weather patterns also consist of a
history of data, which will be maintained
in order to be analyzed in the form of the
atmosphere at present, in terms of
temperatures, rain, speed, and humidity in
the atmosphere. The data will help the

artificial system in spotting the past
patterns and abnormalities developed due
to the emergence of bad weather.

2. Satellite and Remote Sensing Data

These satellites and remote sensing
systems have relevance in observation and
validation of features and conditions of the
Earth at all times. The pieces of
information that a satellite can offer
include the formation of clouds, the land
surface temperature of the landmass,
vegetation, the content of water in the soil,
the changes in the sea water levels, and
ice. All the pieces of information that will
be discussed below will prove important,
taking into consideration the fact that this
information does not normally lie in the
open.

3. Climate Reanalysis Data

Climate reanalysis data is a combination of
climate observation data and numerical
climate modeling. This results in a set of
data that can fill gaps not accounted for by
actual observation. Reanalysis data can be
applied extensively when it comes to
making climate risk assessments based on
Al.

4. Socio-Economic, Land-Use, and
Demographic Data

It can be said that the human climate risk
isfully affected by the various human
factors. Socioeconomic data contains
information on density, economic status,
infrastructure, and economic activities. It
also holds land usage information. This
information depicts land usage categories
such as urban land, agricultural land, and
forest land. Demographic information
facilitates the determination of the
population at risk. The Al model not only
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predicts climatic risks but also predicts the
effects resulting from these risks.

5. Sensor and Weather Station Records

The ground sensor stations and weather
stations allow for real-time and highly
accurate determination of the prevailing
climatic variables on the ground. It’s very
essential in the process of validating the
data from satellites and in determining the
micro-weather events, which might not be
captured on a macro-level.

3.2 Model Development

The proposed methodological approach
incorporates different types of Al models.
The Al models are found to be useful in
assisting in comprehending the nature of
climate data, in some cases of which the
data might be complex, Natural Language
(NL), spatial data, or temporal data in
nature. The Al models, due to different
types of applications, belong to three
different types, including conventional
machine learning models, Deep Learning
models, and Hybrid Al models.

1. Traditional Machine Learning
Models

In contrast, traditional machine learning
algorithms employ a conventional use of
baseline models because a random forest
model and support vector regression model
are more interpretable and reliable.
Random Forest Models and Support
Vector  Regression  Models  would
respectively and generally be employed to
create a baseline model among other
models under Machine Learning due to
their interpretability relatively compared to
other models.

Random Forest (RF):

Random Forest is an ensemble learning
method which tries to make better
predictions using a combination of
decision trees to prevent the problem of
overfitting. Applications of RF in climate-
related research include:

e Dealing with high dimensional and
heterogeneous data (Temperature,
Rainfall, Humidity, Wind Speed).

e Studying nonlinear correlations
among climatic variables.

e Feature importance estimation,
which assists in identifying how
various environmental variables
contribute to climate-related risks.

Support Vector Regression (SVR):

Support  Vector  Regression:  This
regression model encompasses a machine
learning method that relies on a technique
called kernels and aims to determine the
best possible fit with the least possible
error margin regarding estimation of the
output value. Support Vector Regression
performs superbly well in:

o Represent approximate complex
nonlinear relationships between
climate variables.

o Making reliable predictions, in
situations where the size of the
dataset is comparatively small
when  contrasted  with  other
datasets.

e It could be used as a good
benchmark  model  for
comparison  with the
complex deep learning
models.

2. Deep Learning Models

The motive to create models with deeper
learning is embedded in their capacity to
form hierarchical representations from
complex data. From a climatic forecast
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perspective, they can be applied effectively
to model both sequences and geographic
dependencies.

