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Automated data analysis

™

High resolution MF (MDI) —
EGSO project (2002-2005)

— sunspot magnetic field — SMF
Automated detection -
Solar Feature Catalogues:

Zharkova et al., 2005, Sol Phys
228, 365

Low resolution MF (WSO) —
synoptic maps of SBMF

/




/ Solar Feature Catalogues - EGSO\

Zharkova et al., 2005, Sol Phys, 228, 365
http://solar.inf.brad.ac.uk

~Sunspot Catalo ue grom - :08:3510
2010-05-31 19:

¢ Automated feature detectlon and data extraction
¢ About 40000 observation processed
¢ ~370,000 sunspots and 100 000 ARs stored and processed

Sunspot Catalogue (SOHO MDI) (Zharkov et al., 2005)

® Space Observations, Accuracy & Image Quality
¢ Synoptic Continuum images every 6 hour
® LOS Magnetogram Data

AR Catalogue (Meudon+MDI) (Benkhalil et al., 2006)

® Meudon Ca Il K3 images

® Meudon H-alpha images
®* MDI LOS Magnetograms

Filaments and prominences (Meudon) (Fuller et al., 2005)

k Meudon H-alpha images /
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between them is n~11y (Zharkov et al, 2008, Stix
1976)

Cycle 23 -Solar Background MF
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/~ 2.1y-4y residuals for BMF (top) N\
and excess SMF (bottom) reveal additional

phase of m/4 ~ 2.5 years — Zharkov et al, 2008
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White light refraction into waves of different




/FCA acts as a prism for magnetic

waves
Philosophy of PCA

\

\_

Introduced by Pearson (1901) and
Hotelling (1933) to describe the

variation in a set of multivariate data in

terms of a set of uncorrelated variables

We typically have a data matrix of n
observations on p correlated variables

X15X0s .- X,

PCA looks for a transformation of the x,

into p new variables y; that are
uncorrelated

/




/ To reduce dimension - \
weighted average

Weighted average based on some
criterion. Which one? -

Looking for a transformation of the data
matrix X (nxp) such that

Y=0"X=6, X+ 6, Xo+..+ 6, X,

Where 6=(6;, 6,,.., §,)' is a column vector
of weights with

8,2+ 8,2+ + 8,2 =1

\_




4 h

One good criterion
Maximize the variance of the projection of
the observations on the Y variables

Find 0 so that

Var(6" X)= 6T Var(X) 6 is maximal

The matrix C=Var(X) is the covariance
matrix of the X variables

\_ /




/ Calculating eignevalues and\

eigenvectors

The eigenvalues A; are found by
solving the equation

det(C-AI)=0

Eigenvectors are columns of the
matrix A such that

C=A D AT (2,0 ... 0 )
Where D= 0 4,....0




s

So PCA gives

\

New variables Y; that are linear

combination of the original variables (x)):

Y= a;xtragxt...ax, s 1=1.p
The new variables Y, are derived in

decreasing order of importance;
they are called ‘principal components’

/
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Interpretation of PCA

- The new variables (PCs) have a variance
equal to their corresponding eigenvalue

Var(Y)= A, for all i=1...p
Small A; & small variance <~ data change
little in the direction of component Y,
The relative variance explained by each
PC is given by A, /2 A
PCs can be assigned to separate physical

k processes /
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SBMF results: Scree plot-
Eigenvalues vs variances

™

% contribution to variance

dipole source
20 /.l:c
—
other sources
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= 2 main eigenvalues covering 40% of variance -

' 45% of variance
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Two magnetic waves of the opposite

polarities extracted in SMF with PCA

(Zharkova et al., 2012, MNRAS)
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igenvalues (zZharkova et al, 2012, MNRAS)
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, From top left

Derivatives of 2 main EOFs
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modeled with the updated 2-
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Cross-correlation of 8 EOFs
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principal components
(Zharkova et al, 2012, Shepherd et al, 2014)
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Summary curve

