$f(x)=x^{4}-4 x^{3}-6 x^{2}+36 x-27$ has a factor of
$(x-3)$ with multiplicity two.
The fully factored form of $f(x)$ is:
The zeros are:
The \boldsymbol{x}-intercepts are:
The \boldsymbol{y}-intercept of the polynomial is
: The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

$$
f(x)=2 x^{3}-3 x^{2}-14 x+15 \text { has factors of }
$$

$(x-1)$ and $(x-3)$.
The fully factored form of $f(x)$ is:
The zeros are:
The x-intercepts are:
The \boldsymbol{y}-intercept of the polynomial is
: The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$
$f(x)=-x^{5}+7 x^{4}-9 x^{3}-27 x^{2}+54 x$ has a factor of
$(x-3)$ with multiplicity 3 .

The fully factored form of $f(x)$ is:
The zeros are:
The x-intercepts are:
The \boldsymbol{y}-intercept of the polynomial is
: The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$