Long Short-Term Memory (LSTM)
Networks:

LSTMs are a kind of RNN that managed
to resolve the vanishing gradient problem
and achieved success in the field of time
series forecasting. LSTMs have been
applied to a variety of fields within
climatology to perform the following:

e Temporal dependence patterns
from climate sequence data.

e Future trends for the likes of
rainfall, temperature, and drought.

e Climate variability patterns, inter-
annual, and seasonal variations

Gated Recurrent Unit (GRU) Networks:

However, owing to the fact that the
weakness in the LSTM Network is that the
total number of parameters being too high,
an optimized version called *The GRU
Network*, ~which has a reduced
requirement for storage space as far as the
total number of parameters considered, has
been developed. This is because the total
number of parameters in “The GRU
Network™ is less compared to that of the
“LSTM Network™, since

e Pattern recognition in climate data
time series.

e Facilitate the training process of
the model over a shortened
timeframe with a similarity in
levels of accuracy that are more or
less similar.

e Acting as a substitute if there
would be a number of operations
involving power.

Convolutional Neural Networks

(CNNs):

It can be generally stated that the
applications of the CNNs would be
attributed to the processing and acquisition
of the spatial features present in the grid
data, the image data, and the climate data.
The most important advantages which
would be generated by the applications of
these CNNs would be the following:

e Identification of Correlation &
Patterns in Spacial Data.

e Itincorporates trajectory studies
that involve weather front
formation distributions based on
geography, rain, and heat waves.

e Dimension Reduction, maintaining
spatial data.

3. Hybrid Models

These models leverage the benefits that
arise from the ability of various models to
deal with the complexity introduced due to
the nature of the climate system using deep
learning. In such a case, the CNN-LSTM
model could be used.

CNN-LSTM Hybrid Architecture:

In the proposed approach, the initial
processing step of the SPMs for the grid
climate data involves the engagement of
the CNN layer. The temporal SPMs are
subsequently employed as the input for the
processing in the LSTM layer. This makes
the architecture of the neural network
consisting of the CNN layer and the LSTM
layer capable of performing the following
functions:

e Relationship training by means of
collaborative learning.

e Advanced Spatiotemporal Models

e Opportunities pertaining to the
optimization of predictability for
flood, drought, heat-wave, and
heavy rainfall hazard types.

- @ International Journal of Science, Technology and Management



[JSTM, Vol. -17, Issue -1

ISSN: 2229 - 6646

3.3 Training, Validation, and Testing

The models are trained on past data sets;
validation techniques include the use of
cross-validation. There is hyperparameter
optimization to improve the models'
robustness. The  optimization  of
hyperparameters is  performed  for
robustness improvement and
generalization.

3.4 Performance Evaluation

Performance evaluation is a significant
task to measure the efficiency and validity
of a forecasting model. This is required to
compare the estimated outputs generated
from a model with actual data on the basis
of numerical evaluation criteria. In a study,
the performance of a model for accurate
estimation is evaluated using some
universally recognized evaluation criteria,
which include Mean Absolute Error
(MAE), Root Mean Square Error (RMSE),
and the Coefficient of Determination (R?).

Mean Absolute Error (MAE)

MAE computes the mean value of the
absolute difference between the actual
value and the value of the forecast without
considering the characteristics of the
forecast. This is done by calculating the
absolute values without considering the
characteristics of the error. This method is
quite straightforward and it is employed in
the evaluation of the forecast error to find
out how well the model fits with respect to
the forecast of the variable given that the
values are in units of the variable.

Advantages of MAE:

e “Easy on the eyes, easy to read."

e The errors are considered equal, no
matter what the errors in the larger
numbers are.

e Therefore, this method is an
optimal solution for dealing with
outlier observations that require
error norms to be expressed by
means of a square.

The MAE might find applications when
there is a need to approximate an
approximate value for an error prediction
task.

Root Mean Square Error (RMSE)

RMSE calculates the square root of the
mean value for the forecast errors
subtracted by the actual value
measurements. By understanding its
dependency upon a value that is squared,
giving more concern towards larger errors
than the smaller ones, the “why” the
concern of the issue is so important to
RMSE can be derived.

Advantages of RMSE:

e Relatively harsher in terms of
punishment for big mistakes, which
is great if big mistakes are not
wanted.

e Scales are equal as they contain
similar units to the predictor when
there is scaling.

e Regression Analysis for
Comparison used for forecasting
purposes.

The RMSE may only apply where the
greatest possible reduction of error is
relevant to instances of prediction that
require the greatest possible reduction of
the error of prediction.

Coefficient of Determination (R?)

