Building Polynomials from Known Attributes

By the end of this lesson, I will be able to answer the following questions...

1. How do I build polynomials from zeros?
2. What is a conjugate?
3. What are the properties of a conjugate and how do I use them to build polynomials?
4. What is the irrational conjugate rule and complex conjugate rule

Vocabulary

Conjugates

$$
(x-5)(x+5) \quad(x-\sqrt{5})(x+\sqrt{5}) \quad(x-5 i)(x+5 i)
$$

What is a pattern you notice?

Prerequisite Skills with Practice

$\sqrt{2} \cdot \sqrt{5}=$
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{\frac{4}{9}}=$
$\sqrt{2} \cdot \sqrt{10}=$

$$
\sqrt{\frac{5}{9}}=
$$

$\sqrt{2} \cdot \sqrt{2}=$

$$
\sqrt{\frac{4}{5}}=
$$

Find a possible polynomial with all integer coefficients and the zeros of -3 , 2 and 0.
Sketch the graph afterwards. afterwards. Confirm using Confirm using a graphing calculator.

The fully factored form of $f(x)$ is:

The zeros are:

The x-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

Find a possible polynomial with all integer coefficients and the zeros of 3 ; mult 2 and 0 ; mult 3
Sketch the graph afterwards. afterwards. Confirm using Confirm using a graphing calculator.
The fully factored form of $f(x)$ is:

The zeros are:

The x-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

Find a possible polynomial with all integer coefficients with the zeros of $\sqrt{7}$ and 1 . is a zero also. (and vice versa) Sketch the graph afterwards. afterwards. Confirm using a graphing calculator.

Irrational Conjugate Rule: If \sqrt{b} is a zero of a polynomial $-\sqrt{b}$ with all integer coefficients, then

The fully factored form of $f(x)$ is:

The zeros are:

The x-intercepts are:

The y-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

Find a possible polynomial with all integer coefficients with the zeros of $2-\sqrt{15}$ and 0 .
Sketch the graph afterwards. Confirm using a graphing calculator.

Irrational Conjugate Rule:
If $a+\sqrt{b}$ is a zero of a polynomia) with all integer coefficients, then $a-\sqrt{b}$ is a zero also. (and vice versa)

The fully factored form of $f(x)$ is:

The zeros are:

The x-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is...
if $x \rightarrow \infty$ then $y \rightarrow$ \qquad if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

Find a possible polynomial with all integer coefficients with the zeros of $-3 i$ and -4 .

Complex Conjugate Rule:
If $b i$ is a zero of a polynomial with all integer coefficients, then-bi
is a zero also. (and vice versa)
The fully factored form of $f(x)$ is:

The zeros are:

The x-intercepts are:

The \boldsymbol{y}-intercept of the polynomial is:

The end behavior of the polynomial is... if $x \rightarrow \infty$ then $y \rightarrow$ \qquad
if $x \rightarrow-\infty$ then $y \rightarrow$ \qquad

THE END

