WHTHIS EASYTHEY SATD

Functions: Episode I

By the end of this lesson, I will be able to answer the following questions...

1. How do I decide if a relation is a function?
2. What is function notation?
3. How do I find the domain of a function algebraically?
4. What are difference quotients and why are they useful?
5. How do I build function based on a scenario and use ITWILI BE FUN THEY SAID technology with the function to make predictions?

Vocabulary

1. Function: Every input has one unique output.
2. Domain: The set of inputs for which the function is defined.
3. Range: The set of possible outputs for a given function
4. Piece-Wise Function: A function that is defined by two or more equations over a specific domain.
5. Difference Quotient: $\frac{f(x+h)-f(x)}{h}, h \neq 0$

Prerequisite Skills with Practice

Evaluate the following function for $\mathrm{f}(3)$ and $\mathrm{f}(-3)$. $f(x)=-x^{2}+3 x-3$

Evaluate the following function for $\mathrm{f}(\mathrm{x}+1)$
$f(x)=-x^{2}+3 x-3$

Algebraic Challenge: Isolate " y " in the follow equation.

$(x-2)^{2}+(y+3)^{2}=25$

When is a relation a function?

Input	Output
-3	9
-2	4
-1	1
0	0
1	1
2	4

Input	Output
0	0
1	1
1	-1
2	4
2	-4

Vertical Line Test.

Why does it work?

Testing for functions algebraically．
Looking for a sit⿳亠口冋彡n OR envision the graph．．．
$x^{2}+y=1$
$x+y^{2}=1$
$y=-3$
$x=\frac{4}{3}$
$y=|x|$
$x=|y|$

Piecewise－Defined Function Evaluating．
Evaluate $\mathrm{f}(-2), \mathrm{f}(0), \mathrm{f}(3)$ given $\quad f(x)=\left\{\begin{array}{l}5-2 x^{2}, x<0 \\ 2 x+5, x \geq 0\end{array}\right.$

Piecewise－Defined Function Sketching．
Filled in point \bullet for \leq or \geq ．Open pointo for $<$ or $>$

$f(x)= \begin{cases}-2 x+1, & x<2 \\ x+3, & x \geq 2\end{cases}$

$$
g(x)=\left\{\begin{array}{lr}
x+1, & x<-3 \\
2, & -3 \leq x \leq 0 \\
-x+3, & x
\end{array}\right.
$$

Using Interval Notion to State Domain and Range.

Open Inteval $\rightarrow($ or $)$ Closed Inteval \rightarrow or $]$ Union $\rightarrow U$

Domain:

Range:

Determining Domains of Functions.
Need to consider the values for which the function is defined and the real world implications of the function.
$f:\{(-3,0),(-1,5),(0,7),(3,5),(6,7)\}$

$$
g(x)=-3 x^{2}+4 x+5
$$

$m(x)=\sqrt{x^{2}+2 x-8}$

The volume of a sphere: $\quad V(r)=\frac{4}{3} \pi r^{3}$

Find the Difference Quotient for the functions below and simplify your answer.

$$
f(x)=-x^{2}+3 x-1 \longleftarrow f(x)=3 x^{2}-5
$$

Reading Points from Graphs

$f(-2)=?$
$f(0)=$? \qquad
$f(2)=$? \qquad
$f(?)=2$

$$
\begin{aligned}
& f(-2)=? \\
& f(0)=? \\
& f(3)=?
\end{aligned}
$$

