Title of Lesson: Graphing Rational Functions

By the end of this lesson, I will be able to answer the following questions...

1. How do I determine vertical and horizontal asymptotes of rational functions?
2. How do I use polynomial division to determine a slant asymptote?
3. What is the PARENT FORM of a rational function?
4. How do I use rational functions to solve problems?

Vocabulary

1. Vertical Asymptote(s):

Occur when $D(x)=0$ and $\quad f(x)=\frac{N(x)}{D(x)}=\frac{A x^{n}+\ldots . .}{B x^{m}+\ldots . .}$
$D(x)$ has no common factors with $N(x)$.

2. Horizontal Asymptote:

- If $m>n$, then the horizontal asymptote is $y=0$.
- If $m=n$, then the horizontal asymptote is $y=\frac{A}{B}$

Prerequisite Skills with Practice

X	$\frac{1}{x}$	\mathcal{Y}
3		
2		
1		
0		
-1		
-2		
-3		

\boldsymbol{X}	$\frac{1}{x}$	\boldsymbol{Y}
$1 / 2$		
$1 / 3$		
$-1 / 3$		
$-1 / 2$		

Graphing rational functions from a parent function

$$
\begin{aligned}
& f(x)=\frac{1}{x-h}+k \\
& f(x)=\frac{1}{x-4}+3
\end{aligned}
$$

1. Vertical Asymptote:
2. Horizontal Asymptote:
3. X-intercept(s):
4. Y-intercept:
5. Strategic Points if needed.

Graphing rational functions from a parent function

$$
\begin{aligned}
& f(x)=\frac{1}{x-h}+k \\
& f(x)=\frac{2}{x+2}-1
\end{aligned}
$$

1. Vertical Asymptote:
2. Horizontal Asymptote:
3. X-intercept(s):
4. Y-intercept:

5. Strategic Points if needed.

Graphing rational functions from a parent function

$$
\begin{aligned}
& f(x)=\frac{1}{x-h}+k \\
& f(x)=\frac{-4}{x+2}-\frac{5}{2}
\end{aligned}
$$

1. Vertical Asymptote:
2. Horizontal Asymptote:
3. X-intercept(s):
4. Y-intercept:

5. Strategic Points if needed.

Graphing rational functions that are not in standard form.

$$
f(x)=\frac{1}{x^{2}-x-2}
$$

1. Vertical Asymptote(s):
2. Horizontal Asymptote:
3. X-intercept(s):
4. Y-intercept:
5. Strategic Points if needed.

Graphing rational functions that are not in standard form.

$$
f(x)=\frac{x}{x^{2}-x-2}
$$

1. Vertical Asymptote(s):
2. Horizontal Asymptote:
3. X-intercept(s):
4. Y-intercept:
5. Strategic Points if needed.

Graphing rational functions that are not in standard form.

$$
f(x)=\frac{2 x^{2}-18}{x^{2}-2 x-3}
$$

1. Vertical Asymptote(s):
2. Horizontal Asymptote:
3. Hole(s):
4. X-intercept(s):
5. Y-intercept:
6. Strategic Points if needed.

Graphing rational functions that are not in standard form.

$$
f(x)=\frac{-x^{2}+9}{x^{2}-2 x-3}
$$

1. Vertical Asymptote(s):
2. Horizontal Asymptote:
3. Hole(s):
4. X-intercept(s):
5. Y-intercept:
6. Strategic Points if needed.

