

Expand the Following
$\ln (4 \sqrt{x})$

$$
\ln \left(\frac{e^{3}}{x}\right)
$$

$\ln \left(\frac{9}{x^{4} y^{7}}\right)$
$\ln (x-9)$
vs.
$\ln \left(x^{2}-9\right)$

Condense the Following

$$
\begin{array}{l|l}
\hline \ln (x)-\ln (7)+3 \ln (y) & 2 \ln (x)-[\ln (7)+\ln (y)]
\end{array}
$$

$$
\ln \left(6 x^{2}+7 x-5\right)-\ln (3 x+5)
$$

$\frac{\ln (9)}{\ln (2)}$
$\ln \left(\frac{9}{2}\right)$

Solving using the one-to-one property

$$
\ln (x)+\ln \left(\frac{x}{2}\right)=\ln (8)
$$

$$
3 \ln (x)=\ln (8)-\ln (27)
$$

1. Compound Interest: " n " compoundings per year

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

2. Compound Interest:

For continuous compounding

$$
A=P e^{r t}
$$ compete for business as they increase the number of compounding offered.

$\underset{\text { Per YEAR }}{\text { Compounding }} \quad A=P\left(1+\frac{r}{n}\right)^{n t}$

AMOUNT AFTER ONE YEAR

Annually			
Bi-Annually			
Quarterly			
Monthly			
Weekly			
Daily			
Hourly			
Minutely			
Secondly			
Moment			

Why does $A=P\left(1+\frac{r}{n}\right)^{n t}$ look like it does?
Consider leaving \$500 in an account for 5 years with a 25% annual interest rate. You only collect interest once a year.

$$
\begin{gathered}
\$ 500(1+.25)(1+.25)(1+.25)(1+.25)(1+.25) \quad \$ 500(1+.25)^{5}=\$ 1525.88 \\
\text { Year one Year two } \begin{array}{l}
\text { Year three } \\
\$ 625.00 \\
\$ 781.25 \\
\$ 976.56 \\
\$ 1220.70 \$ 1525.88
\end{array}
\end{gathered}
$$

Now consider leaving \$500 in an account for 5 years with a 25\% annual interest rate.
You only collect interest twice a year.

Applications of " e " and "In"

Doubling Time and Half Life.

- How long does it take for an investment of $\$ 1000$ to double? The interest rate is 1.3% yearly and is compounded continuously.
- If it took an invest 5 years to double, what was the interest rate? The interest is compounded continuously and yearly
- If the half life of a certain elements mass is 3 years, what is the formula for the mass of the element with respect to time in years. Assume you start with 1000 grams.

Human Memory Model In a group project in learning theory, a mathematical model for the proportion P of correct responses after n trials was found to be $P=0.83 /\left(1+e^{-0.2 n}\right)$.
(a) Use a graphing utility to graph the function.
(b) Use the graph in part (a) to determine any horizontal asymptotes of the function. Interpret the meaning of the upper asymptote in the context of the problem.
(c) After how many trials will 60% of the responses be correct?

Using In to solve exponential equations

solve WITHOUT using $\ln \quad 2^{2 x-5}=\frac{1}{16} \quad$ solve using $\ln \quad 2^{2 x-5}=\frac{1}{16}$
solve using $\ln \quad e^{-x+4}-10=2$
solve using In
$-2 e^{3 x+4}+8=6$
solve using $\ln \quad e^{x}+8=6$
solve using $\ln \quad e^{x^{2}-5 x+6}+3=4$

Graphing Logs in relation to their exponential inverses．

$x \quad y=e^{x} \quad y=\ln x$

ソ 「 O ー N M ナ

Graph the function below and supply all the work asked for．

$$
y=\frac{1}{2}(2)^{x-4}+3
$$

Parent： \qquad
Multiplier： \qquad
Shift： \qquad
X－int： \qquad
Y－int： \qquad
Asymptote： \qquad

Graph the function below and supply all the work asked for.

$$
y=-2 e^{x-10}+7
$$

Parent: \qquad
Multiplier: \qquad
Shift: \qquad
X - int: \qquad
Y - int: \qquad
Asymptote: \qquad

Graph the function below and supply all the work asked for.

$$
y=3 \ln (x+2)+1
$$

Parent: \qquad
Multiplier: \qquad
Shift: \qquad
X - int: \qquad
Y - int: \qquad
Asymptote: \qquad

$$
2 e^{x^{2}}-11 e^{x}-21
$$

$$
3 x^{\frac{1}{2}}+2 x^{-\frac{1}{2}}-5 x^{-\frac{3}{2}}
$$

In the problems you factored above, analyze the new factored from and identify (if possible) a) X-Intercepts b) Undefined Values c) Asymptotes d) End Behavior e) Domain Restrictions Use your graphing calculator to confirm your predictions

$$
\begin{aligned}
& x^{-7}+x^{-4}-2 x^{-1} \\
& \left(x^{3}+2\right)^{1 / 3}-\left(x^{3}+2\right)^{-5 / 3}
\end{aligned}
$$

