Untitled 736.pdf Page 1 of 12

Applications of e and In

The formula $A = 37.3e^{0.0095t}$ models the population of California, A, in millions, t years after 2010.

- a. What was the population of California in 2010?
- **b.** When will the population of California reach 40 million?

$$A=37.3e^{0.0095(0)} \rightarrow 37.3e^{0}$$

37.3 -> 37.3 million folks

The formula $A = 25.1e^{0.0187t}$ models the population of Texas, A, in millions, t years after 2010.

- **a.** What was the population of Texas in 2010?
- **b.** When will the population of Texas reach 28 million?

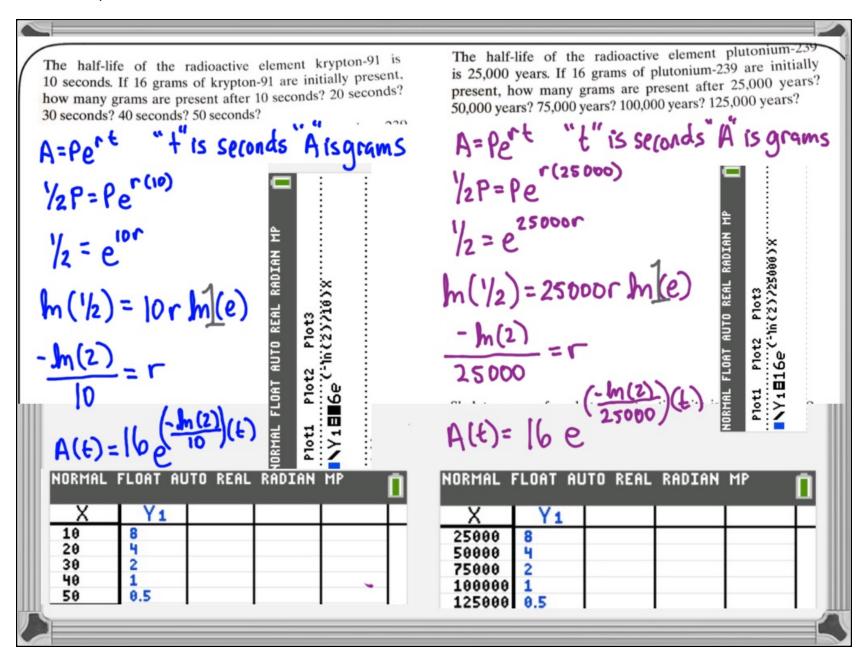
Untitled 736.pdf Page 2 of 12

		Use the formula $A =$	$=P\left(1+\frac{r}{n}\right)^{nt}$ to comp	olete the table below	V
	Principal	Number of compoundings per year	Annual Interest Rate	Accumulated Amount	Time in Years
	\$12,500	4	5.75%	\$20,000	8,233
	• \$9528.41	12	6.5%	\$15,000	7
	\$1000	365	16.8%	\$1400	2.003
	\$5000	52	14.715%	\$9000	4
	1.6= 12500 (1+ 1.6= (1+2 1.6)=(48)m (4 /	m(1.9) =	365	2.003
t=4 1500	$\frac{h_{1}(1.6)}{h_{1}(1+\frac{0.0575}{4})}$ $0 = P\left(1+\frac{0.06}{12}\right)$	2 / (12)(3)	1.8 /20	$(1+\frac{v}{52})^{208}$	7 = 52 (1.8 1208 - 1/208) C & 0-14719
ρ =	$(1+\frac{0.065}{12})^{(12)}$	J (7)≈9528.	(1.8)/20	$8 = 1 + \frac{\Gamma}{52}$	

Untitled 736.pdf Page 3 of 12

U	Use the formula $A = Pe^{rt}$	to complete the table be	elow	_
Principal	Annual Interest Rate	Accumulated Amount	Time in Years	
9 \$8000	8%	Double the amount invested	8.664	
88000	11.3%	\$14075.58	5	
\$2350	10.99%	Triple the amount invested	10	
•\$18566.81	4.25%	\$25,000	7	
16000 = 8000 e (0.08) 2= e (0.08)(E)	7050 =		25000 = Pe (0.0425))7
m(2) = (0.08)(+) m(e)	m(3)	e = 10r m(e)	P = 25000	_
F = \(\frac{(0.08)}{m(5)} \sim 8.660	r= m	(3)	P 2 18566.81	
H= 8000 6 (0.113)(2)	r % 0	.10986		
A ~ 14075,58				

Untitled 736.pdf Page 4 of 12



Prehistoric cave paintings were discovered in a cave in France. The paint contained 15% of the original carbon-14. Estimate the age of the paintings.

