Title of Lesson: Exponential Functions and Their Graphs

By the end of this lesson, I will be able to answer the following questions...

- 1. How do I graph an exponential function using a shift method?
- 2. What is the natural base "e" value and how do I work with it?
- 3. What are the compound interest formulas and how do I use them?

Vocabulary

1. Compound Interest: "n" compounds per year

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

 $A \rightarrow Amount$

 $P \rightarrow \text{Principal}$ $r \rightarrow \text{Rate in decimal form}$

 $n \rightarrow$ Number of compounds per time period

 $t \rightarrow$ Time period

2. Compound Interest: For continuous compounding

$$A = Pe^{rt}$$
 where $e \approx 2.718$

3. Growth vs. Decay tendencies.

Prerequisite Skills with Practice

1.
$$a^x a^y \Leftrightarrow a^{x+y}$$

$$2. \frac{a^x}{a^y} \Leftrightarrow a^{x-y}$$

$$2x^3 \cdot 2x^5 \rightarrow$$

$$\frac{10x^3}{15x^2} \rightarrow$$

3.
$$(ab)^x \Leftrightarrow a^x b^x$$

$$4. (a^x)^y \Leftrightarrow a^{xy}$$

$$5. \left(\frac{a}{b}\right)^x \Leftrightarrow \frac{a^x}{b^x}$$

$$(2xy)^3 \rightarrow$$

$$\left(x^4\right)^3 \rightarrow$$

6.
$$a^{-x} \Leftrightarrow \frac{1}{a^x}$$

7.
$$a^0 = 1$$

$$(x)^{-3} \rightarrow$$

$$\left(\frac{y}{x}\right)^3 \to$$

Graphing Exponential Functions

$$f(x) = ab^{(x-h)} + k$$

$$f(x) = 3(2)^{(x-3)} - 4$$

- Parent: _____
- Multiplier: _____
- Shift: _____
- Asymptote: _____
- X Intercept: _____
- Y- Intercept: ______

x	2^x	У
1		
2		
3		
4		
5		
0		
-1		
-2		

Graphing Exponential Functions

$$f(x) = ab^{(x-h)} + k$$

$$f(x) = -0.2(5)^{(x)} + 10$$

- Parent: _____
- Multiplier: _____
- Shift: _____
- Asymptote: _____
- X Intercept: _____
- Y- Intercept: _____

x	5 ^x	у
1		
2		
0		
-1		
-2		

$$f(x) = ab^{(x-h)} + k$$

$$f(x) = 2\left(\frac{1}{2}\right)^{(x+4)} - 4$$

- Parent: _____
- Multiplier: _____
- Shift: _____
- Asymptote: _____
- X Intercept: _____
- Y- Intercept: _____

x	$\left(\frac{1}{2}\right)^x$	У
1		
2		
0		
-1		
-2		

Compounding Per YEAR	$A = P \left(1 + \frac{r}{n} \right)^{nt}$	AMOUNT AFTER ONE YEAR
Annually		
Bi-Annually		
Quarterly		
Monthly		
Weekly		
Daily		
Hourly		
Minutely		
Secondly		
Moment		

 $A \rightarrow Amount$

 $P \rightarrow Principal$

 $r \rightarrow \text{Rate in decimal form}$

 $n \rightarrow$ Number of compounds per time period

 $t \rightarrow \text{Time period}$

You win 10,000 dollars and want to invest it in an account $A = P\left(1 + \frac{r}{n}\right)^{nt} \quad \text{Vs. } A = Pe^{rt}$ for 5 years. Which is the better deal?

Bank A: offers 3.15 % Compounded Quarterly

Bank B: offers 3.1 % Compounded Monthly.

Bank C: offers 3.0 % Compounded Continuously.

What bank do you choose?

$$f(x) = e^{x}$$

x	e^{x}	у
1		
2		
0		
-1		
-2		

$$f(x) = ab^{(x-h)} + k$$
$$f(x) = \frac{1}{2}e^{(x-3)} - 6$$

- Parent: _____
- Multiplier: _____
- Shift: _____
- Asymptote: _____
- *X Intercept:* ______
- Y- Intercept: _____

