

Functions: Episode IV

By the end of this lesson, I will be able to answer the following questions...

1. How do I perform arithmetic combinations of functions and how are they are represented graphically?
2. How do I build composite functions and determine their domain?
3. How do I build an inverse function algebraically from an original function?
4. What are the characteristic of inverse functions?
5. What is a one-to-one function?
6. Sum: $(f+g)(x)=f(x)+g(x)$
7. Difference: $(f-g)(x)=f(x)-g(x)$
8. Product: $(f g)(x)=f(x) \cdot g(x)$
9. Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
10. Composite: $(f \circ g)(x)=f(g(x))$

Vocabulary

6. Inverse function notation:

If $f(x)$ and $g(x)$ are inverses, $g(x)$ can be renamed

$$
f^{-1}(x)
$$

7. One-to-one function: When the inverse of a function is a function also.

Prerequisite Skills with Practice

Calculator exercise introducing the storage button and the variable button.

Put the following equations in terms of x :
$y=\frac{2 x-4}{5 x+1}$

$$
y=-\frac{(x-3)^{3}}{2}+10
$$

Understanding Function Notation

Given the following functions, perform the indicated operation.

$$
\begin{aligned}
& f(x)=2 x-1 \\
& g(x)=6 x^{2}+x-2 \\
& h(x)=\sqrt{x}
\end{aligned}
$$

$3 h\left(16 x^{4}\right)=$
$(g \circ f)(x)=$
$2 g\left(t^{2}-1\right)=$

Composition of functions: Plugging functions into other functions.

$f(x)=x^{2}-1 \quad$ Given the functions on the the left, find $(g \circ f)(x)$ and $(f \circ g)(x)$ $g(x)=2 x-1 \quad$ Then evaluate the functions at $1,2 \& 3$ your graphing calculator.

\mathbf{x}	$(f \circ g)(x)$
$\mathbf{1}$	
$\mathbf{2}$	
$\mathbf{3}$	

\mathbf{x}	$(g \circ f)(x)$
1	
2	
3	

Composition of functions: A simple application

A stone is thrown into a pond. A circular ripple is spreading over the pond in such a way that the radius is increasing at the rate of 5.3 feet per second. Find a function, $r(t)$, for the
 radius in terms of " t ". Find a Function, $A(r)$, for the area of the ripple in terms of " r ".
Find $(A \circ r)(t)$

Domains and Composite Functions

Given the following functions, find the DOMAIN of each.

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& g(x)=\frac{1}{x} \\
& h(x)=3 x^{2}-10 x-8 \\
& l(x)=x^{2}-16
\end{aligned}
$$

*Consider the Domain of the function being input. Then consider the Domain of the simplified build. The the restricted elements both conditions above make the final composite domain.

Using Properties of Inverses to Verify Inverses

Definition of inverse functions.
Suppose $f(x)$ and $g(x)$ are inverse functions. The following would hold true....

1. $f[g(x)]=x$ and $g[f(x)]=x$
2. The Domain of $f(x)$ becomes the Range of $g(x)$ and Range of $f(x)$ becomes the Domain $g(x)$
3. Graphs of $f(x)$ and $g(x)$ reflect about the $y=x$ axis.

Verify that $f(x)=2 x^{3}-1$ and $g(x)=\sqrt[3]{\frac{x+1}{2}}$
are inverses.

are inverses.

$$
(g \circ g)(x) \quad(f \circ l)(x)
$$

Finding Inverse Algebraically

1.Switch x and y .
$f(x)=-2 / 3 x+4$
$g(x)=\sqrt{x+2}-3$
2.Solve for y.

Other things to consider...

- One-to-one?
- Restricted domain?
- Inverse can't be found by conventional $\quad h(x)=\frac{x^{2}}{4}+1$
means? $l(x)=\frac{x}{x-4}+6$

```
CHAL}m(x)=2\mp@subsup{x}{}{3}-x+
```

Interpreting inverse values/regular values from a graph.
$f^{-1}(2)=$
$g^{-1}(-1)=$
$(f \circ g)(-1)=$
$\left(f^{-1} \circ f\right)(3)=$
$(f \circ g)(-2)=$