A=Pe^{rt}

$$C=-0.000121$$

0.15 $f=fe^{(-0.000121)}$ th

 $M(0.15) = (-0.000121)$ th

 $M(0.15) = \frac{m(0.15)}{-0.000121} \approx 15678.678$

Years old

Skeletons were found at a construction site in San Francisco in 1989. The skeletons contained 88% of the expected amount of carbon-14 found in a living person. In 1989, how old were the skeletons?

A=Pert
$$\Gamma = -0.000121$$

0.888= $Pe^{(-0.000121)}t$
 $h(0.88) = (-0.000121)t hile)$
 $t = \frac{h(0.88)}{-0.000121} \approx 1086.474$

years old in

Page 6 of 12 Untitled 736.pdf

The half-life of aspirin in your bloodstream is 12 hours. How long will it take for the aspirin to decay to 70% of the original

long will it take for the aspirin to decay to dosage?

$$A = Pe^{rE}$$

$$1/2P = Pe^{r(12)}$$

$$M(1/2) = 12r M(e)$$

$$\Gamma = -\frac{m(2)}{12}$$

$$0.70 p = p e^{-\frac{\ln(2)}{12}} t$$

$$h(0.70) = \left(\frac{-h(2)}{12}\right) + h(e)$$

$$t = \frac{h(0.70)}{\left(-\frac{h(2)}{12}\right)} \approx 6.179 \text{ hors.}$$

Xanax is a tranquilizer used in the short-term relief of symptoms of anxiety. Its half-life in the bloodstream is 36 hours. How long will it take for Xanax to decay to 90% of the original dosage?

$$\Gamma = -\frac{M(2)}{36}$$

$$0.90 p = pe^{\left(-\frac{\ln(2)}{36}\right)} t$$

$$h(0.90) = (-\frac{h(2)}{36}) + h(e)$$

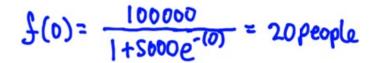
$$t = \frac{h(0.70)}{(-\frac{h(2)}{36})} \approx 6.179 \text{ hours}, \qquad t = \frac{h(0.90)}{(-\frac{h(2)}{36})} \approx 5.472 \text{ hours}$$

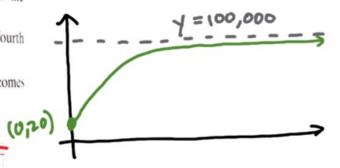
The logistic growth function

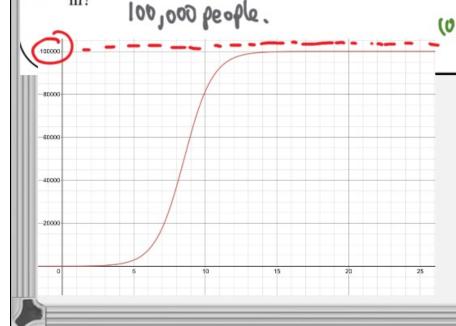
$$f(t) = \frac{100,000}{1 + 5000e^{-t}}$$

describes the number of people, f(t), who have become ill with influenza t weeks after its initial outbreak in a particular community.

- a. How many people became ill with the flu when the epidemic began?
- b. How many people were ill by the end of the fourth week?
- c. What is the limiting size of the population that becomes ill?







Page 8 of 12 Untitled 736.pdf

We see from the calculator screen at the bottom of the previous page that a logistic growth model for world population, f(x), in billions, x years after 1949 is

$$f(x) = \frac{12.57}{1 + 4.11e^{-0.026x}}.$$

Use this function to solve Exercises 38-42.

30 How well does the function intode the population of 6.1 billion for 100 b

How well does the Junetion made population of 6.9 billion for 2010?

10. When did world population reach 7 billion?

41. When will world population reach 8 billion?

42. According to the model, what is the limiting size of the population that Earth will eventually sustain?

$$e^{-0.026x} = \frac{1}{4.11} \left(\frac{12.57}{7} - 1 \right)$$

using patterns comprevious
$$-0.026 \times m(e) = m \left[\frac{1}{4.11} \right]$$

