Title of Lesson: Understanding Polynomials

By the end of this lesson, I will be able to answer the following questions...

1. What are the basic characteristics of polynomial graphs?
2. how do I use technology to graph polynomial functions?
3. What is end behavior and how can I predict it?

Vocabulary

1. End Behavior: as " x " gets VERY large in a positive or negative direction, what does the " y " value do?

Prerequisite Skills with Practice

Calculator discovery: Monomials of higher degrees...

$f(x)=x^{2}$
$g(x)=-x^{2}$
$h(x)=x^{3}$
$m(x)=-x^{3}$

Properties of Polynomial graphs

They are always Continuous, that is - they have no breaks

They are smooth and rounded - no sharp turns

They have predicable end behavior.

End Behavior
$f(x)=A x^{n}$.

Leading Coefficient Test

Using the Leading Coefficient Test.

Describe the end behavior of the following functions.Check your description using technology.
$f(x)=-x^{3}+4 x$
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

$h(x)=-3 x^{4}+4 x+1$
As $x \rightarrow \infty, \mathrm{~h}(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, \mathrm{h}(x) \rightarrow$ \qquad

$g(x)=4 x^{4}+4 x+1$
As $x \rightarrow \infty, \mathrm{~g}(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, \mathrm{g}(x) \rightarrow$ \qquad

$$
l(x)=3 x^{3}+x
$$

$$
\text { As } x \rightarrow \infty, \mathrm{l}(x) \rightarrow
$$

\qquad
As $x \rightarrow-\infty, \mathrm{l}(x) \rightarrow$ \qquad

THE END

