# **Application: Box Problem**

1.Sketch

- 2. Write everything you know about the problem
- 3. Combine to make a function in one variable.
- 4. Use function with technology to answer question

"A sheet of metal 12 inches by 10 inches is to be used to make an open box. Squares of equal sides x are cut out of each corner then the sides are folded to make the box. Find the value of x that makes the volume maximum."





## **Application: Inscribed Shapes**

1.Sketch



- 3. Combine to make a function in one variable.
- 4. Use function with technology to answer question

What is the largest area of a rectangle the can inscribed in the first quadrant and

below the line 
$$y = -\frac{3}{7}x + 9$$





### Application: Max Area Problem

1.Sketch

- 2. Write everything you know about the problem
- 3. Combine to make a function in one variable.
- 4. Use function with technology to answer question



A farmer plans to make a rectangular garden. One side will be against a long barn. He has 100 ft of fencing that he will use to surround the other three sides. What are the dimensions of the garden of maximum area?



#### Application: Distance Between Curves Problem

An engineer has designed two roads that are positioned based on the following functions (measured in miles.)

Road A: 
$$A(x) = \frac{1}{2}x + 3$$
 Road B:  $B(x) = -\frac{1}{4}(x+2)^2 + 1$ 

The engineer must build a vertical road joining Road A and B according to city ordinance. It has to be the shortest distance possible. That said, what is the shortest possible road that can be built between Road A and Road B? Write function you put in your calc as d(x). MAKE A SKETCH. SHOW ALL WORK. USE CORRECT UNITS FOR ANSWER.

1.Sketch

2.Write everything you know about the problem

3.Combine to make a function in one variable.

4. Use function with technology to answer question



#### PARTICLE MOTION

By the end of this part of the lesson, I will be able to answer the following questions...

1. How do I solve Particle Motion problems as they relate to PHYSICS and CALCULUS.

2. What are the PHYSICS properties related to particle motion problems.

**Position**: The position of the particle with respect to time. Represented as s(t).

**Velocity**: The change in position with respect to time. Is directional. Represented as v(t).

Acceleration: The change in velocity with respect to time. Is directional. Represented and a(t).

**Speed:** The absolute value of velocity. Is not directional.

I googled it. A roadrunner's top speed is 20 mph while a coyote's top speed can reach up to 43 mph... \*Sigh\* My whole childhood was a big

SPEED UP!!!!! acceleration and velocity have <u>the same</u> sign.

**acceleration** and **velocity** have <u>different</u> signs.

fat lie!

The **POSITION** of a moving particle on a coordinate line is given by the function,  $s(t)=t^2-3t-10$ where t is measured in minutes and s(t) is inches.

The **VELOCITY** of a particle is v(t) = 2t - 3where t is measured in minutes and v(t) is inches per minute.

The **ACCELERATION** of a particle is a(t)=2 where t is measured in minutes and a(t) is inches per minute squared.

Answer the following questions about a particle that moves on a horizontal coordinate line.

1. Where does the particle start?

SLOW DOWN!!!!!

- 2. When is does the particle stop?
- 3. Where does the particle stop?

4.

- When is the particle moving to the right/left?
- 5. When is the particle speeding up/ slowing down?

| The <b>POSITION</b> of a moving particle on a coordinate line is given by the function,<br>$s(t) - 2t^3 - 7t^2 + 3t$   | Answ<br>move    | er the following questions about a particle that<br>s on a horizontal coordinate line. |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|--|
| where t is measured in minutes and s(t) is inches.                                                                     | 1.              | Where does the particle start?                                                         |  |
| The <b>VELOCITY</b> of a particle is $v(t)=6t^2-14t+3$ where t is measured in minutes and $v(t)$ is inches per minute. | <sub>3</sub> 2. | When is does the particle stop?                                                        |  |
|                                                                                                                        | 3.              | Where does the particle stop?                                                          |  |
| The <b>ACCELERATION</b> of a particle is $a(t)=12t-1$<br>where t is measured in minutes and $a(t)$                     | 14 <b>4</b> .   | When is the particle moving to the right/left?                                         |  |

5. When is the particle speeding up/ slowing down?

The **POSITION** of a moving particle on a coordinate line is given by the function,  $s(t) = -t^3 + 4t^2 + t$  where t is measured in minutes and s(t) is inches.

is inches per minute squared.

The **VELOCITY** of a particle is  $v(t) = -3t^2 + 8t + 1$ where t is measured in minutes and v(t) is inches per minute.

The **ACCELERATION** of a particle is a(t) = -6t + 8 4. where t is measured in minutes and a(t) is inches per minute squared. 5.

Answer the following questions about a particle that moves on a horizontal coordinate line.

- 1. Where does the particle start?
- 2. When is does the particle stop?
- 3. Where does the particle stop?
  - When is the particle moving to the right/left?
- 5. When is the particle speeding up/ slowing down?