Given $\sin \alpha=\frac{3}{5}, 0<\alpha<\frac{\pi}{2}, \cos \beta=-\frac{5}{13}, \pi<\beta<\frac{3 \pi}{2}$, find
a. $\sin (\alpha+\beta)$
b. $\quad \cos (\alpha+\beta)$
c. $\tan (\alpha+\beta)$

Given that $\tan \theta=-\frac{3}{4}$ and θ is in quadrant II, find the following:
a. $\sin (2 \theta)$
b. $\cos (2 \theta)$
c. $\tan (2 \theta)$

Prove the following identity

$$
\frac{\sin (x-y)}{\cos x \cos y}=\tan x-\tan y
$$

$$
\sin (x+y) \cdot \sin (x-y)=\sin ^{2} x-\sin ^{2} y
$$

Prove the following identity
Prove the following identity
$\cos (\alpha-\beta)-\cos (\alpha+\beta)=2 \sin \alpha \cdot \sin \beta$
$\frac{1-\cos ^{2} \mathrm{x}}{\sin 2 \mathrm{x}}=\frac{1}{2} \tan \mathrm{x}$

If $A+B+C=\pi$, and $A+B=\pi-C$, then $\tan (A+B)=\tan (\pi-C)$. Using these relations to prove that: $\tan A+\tan B+\tan C=\tan A \cdot \tan B \cdot \tan C$.

Prove the following identity

$$
\frac{\sin (x-y)}{\cos x \cos y}+\frac{\sin (y-z)}{\cos y \cos z}+\frac{\sin (z-x)}{\cos z \cos x}=0
$$ the ball from its rest position aftor tenennds is nivon hus $d=2$ roce $t+2 \sin t$ Show that

$2 \cos t+3 \sin t=\sqrt{13} \cos (t-\theta)$
where θ lies in quadrant I and $\tan \theta=\frac{3}{2}$

Use Sum/Difference Formulas to give the exact value of the trigonometric ratios below. Confirm you solution using a calculator
$\sin 195^{\circ}$

$$
\cos -15^{\circ}
$$

$$
\tan \frac{5 \pi}{12}
$$

Use Half Angle Formulas to give the exact value of the trigonometric ratios below. Confirm you solution using a calculator

$$
\sin \frac{5 \pi}{12}
$$

$$
\cos \frac{7 \pi}{8}
$$

