

Find a polynomial in standard form with the following attribute(s). All coefficients need to be integers. After you build the polynomial, check your build on Desmos and make note of the attributes it has.
zeros: $x=-3$; mult:2, $x=4$
The fully factored form of $f(x)$ is:

The $x$-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ $\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$

zeros: $x=-\sqrt{3}, x=0$; mult: 2
The fully factored form of $f(x)$ is:

The x-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ $\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$

zeros: $\quad x=2-\sqrt{5}, x=1$
The fully factored form of $f(x)$ is:

The $x$-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ $\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$

zeros: $x=-2 i, x=\sqrt{2}$
The fully factored form of $f(x)$ is:

The $\boldsymbol{x}$-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ $\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$
zeros: $x=-4 i, x=0$; mult: 3
The fully factored form of $f(x)$ is:

The $\boldsymbol{x}$-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ $\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$

zeros: $\quad x=i, x=3 i$
The fully factored form of $f(x)$ is:

The $x$-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...

$$
\text { if } x \rightarrow \infty \text { then } y \rightarrow
$$

$\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$


Write a polynomial to represent the volume of the rectangular prism.


The fully factored form of $f(x)$ is:

The $x$-intercepts are:

The $\boldsymbol{y}$-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ $\qquad$
if $x \rightarrow-\infty$ then $y \rightarrow$ $\qquad$


Even Degree Odd Degree


Graph behavior around x -intercept for or odd multiplicities


OR

Graph behavior around x-intercept for or even multiplicities

