Lesson 1.2.1 - Adding and Subtracting Polynomials

(x, why?)

Mr. Cube, are you religious?

Don't be such a square. Of course I believe in higher powers....

By the end of this lesson, I will be able to answer the following questions...

1. How can a variable and its power be used to determine which terms are like terms?
2. How do I add and subtract polynomials?
3. How can I apply polynomial operations to problems involving geometry (perimeter)?

Vocabulary

- Monomial: an expression with one term consisting of a number, a variable or a product of which.

$$
3, x, 2 x^{2}, x y \ldots
$$

- Polynomial: a monomial or sum of monomials that contains variables, numeric quantities or

$$
3 x+5,5 x^{5}-4 x+3,3 x-4 y \ldots
$$ both.

- Standard Form: Arranging a polynomial in order of greatest to least powers.
- Term: Each "part" of a polynomial.
- Like Terms: Terms that contain the same variable(s) raised to the same power.
- Distributive Property:
$2 x$ and $5 x, 3 x^{2}$ and $25 x^{2}, 10 x y$ and $7 x y \ldots$

$$
a(x+c) \rightarrow a x+a c
$$

SO.....

$$
3(2 x-5) \rightarrow 6 x-15
$$

Prerequisite Skills with Practice

Evaluate the following.

$$
-7+5+(-2)=\quad-5-5-(-4)=
$$

Use the distributive property to rewrite in standard form.

$$
5\left(3-2 x^{2}\right) \quad-2\left(9 x-2 x^{2}+3\right)
$$

Example one

Find the sum of:

$$
(4+3 x)+(2+x)
$$

Example two

Find the sum of:

$$
\left(7 x^{2}-x+15\right)+(6 x+12)
$$

Example three
Find the difference of:
$\left(x^{5}+8\right)-\left(3 x^{5}+5 x\right)$

Example four

Find the perimeter of the figures to the right.

THE END

