

Pythagorean Theorem

Simplifying Radicals

Key Concept to Remember

$$(\sqrt{x})^2 = x$$

Examples

$$A^2 + B^2 = C^2$$

$$A^2 + B^2 = C^2$$

$$A^2 + B^2 = C^2$$

$$A^2 + B^2 = C^2$$

Practice

$$A^2 + B^2 = C^2$$

$$A^2 + B^2 = C^2$$

$$A^2 + B^2 = C^2$$

Distance Formula

Practice

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula with Practice Below

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Slope Formula with Practice Below

$$m = \frac{\mathrm{rise}}{\mathrm{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$