$$45^{o}-45^{o}-90^{o}$$
 Triangle

Use the Pythagorean Theorem to find h (hypotenuse) in the following isosceles right triangles with the following side lengths. Simplify the square root, but leave in radical form.

Leg a	Leg b	Hypotenuse
1	1	
2	2	
3		
	4	
5		
n		

Write AT LEAST two observations you see in the chart above.

1. _____

2. _____

$$30^o - 60^o - 90^o$$
 Triangle

Use the Pythagorean Theorem to complete the following information about the right triangle formed by folding an equilateral triangle. Simplify the square root, but leave in radical form.

Leg a	Leg b	Hypotenuse
1		2
2		4
3		6
		8
5		
n		

Wr

1.

2. Q How to use Special Right Triangles to Solve for Sides

