Finding Zeros of Polynomials

By the end of this lesson, I will be able to answer the following questions...

1. What are zeros of polynomials?
2. What are the techniques to find the zeros of a polynomial?
3. How do I find zeros of a polynomial using technology?
4. What is multiplicity?
5. how does multiplicity affect a polynomial graph?

Vocabulary

1. Zeros of a polynomial - the " x " value(s) of polynomials that make the function zero. Also, can be considered the x-intercepts of the function.
2. Multiplicity - when a function has multiple zeros at a single point, that will affect the graph in certain ways.
3. Tangency - when a two graphs intersect and exactly one point.

Prerequisite Skills with Practice

Revisiting Factoring, Zero Product Property, the Quadratic Formula and Using Square Roots
Solve the following and verify your solutions using technology

> solve by factoring $x^{2}+9 x+20=0$
solve by factoring
$2 x^{2}-17 x+35=0$
solve by factoring $x^{2}-10 x=0$
solve by using square roots

$$
2 x^{2}-9=0
$$

solve by using square roots

$$
(x-4)^{2}-5=20
$$

solve using the quadratic formula

$$
2 x^{2}-3 x-4=0
$$

The fully factored form of $f(x)$ is:

$$
f(x)=x^{3}+x^{2}-2 x
$$

The zeros are:

The \boldsymbol{x}-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

Even Degree
Odd Degree

	V
	$f(x)=x^{2}$

The fully factored form of $f(x)$ is:

$$
f(x)=-x^{3}+9 x
$$

The zeros are:

The \boldsymbol{x}-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

The fully factored form of $f(x)$ is:
$f(x)=x^{3}-2 x^{2}-4 x$

The zeros are:

The x-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...

$$
\text { if } x \rightarrow \infty \text { then } y \rightarrow
$$

\qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

$$
g(x)=2 x^{4}-2 x^{2}
$$

The zeros are:

The x-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

OR

Graph behavior around x -intercept for or odd multiplicities

OR

Graph behavior around x -intercept for or even multiplicities

The zeros are:

The \boldsymbol{x}-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...

$$
\text { if } x \rightarrow \infty \text { then } y \rightarrow
$$

$$
\text { if } x \rightarrow-\infty \text { then } y \rightarrow
$$

\qquad

OR

Graph behavior around x-intercept for or odd multiplicities

Graph behavior around x-intercept for or even multiplicities

$$
f(x)=(x+2)(x-1)^{3}
$$

The zeros are:

The \boldsymbol{x}-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...

$$
\text { if } x \rightarrow \infty \text { then } y \rightarrow
$$

\qquad if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

OR

Graph behavior around x-intercept for or odd multiplicities

or

Graph behavior around x -intercept for or even multiplicities

THE END

