Lesson 1.1.1 - Defining, Rewriting and Evaluating Rational Exponents

"I asked you a question buddy, WHAT IS THE SQUARE ROOT OF 5286?"

By the end of this lesson, I will be able to answer the following questions...

1. What is a power and a root? What is their relationship?
2. What are the rules for operations with exponents?
3. How/When do I use a calculator to evaluate powers and roots?

Vocabulary

- Exponential Expressions
- Base
- Exponent (power)

base ${ }^{\text {exponent }}$

- Radical Expressions
- Radical sign
- Root

- Radicand
- The implied " 2 " when no root is given
\sqrt{x} implies $\sqrt[2]{x}$

Prerequisite Skills with Practice

Evaluate without a calculator.

$$
\sqrt{16} \quad\left(\frac{2}{3}\right)\left(\frac{4}{5}\right) \quad(2-5)^{2}-3(4-5)^{3}
$$

Use a calculator to evaluate the following. Round to the nearest hundredth.
$\sqrt{17}$
$\sqrt[4]{23}$
$7^{\frac{2}{3}}$

Example one

How can the expression
$3^{\frac{6}{5}}$ be rewritten using roots and powers?

Example two

How can the expression
$\sqrt[8]{a^{c}}$ be rewritten using a rational exponent?

Example three

Evaluate the exponential expression w/o a calculator.
$8^{\frac{2}{3}} \quad \sqrt[4]{81}$

Evaluate the expressions
$\sqrt{-25}$ and $\sqrt{25}$
Round to the thousandth.

Based on the definition of a root, why are the answers so different?

Example five

When to use a calculator and and when to evaluate by hand.

$$
125^{\frac{2}{3}}
$$

$$
100^{\frac{2}{3}}
$$

$\sqrt[5]{32}$

$$
\sqrt[3]{16}
$$

THE END

