Math III
Name \qquad ID: 1

Adding and Subtracting Polynomials

 Simplify each expression.1) $\left(8 x^{4}-7 x\right)-\left(6 x^{2}+5 x^{4}+3 x\right)$
2) $\left(4 x^{4}-7 x\right)-\left(6 x^{3}+6 x^{4}-2 x\right)$
3) $\left(6 b^{3}+4 b^{2}\right)-\left(4 b^{2}+6 b^{4}-3 b^{3}\right)$
4) $(2 p-4)+\left(4 p-4-2 p^{3}\right)$
5) $\left(4 r^{4}-4 r\right)+\left(r^{3}-5 r-3 r^{4}\right)$
6) $\left(2-4 n^{4}\right)-\left(2 n^{4}+8 n^{3}-8\right)$
7) $(6 n-6)+\left(4+3 n-3 n^{2}\right)$
8) $\left(7 x^{3}+1\right)+\left(3 x+7-3 x^{3}\right)$
9) $\left(7 r^{2}+7 r^{3}\right)-\left(2 r^{4}+5 r^{2}-r^{3}\right)+\left(3 r^{3}+8 r^{2}\right)$
10) $\left(4 x^{3}+8 x^{2}\right)-\left(4 x+2-3 x^{3}\right)+(6+4 x)$

11 Jeanette and Tim find the answer to ($3 x^{2}-5 x$) - ($4-2 x$). Jeanette claims the simplified answer has three terms Tim says it only has two terms. Who is correct? How do you know?

Write an expression for the area of the rectangle.

12 Ross has $(8 x-5)$ tickets for Chuck E Cheese. He is going to play today and wants to buy a prize that is $(15 x+1)$ tickets. How many tickets must he win to have enough tickets to buy the prize?

14
The profit a business makes is found by subtracting the cost to produce an item C from the amount earned in revenue R. The cost to produce and the sales amount could be modeled by the following equations, where x is the number of items produced.
$C=100 x^{2}+500 x-300$
$R=150 x^{2}+450 x+200$
Find an equation that models the profit.

Find the missing side of a shape. $\quad 9 a b+8 a^{2}$

15-17

Perimeter
$\overline{5 x^{2}+7 x+12}$

Perimeter
$9 b^{2}-2 a b+12 a^{2}$

$$
5 x^{2}-3 x+2
$$

Perimeter
$14 x^{2}+4 x-8$