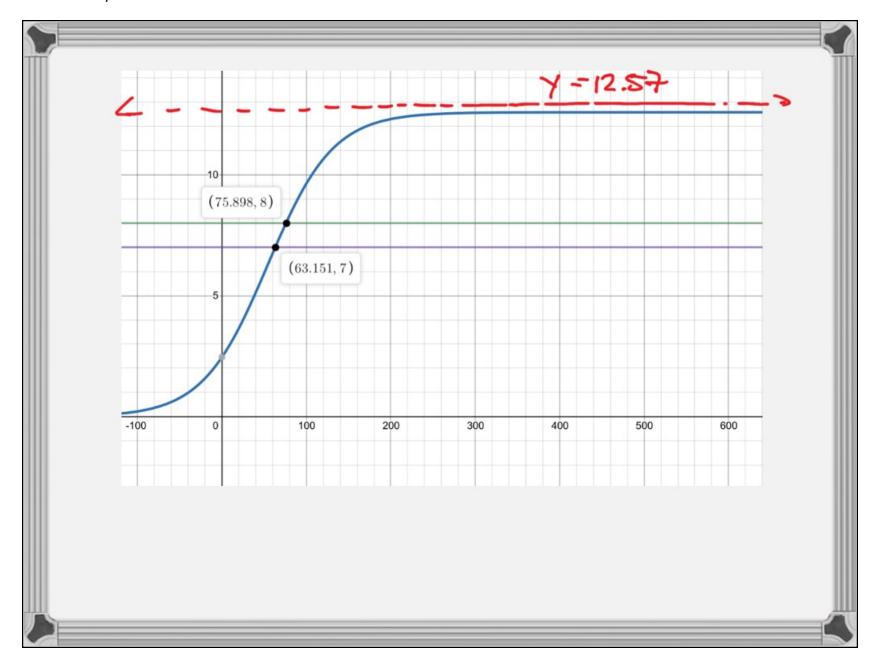
 $x = \frac{m \left[\frac{1}{4.11} \left(\frac{12.57}{8} - 1 \right) \approx 75.898 \text{ years.}}{-0.026} \times m \left[\frac{1}{4.11} \left(\frac{12}{8} - 1 \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{12}{4.11} \right) \approx 75.898 \text{ years.}} \times m \left[\frac{1}{4.11} \left(\frac{1$

$$X = m \left[\frac{1}{4.11} \left(\frac{12.57}{7} - 1 \right) \right]$$

$$-0.026$$

$$X \approx 63.15 | years | 1949 + 63 \Rightarrow 10.2012.$$

Untitled 736.pdf Page 9 of 12



Untitled 736.pdf Page 10 of 12

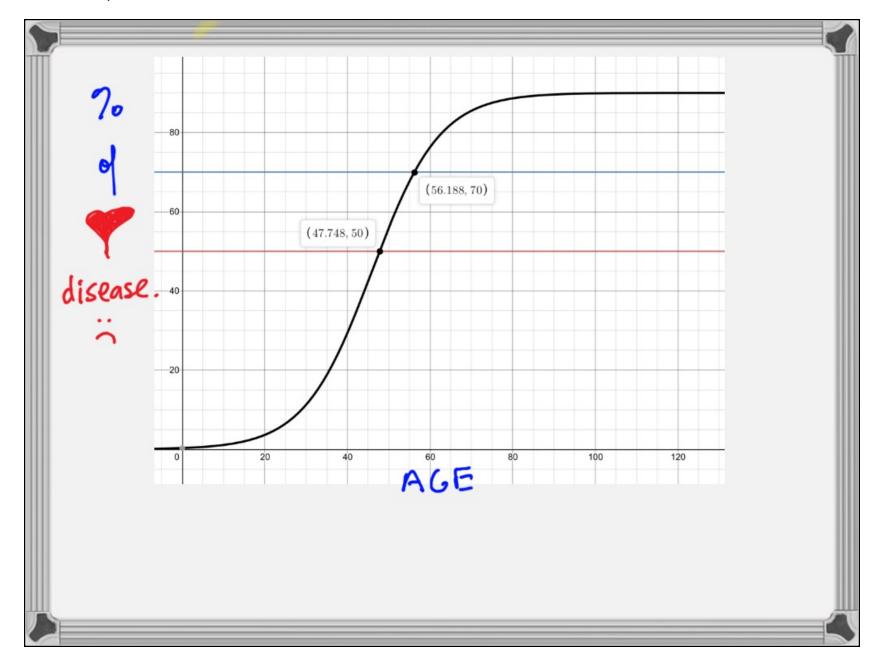
The logistic growth function

$$P(x) = \frac{90}{1 + 271e^{-0.122x}}$$

models the percentage, P(x), of Americans who are x years old with some coronary heart disease. Use the function to solve Exercises 43–46.

- 43. What percentage of 20-year-olds have some coronary heart disease?
 - 44. What percentage of 80-year-olds have some coronary heart disease?
 - 45. At what age is the percentage of some coronary heart disease 50%?
- 46. At what age is the percentage of some coronary heart disease 70%?

Untitled 736.pdf Page 11 of 12



Untitled 736.pdf Page 12 of 12

