Lesson 1.1.2 Rational and Irrational Numbers and Their Properties

You two should stop fighting! You're both so IRRATIONAL!!!

By the end of this lesson, I will be able to answer the following questions...

1. How can I solve a basic exponential equation?
2. How can I determine if a number is rational or irrational?
3. What is CLOSURE and how does it apply to rational and irrational numbers?

Vocabulary

- Real Numbers: The set of all rational and irrational numbers.
- Rational Number: A number that can be expressed as fraction. When written as decimals, the DO terminate or repeat.
- Irrational Number: A number that cannot be expressed as a fraction. When written as decimals, the DO NOT terminate or repeat.

Categorize the following.....

$$
\sqrt{81}
$$

$$
\sqrt{7}
$$

.23232323

Prerequisite Skills with Practice

Rewrite the following without exponents.

$$
\begin{array}{lll}
3^{-2}= & \left(\frac{1}{2}\right)^{-4}= & \frac{2}{3}^{-3}= \\
\frac{2}{5^{-2}}= & -4^{2}= & (-4)^{2}=
\end{array}
$$

Example one

Simplify the numeric

 and algebraic expressions

Example two
Simplify the numeric and algebraic expressions

$$
125^{3}
$$

5

$$
\frac{a^{\frac{7}{9}}}{a^{\frac{2}{3}}}
$$

Example three

Solve the equation. Then categorize the solution as either Rational or Irrational. Think About if you need a calculator or not.

$$
x^{\frac{2}{5}}=3
$$

Example four

Solve the equation. Then categorize the solution as either Rational or Irrational. Think About if you need a calculator or not.

$$
\sqrt[4]{x^{3}}=125
$$

THE END

