Lesson 2.1.1: Analyzing Quadratic

Functions - Standard Form

By the end of this lesson, I will be able to answer the following questions...

1. What is a parabola?
2. What are the characteristics of a parabola?
3. How do I determine the characteristics of a parabola based on the a quadratic equation in standard form?
4. How do I graph a parabola based on those characteristics?
5. What do parabolas represent in real life?

Vocabulary

1. Extremum

- Minimum
- Maximum

2. X-intercepts
3. Y-intercepts
4. Line of Symmetry
5. Quadratic Equation in

Standard From

$$
f(x)=A x^{2}+B x+C
$$

Prerequisite Skills with Practice $f(x)=x^{2}-4 x-5$

Input	Function	Output
0		
1		
2		
3		
4		
5		
6		
-1		
-2		
-3		

Graphing a parabola using it's vertex, line of symmetry, Y-intercept and strategic points. Steps:

1. Up or Down?

- If A is Positive - UP
- If A is Negative - DOWN

2. Find the vertex.

- X -value is $\frac{-B}{2 A}$
- Y -value is $f\left(\frac{-B}{2 A}\right)$

3. Draw the line of symmetry.

- $x=x$ value of the vertex

4. Find the y-intercept.

- Plug 0 in for x .

5. Use strategic points.

- Nice x values on both sides of the line of symmetry

$$
\begin{gathered}
f(x)=A x^{2}+B x+C \\
f(x)=-x^{2}-2 x+3
\end{gathered}
$$

Graphing a parabola using it's vertex, line of symmetry,
Y-intercept and strategic points. Steps:

1. Up or Down?

- If A is Positive - UP
- If A is Negative - DOWN

2. Find the vertex.

- X -value is $\frac{-B}{2 A}$
- Y -value is $f\left(\frac{-B}{2 A}\right)$

3. Draw the line of symmetry.

- $x=x$ value of the vertex

4. Find the y-intercept.

- Plug 0 in for x .

5. Use strategic points.

- Nice x values on both sides of the line of symmetry
$f(x)=A x^{2}+B x+C$ $f(x)=x^{2}-6 x+9$

Example Three

Graphing a parabola using it's vertex, line of symmetry,
Y-intercept and strategic points. Steps:

1. Up or Down?

- If A is Positive - UP
- If A is Negative - DOWN

2. Find the vertex.

- X -value is $\frac{-B}{2 A}$
- Y -value is $f\left(\frac{-B}{2 A}\right)$

3. Draw the line of symmetry.

- $x=x$ value of the vertex

4. Find the y-intercept.

- Plug 0 in for x.

5. Use strategic points.

- Nice x values on both sides of the line of symmetry

$$
\begin{aligned}
f(x) & =A x^{2}+B x+C \\
f(x) & =x^{2}-5 x
\end{aligned}
$$

Example Four

The flight of a rubber band follows the quadratic equation
$H(x)=-x^{2}+6 x+7$
where $H(x)$ represents the height of the rubber band in inches and " x " is the horizontal distance the rubber band travels in inches after launch. Graph the quadratic Equation and reveal the following:

What was the greatest height of the rubber band?

How far did it travel horizontally?

THE END

