$$
f(\theta)=\sin (\theta)
$$

Attributes of Sine Graphs in Parent From

Amplitude:
Period:
Phase Shift:
Vertical Shift: \qquad

X - intercepts: \qquad
Y - intercepts:
Domain: \qquad
Range:

Amplitude: What is it? How to find it. How does it affect the graph?

$$
\begin{gathered}
f(x)=A \sin (B x-C)+D \\
\text { amplitude }=|A|
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=2 \sin (x) \\
& f(x)=-\frac{1}{2} \sin (x)
\end{aligned}
$$

Period: What is it? How to find it. How does it affect the graph?

$$
\begin{gathered}
f(x)=A \sin (B x-C)+D \\
\text { period }=\frac{2 \pi}{B}
\end{gathered}
$$

$$
f(x)=\sin (2 x)
$$

$$
f(x)=\sin \left(\frac{x}{2}\right)
$$

Phase Shift: What is it? How to
find it. How does it affect the graph?

$$
\begin{gathered}
f(x)=A \sin (B x-C)+D \\
\text { phase shift }=\frac{C}{B}
\end{gathered}
$$

Graph moves horizontally left if C is Positive
Graph moves horizontally right if C is Negative
$f(x)=\sin \left(x-\frac{\pi}{2}\right) \quad f(x)=\sin \left(x+\frac{\pi}{6}\right)$

Vertical Shift: what is it? How

to find it. How does it affect the graph?
$f(x)=A \sin (B x-C)+D$
vertical shift $=D$
Graph moves vertically up if D is Positive
Graph moves vertically down if D is Negative

$$
f(x)=\sin (x)+3
$$

Amplitude: \qquad
Period: \qquad
Phase Shift: \qquad
Vertical Shift: \qquad
X - intercepts: \qquad
Y - intercepts: \qquad
Domain: \qquad
Range: \qquad

Amplitude: \qquad
Period: \qquad
Phase Shift: \qquad
Vertical Shift: \qquad
X-intercepts: \qquad
Y - intercepts: \qquad
Domain: \qquad
Range: \qquad

Amplitude: \qquad
Period: \qquad
Phase Shift: \qquad
Vertical Shift: \qquad
X - intercepts: \qquad
Y - intercepts: \qquad
Domain: \qquad
Range: \qquad

