1. Look at the graph of $f(x) = x^2 + 1$. What is the average rate of change between [-1,3]? Draw a line between the two points and explain what the rate of change that found means.

2. Look at the graph of $f(x) = -(x+3)^2 + 4$. What is the average rate of change between [-5,-3]?

Draw a line between the two points and explain what the rate of change that found means.

3. Look at the table below. What is the average rate of change between [-1, 3]?

x	У			
-2	-22			
-1	-11			
0	-6			
3	-27			

4. Look at the table below. What is the average rate of change between [-4, 4]?

x	у			
-4	16			
-2	4			
0	0			
4	16			

For the following functions, is the average rate of change greater between x = -2 and x = 0 or between x = 0 and x = 2?

8. A drop of rain falls from a height of 1,400 feet above the ground. The function $h(t) = -16t^2 + 1400$ is used to model the raindrop's height, h(t), in feet t seconds after it starts to fall. What is the raindrop's average rate of change 2 to 3 seconds after it falls? USE CORRECT UNITS

9 The table below gives the velocity of a skydiver *t* seconds into free fall.

Time in	0	10	20	30	40	50	60
seconds							
Velocity	0	147	171	175	175.8	176	176
in fps							

- A. Find the average rate of change of velocity for each ten second interval.
- B. During which interval was the average rate of change the highest?
- C. Use the average rate of change from 10 seconds to 20 seconds to approximate the skydiver's velocity 15 seconds into free fall.
- D. Use the average rate of change from 0 seconds to 10 seconds to approximate the skydiver's velocity 8 seconds into free fall.