1. Look at the graph of $f(x)=x^{2}+1$. What is the average rate of change between $[-1,3]$? Draw a line between the two points and explain what the rate of change that found means.

2. Look at the graph of $f(x)=-(x+3)^{2}+4$. What is the average rate of change between $[-5,-3]$?
Draw a line between the two points and explain what the rate of change that found means.

3. Look at the table below. What is the average rate of change between $[-1,3]$?

\mathbf{x}	\mathbf{y}
-2	-22
-1	-11
0	-6
3	-27

4. Look at the table below. What is the average rate of change between [$-4,4]$?

x	y
-4	16
-2	4
0	0
4	16

For the following functions, is the average rate of change greater between $x=-2$ and $x=0$ or between $x=0$ and $x=2$?
5. $f(x)=\frac{1}{2}(x+2)^{2}+3 \quad$ 6. $g(x)=-x^{2}+8 x+3 \quad$ 7. $h(x)=5 x^{2}-6 x+4$
8. A drop of rain falls from a height of 1,400 feet above the ground. The function $h(t)=-16 t^{2}+1400$ is used to model the raindrop's height, $h(t)$, in feet t seconds after it starts to fall. What is the raindrop's average rate of change 2 to 3 seconds after it falls? USE CORRECT UNITS

9 The table below gives the velocity of a skydiver t seconds into free fall.

Time in seconds	0	10	20	30	40	50	60
Velocity in fps	0	147	171	175	175.8	176	176

A. Find the average rate of change of velocity for each ten second interval.
B. During which interval was the average rate of change the highest?
C. Use the average rate of change from 10 seconds to 20 seconds to approximate the skydiver's velocity 15 seconds into free fall.
D. Use the average rate of change from 0 seconds to 10 seconds to approximate the skydiver's velocity 8 seconds into free fall.

