Title of Lesson: Graphing Rational Functions

By the end of this lesson, I will be able to answer the following questions...

- 1. How do I determine vertical and horizontal asymptotes of rational functions?
- 2. How do I use polynomial division to determine a slant asymptote?
- 3. What is the PARENT FORM of a rational function?
- 4. How do I use rational functions to solve problems?

Vocabulary

1. Vertical Asymptote(s):

Occur when D(x) = 0 and $f(x) = \frac{N(x)}{D(x)} = \frac{Ax^n +}{Bx^m +}$ D(x) has no common factors with N(x).

2. Horizontal Asymptote:

- If m > n, then the horizontal asymptote is y = 0.
- If m = n, then the horizontal asymptote is $y = \frac{A}{B}$

Prerequisite Skills with Practice

X	$\frac{1}{x}$	y
3		
2		
1		
0		
-1		
-2		
-3		

X	$\frac{1}{x}$	y
1/2		
1/3		
-1/3		
-1/2		

Graphing rational functions from a parent function

$$f(x) = \frac{1}{x - h} + k$$

$$f(x) = \frac{1}{x-4} + 3$$

- 1. Vertical Asymptote:
- 2. Horizontal Asymptote:
- 3. X- intercept(s):
- 4. Y intercept:
- 5. Strategic Points if needed.

Graphing rational functions from a parent function

$$f(x) = \frac{1}{x - h} + k$$

$$f(x) = \frac{2}{x+2} - 1$$

- 1. Vertical Asymptote:
- 2. Horizontal Asymptote:
- 3. X- intercept(s):
- 4. Y intercept:
- 5. Strategic Points if needed.

Graphing rational functions from a parent function

$$f(x) = \frac{1}{x - h} + k$$

$$f(x) = \frac{-4}{x+2} - \frac{5}{2}$$

- 1. Vertical Asymptote:
- 2. Horizontal Asymptote:
- 3. X- intercept(s):
- 4. Y intercept:
- 5. Strategic Points if needed.

$$f(x) = \frac{1}{x^2 - x - 2}$$

- 1. Vertical Asymptote(s):
- 2. Horizontal Asymptote:
- 3. X- intercept(s):
- 4. Y intercept:
- 5. Strategic Points if needed.

$$f(x) = \frac{x}{x^2 - x - 2}$$

- 1. Vertical Asymptote(s):
- 2. Horizontal Asymptote:
- 3. X- intercept(s):
- 4. Y intercept:
- 5. Strategic Points if needed.

$$f(x) = \frac{2x^2 - 18}{x^2 - 2x - 3}$$

- 1. Vertical Asymptote(s):
- 2. Horizontal Asymptote:
- 3. Hole(s):
- 4. X- intercept(s):
- 5. Y intercept:
- 6. Strategic Points if needed.

$$f(x) = \frac{-x^2 + 9}{x^2 - 2x - 3}$$

- 1. Vertical Asymptote(s):
- 2. Horizontal Asymptote:
- 3. Hole(s):
- 4. X- intercept(s):
- 5. Y intercept:
- 6. Strategic Points if needed.

