Defining and Applying Similarity AA Similarity, SAS Similarity, SSS Similarity and Right Triangle Similarity

By the end of this lesson, I will be able to answer the following questions...

1. How do I decide if two triangles and similar?
2. What are the short-cuts to determining if triangles are similar?

Vocabulary

1. Similarity in Triangles:

- Corresponding angles are congruent.
- Corresponding sides are proportional.

2. Similarity Statement: Angles are corresponding and the similarity is denoted by a \sim symbol. For example, the triangles above are similar and that can be denoted by the following similarity statement.....

$$
\triangle A B C \sim \triangle D E F
$$

Prerequisite Skills with Practice

Working with proportions.

$$
\frac{16}{x+1}=\frac{4}{3}
$$

Converting feet/inches to decimals

$$
10^{\prime} 3^{\prime \prime}
$$

$$
\frac{1}{2 x+1}=\frac{3}{7 x}
$$

Are the triangles to the left similar?

- Corresponding Angles Are Congruent
- Corresponding Sides Are Proportional t

Use similarity to fill in missing info...

$$
\begin{array}{ll}
m \angle A= & m \angle D= \\
m \angle B= & m \angle E= \\
m \angle C= & m \angle F=
\end{array}
$$

$$
\frac{A B}{D E}=
$$

$$
\frac{A C}{D F}=
$$

$$
\frac{C B}{F E}=
$$

Similarity Shortcut \#1

AA Similarity: Given two triangles - if two sets of corresponding angles are congruent, then the triangles are similar.

$\triangle A B C \sim \triangle X Y Z$

Explain why $\triangle A B C \sim \triangle D E F$, and then find the length of $\overline{D F}$.
Since \angle \qquad is
congruent to \angle
\qquad is
congruent to \angle \qquad ,
Δ \qquad $\sim \Delta$ \qquad

by AA Similarity.

Explain why the triangles are similar and write a similarity statement.

congruent to
AND \angle \qquad is
congruent to L \qquad

Δ \qquad $\sim \Delta$ \qquad
by AA Similarity.

Similarity Shortcut \#1

AA Similarity: Given two triangles - if two sets of corresponding angles, then the triangles are similar.

Identify the similar triangles. Find x and the measures of the indicated sides.

\qquad
~ Δ

Suppose a person 5 feet 10 inches tall casts a shadow that is 3 feet 6 inches long. At the same time of day, a flagpole casts a shadow that is 12 feet long. To the nearest foot, how tall is the flagpole?

Similarity Shortcut \#2

SAS Similarity: Given two triangles - if two sets of corresponding sides are proportional and the included angle is congruent, then the triangles are similar.

SAS Similarity Statement

Determine whether the triangles are similar. Explain your reasoning.

$\frac{\operatorname{big} \Delta}{\operatorname{small} \Delta}=\frac{A B}{E F}=$ Included angle is congruent?
$\frac{\operatorname{big}_{\Delta}}{\operatorname{small} \Delta}=\frac{A C}{D E}=$

Similarity Shortcut \#3

SSS Similarity: Given two triangles - if all corresponding sides and proportional, then the triangles are similar.

Since ALL corresponding sides are proportional to one another Δ \qquad $\sim \Delta$ \qquad
by SSS Similarity.

SSS Similarity Statement

Prove $\triangle A B C \sim \triangle D E C$.

$\frac{\operatorname{big} \Delta}{\operatorname{small} \Delta}=\frac{C D}{A C}=$ $\frac{\operatorname{big} \Delta}{\text { small } \Delta}=\frac{C E}{B C}=$

Use PlottsMath and colored pencils to create a template for calculations. We will use this
template to solve the problems below.

THE END