Coefficient of determination, or, the
measure of the variability in the dependent
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variable explained by the forecasting
equation. Indicates the relative
appropriateness of the values calculated in
the actual values.

4. Applications for Rural and Urban
Resilience

Anyways, coming back to this issue, it
would be quite clear that the scope of
predictive processes regarding the threat of
climate change posed by Artificial
Intelligence would extend to drought early
warning systems in agricultural areas,
agricultural land use in agricultural areas,
irrigation in agricultural areas, as well as
food security in agricultural areas. It is
Climate change adaptation before it occurs
where Artificial Intelligence applies.

The resilience of the Al model could be
demonstrated in an urban setting,
predicting floods, heatwaves, storms,
through to Urban Planning and Design.
The application of Al model forecasts in
decision-support systems in the urban
setting could be useful in combating
climate change.

5. Challenges and Limitations of Al-
Based Climate Risk Predictive Models

With great potential exists for Ai-based
predictive models to help improve climate
risk assessments and the decisions made
based on those assessments. However,
where  Al-driven  predictive  models
currently provide valuable support, they
also come with various technical, ethical
and practical challenges that must be
addressed in order to ensure the model's
reliability; equity and sustainabliity.

1. Data Gaps and Limited Coverage of
Spatial Representation

To develop effective Al models in a timely
manner, we need to work with large
volumes of high quality representative

data. Unfortunately, many of the datasets
that have been generated in connection to
climate change do not currently provide
adequate spatial and temporal coverage.

For example, there may be very few
weather stations, sensor networks and/or
historical data records (or even an absence
of any records) in rural or remote areas,
creating an under-representation of these
areas in training datasets.

Although satellite data can fill some of
these gaps, there may be limitations related
to resolution and/or accuracy when trying
to do localized risk assessments like flood
risks or drought vulnerability assessments.

The fact that collection standards vary
across regions and countries can create
noise and increase uncertainty in collection
processes, impacting the reliability of the
models.

For this reason, some Al models will
produce 'biased" and/or inaccurate 'results'
for areas that are traditionally
underrepresented in available dataset,
particularly in marginalised and data-poor
regions, which are generally the areas that
are the most vulnerable to the impacts of
climate change.

This imbalance can exacerbate the existing
inequities associated with the increasing
priority given to well monitored
urban/high incomes, as opposed to
rural/developing areas.

2. High computational demands of Al
and the cost of energy

Deep learning and other Al-based
algorithms require extremely powerful
computers to process their complexity.

The development of climate models
involves using advanced computer
modeling and simulating on a global scale
to achieve high-accuracy forecasting,
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working with very large datasets that are
referred to as "big data" and having
forecasts of longer durations than are
utilized in the traditional weather
forecasting industry.

The energy requirements needed to run
data centers that use multiple advanced
GPUs to develop Al systems have
increased the CO2 footprint associated
with Al development and raised numerous
environmental sustainability concerns.

Many developing nations and smaller
academic/independent researchers may not
have the necessary computational facilities
for developing these Al-based models to
address climate change, creating barriers
for their ability to participate and develop
innovative solutions.

Increasing the frequency of retraining the
climate  forecasting models creates
additional energy usage and cost for the
developers. A situation arises where
climate forecasting models developed with
the intention of mitigating climate change
may contribute negatively to the
environment if not developed or utilized
appropriately; thus, creating a paradox
with regard to the use of Al to combat
climate change.

3. Low Interpretability of Deep
Learning Models

Many Al climate risk analysis techniques
that are based on computer modelling
operate either as "black boxes" or as
predictive algorithms whose methodology
is hidden from analysis, resulting in a lack
of explanation of how model predictors
produce predictions. Deep Learning
models provide valid outputs but do not
provide a rationale for the predictions they
are making. Insurers, policymakers and
Emergency Managers may not have
adequate faith in the predictions generated

from an unexplainable deep learning
model.

The lack of interpretability also presents a
barrier to the ability to be able to
effectively identify model errors, biases
and causal links, limiting the level of
trustworthiness associated with outputs.
The inability to be able to justify decisions
made based on a model output in high-
stakes scenarios (e.g., disaster
preparedness and infrastructure planning)
creates legal and ethical liabilities
associated with decision-making
processes.

