Solving Systems of Equations Graphically and Algebraically PART II

Solve each of the following GRAPHICALLY AND ALGEBRAICALLY. Show all your work for full credit. Check all solutions on DESMOS.
$\left\{\begin{array}{l}y=(x-1)^{2}+3 \\ y=3\end{array}\right.$

$$
\left\{\begin{array}{l}
y=(x+4)^{2}-4 \\
y=5
\end{array}\right.
$$

In the space below, write a linear equation that give ONE solution, TWO solutions and NO solution.

ONE SOLUTION

$$
\left\{\begin{array}{l}
y=x^{2}-x-5 \\
y=
\end{array}\right.
$$

TWO SOLUTIONS
$\left\{\begin{array}{l}y=x^{2}-x-5 \\ y=\end{array}\right.$
NO SOLUTIONS

$$
\left\{\begin{array}{l}
y=x^{2}-x-5 \\
y=
\end{array}\right.
$$

Two Hamster Commandos have located the Evil Acorn Thief's hideout. Their plan is to blowup the hideout using explosive pinecones. A hamster on the ground lobs an explosive pinecone in the path $y=-x^{2}+8 x$ where " y " is vertical feet and " x " is horizontal feet. A hamster in a tree fires a pinecone explosive in the path $y=-2 x+16 w h e r e ~ " y$ " is vertical feet and " x " is horizontal feet. That said, answer the following....

- Do both Commando Hamsters score a hit on the hideout? Defend mathematically.
- Is it possible the explosives collide with each other prior to reaching the hideout? Why?
- If there is $\mathbf{1 0}$ foot tree from where the explosives were launched, could one of the explosive hit it instead of the hideout?

