## Title of Lesson: 3.1.1: Identifying

 Terms, Factors, and Coefficients

## By the end of this lesson, I will be able to answer the following questions...

1. How do I categorize parts of an expression?
2. How do I write an expression based on a description?
3. How do I relate these tools to geometric problems?

## Vocabulary

1.Monomial: One Term $\longrightarrow 3 x,-12 x^{2}, 1000$

Binomial: Two Term $\longrightarrow 2 x-4, x^{2}+1$ Trinomial: Three Terms $\longrightarrow 2 x^{3}+4 x-4$
2. Constant $4,-300, \frac{1}{3}$
Linear $3 x+1,4 x$ Quadratic $\longrightarrow x^{2}+x, 3 x^{2}-x+1$
3. Coefficient

## Prerequisite Skills with Practice

Collect like terms: $\quad 34-x^{2}-50+x-7 x \quad 10 x^{3}-3 x^{2}-4 x^{3}+x^{2}$
Standard form

Distributive property: $\quad 2 x\left(x^{2}+x-1\right) \quad 2 x^{2}-3\left(2 x^{2}+1\right)$

Identify each term,
coefficient, and
constant of
$6(x-1)-x(3-2 x)+12$.

Classify the expression as a monomial, binomial, or trinomial.

Determine whether it is a quadratic expression.

Translate the verbal expression...

Triple the difference of 12 and the square of $x$, then increase the result by the sum of 3 and $x$
...into an algebraic expression. Identify the terms, coefficients, and constants of the given expression. Is the expression quadratic?

A fence surrounds a park in the shape of a pentagon. The side lengths of the park in feet are given by the expressions
$(5 x-3),(3 x+1)$, $(3 x+2), 4 x$, and $x^{2}$

Find an expression for the perimeter of the park. Identify the terms, coefficients, and constant in your expression. Is the expression quadratic?

## THE END