In addition, the lack of rationales and
justification from Al-based Climate Value
models creates barriers to the adoption of
insight generated from Al-enabled Climate
Value Models in real-world practices and
on-going mitigative action.

4. Ethical Considerations: Bias, Fair
Treatment, and Equal Access

The presence of ethical implications is
among the most significant obstacles when
applying Artificial Intelligence (Al) in
prediction of risk that is associated with
climate change.

Systematic bias that exists in historical
data can produce systematic
undervaluation of risk relating to groups
that are most affected by climate change,
e.g. people with the highest vulnerability.

Those communities that have limited
access to technology or digital capability
are at risk of becoming disenfranchised in
their access to Al-based climate prediction
resources.

The creation of a limited number of
proprietary models and datasets creates
concentrated control of these prediction
capabilities within a small number of
organizations.
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With limited transparency and
accountability, the question of who
controls these Al prediction models, how
they reach their decision-making and who
will take responsibility for the negative
impacts of inaccurate predictions presents
a significant barrier.

The lack of inclusive design and
governance models/approaches increases
the risk that Al-based systems will
exacerbate social and economic inequality,
rather than reducing the climate
vulnerability of these underrepresented
communities.

Taking these challenges into consideration
iS very important in order to ensure the
effective application of Al in climate
change resilience strategies.

6. Conclusion

Al Climate Risk Forecasting models
provide a viable pathway for improving
rural and urban resilience to the increasing
number of climate-based disasters and
extreme events caused by climate change.
Al climate risk forecasting models rely on
advanced machine learning and deep
learning technologies and can integrate
data from multiple sources, including past
weather patterns, satellite images, and
socio-economic information, into a single
product. As a result, Al Climate Risk
Forecasting models will provide actionable
information for early warning systems,
risk assessments, and climate adaptation
planning. Al Climate Risk Forecasting
models  will also have  superior
performance to traditional physics-based
climate forecasting models in several
ways. For example, Al models are more
capable of processing extremely large
volumes of complex data than physics-
based models. Moreover, Al models can
also make considerably better predictions

regarding local climate conditions than
physics-based models, which allows for
more timely decisions regarding flood,
heat, drought, and storm disasters.

Al may be useful in foreseeing how
climate change affects economies;
however,  implementing Al  poses
obstacles. In particular, the majority of the
globe does not possess adequate data
necessary for producing reliable Al
models, resulting in limited uses for these
models, in addition to the creation of
localization bias in determining the regions
affected due to climate change. Second,
many Al technologies rely on wvast
amounts of computational resources and
energy to operate, raising significant
sustainable issues, especially in developing
and resource-limited environments. Third,
many Al technologies lack interpretability
and transparency (i.e., are “black boxes”),
meaning it is often challenging for users to
fully understand the rationale behind Al
conclusions, ultimately making the use of
Al to help inform decision-making and
policy development problematic. Lastly,
the questions related to Al's ethical
ramifications raise significant concerns,
such as bias from algorithms that causing
entities not to have equitable access to Al
products, and equal consideration given to
all who could be impacted by Al
technology.

As we look at the future of climate
modelling and forecasting, it is important
to consider hybrid modelling strategies
which combine physical climate models
with Al-based techniques. These hybrid
approaches will allow for the most reliable
forecasts possible and provide the greatest
level of robustness. It is also important to
develop and use explainable Al (XAl)
frameworks. XAl enhances transparency
of Al-driven forecasting systems and
improves stakeholder trust in these
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systems. Additionally, investing in the data
infrastructure necessary to ensure equitable
representation across all geographic areas
will make the greatest impact on building
climate  resilience and  sustainable
development.

The collaborative efforts of climate
scientists, Artificial Intelligence (Al)
researchers, and decision-makers
(policymakers, local community
representatives) will be needed to create
effective Al-enhanced forecasting tools
that advance scientific knowledge and
provide meaningful contributions to
climate  resilience and  sustainable
development. This research illustrates that,
when  deployed responsibly  and
inclusively, Al-based predictive systems
can become valuable tools for building
climate adaptation strategies and enabling
decision makers to prepare for climate
change impacts in ways that have never
been possible before.
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