Lesson 2A.1.1 and 2A.1.2 - Structures of Expressions Adding and Subtracting Polynomials

WHAT HAPPENED WHEN THE QUADBATIC POLYNOMLIL FELL ASLEEP ATH THE BEACH?

By the end of this lesson, I will be able to answer the following questions...

1. How can a variable and its power be used to determine which terms are like terms?
2. How do I add and subtract polynomials?
3. How can I apply polynomial operations to problems involving geometry (perimeter)?

Vocabulary

- Monomial: an expression with one term consisting of a number, a variable or a product of which.

$$
3, x, 2 x^{2}, x y \ldots
$$

- Polynomial: a monomial or sum of monomials that contains variables, numeric quantities or

$$
3 x+5,5 x^{5}-4 x+3,3 x-4 y \ldots
$$ both.

- Standard Form: Arranging a polynomial in order of greatest to least powers.
- Term: Each "part" of a polynomial.
- Like Terms: Terms that contain the same variable(s) raised to the same power.
- Distributive Property:
$2 x$ and $5 x, 3 x^{2}$ and $25 x^{2}, 10 x y$ and $7 x y \ldots$

$$
a(x+c) \rightarrow a x+a c
$$

SO.....

$$
3(2 x-5) \rightarrow 6 x-15
$$

Prerequisite Skills with Practice

Evaluate the following.

$$
-7+5+(-2)=\quad-5-5-(-4)=
$$

Use the distributive property to rewrite in standard form.

$$
5\left(3-2 x^{2}\right) \quad-2\left(9 x-2 x^{2}+3\right)
$$

Example one

Find the sum of:
$\left(16 y^{4}+14 y^{2}-6 y-4\right)+\left(7 y^{3}+14 y+3\right)$ Put your answer in standard form

Example two

Find the difference of:
$\left(x^{5}+2 x-8\right)-\left(3 x^{5}+5 x-4\right)$
Put your answer in standard form

Example Three

Find the perimeter of the figure to the right. Then find the

Example Four

 Use your knowledge of polynomials to answer the question to the rightA bicycle company produces " x " bicycles at a cost represented by the polynomial

$$
x^{2}+10 x+100000
$$

The revenue for " x " bicycles is represented by the polynomial

$$
2 x^{2}+10 x+500
$$

Find a polynomial that represents the company's profit.

If the company only has enough materials to make 300 bicycles, should it make the bicycles? Defend your answer mathematically.

THE END

