

How do I build Pascal's Triangle?

How do l use it to help expand binomials?
Observe the pattern below and make a prediction of the final line

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \\
& (a+b)^{6}=
\end{aligned}
$$

Putting it all together

Expand $(2 x+3)^{4}$

1. Number of terms?
2. Which row to use of

Pascal's Triangle?
3. Ascending and descending orders of " a " and "b"
4. Plug in "a" and "b"
5. Simplify

Expand $(3 x+y)^{5}$

1. Number of terms?
2. Which row to use of

Pascal's Triangle?
3. Ascending and descending orders of "a" and "b"
4. Plug in "a" and "b"
5. Simplify

Expand $(x-4 y)^{3}$

1. Number of terms?
2. Which row to use of

Pascal's Triangle?
3. Ascending and descending orders of " a " and "b"
4. Plug in "a" and "b"
5. Simplify

Expand $\left(2 x^{2}-y\right)^{4}$

1. Number of terms?
2. Which row to use of Pascal's Triangle?
3. Ascending and descending orders of "a" and "b"
4. Plug in "a" and "b"
5. Simplify