Net solar activity
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/ Mathematical laws from PCs: \
Symbolic regression -Hamiltonian

approach Schmide &L 2000, Selonee

Mathematical law for the first principal
component:

Fi(t) = 221 5 A, cos(wy 4t +¢, 4)cos(B, 4 cos(w, 4t +¢, ¢)

Mathematical law for the second principal
component:

Fo(t) = 21 5 A cos(wy ot +¢, 5)cos(B, , cos(wy ot +¢, 5)

\_ /

Space Climate 6, 4 April 12016
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Fitting the PCs to measured in
cycle 24 and prediction to 25-26

™

E Historical and fitt:ed data E Predictecli data

Wave amplitude (abritrary units)

Cycle 21 . Cycle22 © Cycle 23 Cycle 24 : Cycle 25 . Cycle26
1 9‘80 : 1 9‘90 I 20‘00 20‘1 0 : 20‘20 : 20‘30

Calendar Year

Space Climate 6, 4 April 12016



/ Summary PC and modulus \

summary PC vs sunspot data
(Shepherd et al, 2014, ApJ)

' | Historical and fitted data 1 Predicted data

Wave amplitude (abritrary units)
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Wave amplitude (abritrary units)

Predicted summary curve on the
millennium timescale
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pdated curve for 3000 years (blue)
versus a curve by Usoskin et al. (red)
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/ 2 layer dynamo model \
explaining some PCA features

Dynamo model was not even considered yet
while we did PCA in 2010-12 and SEA 2014

Started discussing possible mechanisms
since the end of 2010

In 2011 we considered 2 layer Parker’'s model
(1993) with meridional circulation

2013 — first model paper appeared in Annals
in Geophysics (Popova et al, 2013)

\_ /




Deptl

Dynamo in Two-Layer Medium

approximately

22-year cycle

quasi-biennial cycle

approximately

22-year cycle

Zhao et al, 2013
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We included the meridional flows in each layer:

™

oB oVB) 0A OA _
% T a8 = BAB, 2 TV e = BAA, (2.3)
L")(vb) Ja da 5

here V' (#), v(f) are the meridional flows in the respective layers.
Following Parker we prescribe r = 0 for the radial boundary between two layers and
use boundary conditions:

b aoB Jda  0A _
b= B, a= A, = F—, —_— = — (2.5)
ar dr dr  Or
In view of the symmetry conditions a(—0) = —a(f), V(—0) = =V (#) the above system
of equations can be considered in only one (e.g., the northern) hemisphere using anti-
svmmetry (dipolar symmetry) or symmetry (quadrupolar symmetry) conditions at the
equator.

We obtained Hamilton-Jacobi equation for eqs. (2.3) and (2.4) by a method similar to

the method described in Popova et al. (2010). /




/Tﬁ) dipole components with different boundary conditions of ﬁmg
Popova et al, 2013
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Wave amplitude (abritrary units)

Wave amplitude (abritrary units)
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/Undamped Wave Equation: \

Solution to Initial Value Problem (2 of 3)

Solution of a wave equation with forced oscillations
F

(1) = (e O—a)z) (cosw? - cos wyt)

To simplify the solution even further, let A = (wy +
w)/2 and B = (wy - w)/2. Then A+ B = wyt and A -
B = wt. Using the trigonometric identity

cos(A + B) =cos Acos BFsin Asin B,
it follows that

coswt =cosAcosB+sin Asin B

cos w,t = cos Acos B—sin Asin B

kand hence coswt —cosw,t =2sin Asin B /




4 N

Undamped Equation: Beats (3 of 3)

Using the results of the previous slide, it follows that

2F oy -w)t . (o, +w)t
() = —— sm( ,—@) s1n( +@)
m(w, —w") 2 2
When |wy - w| = 0, wy + @ is much larger than w, - w, and

sin[(wy + w)t/2] oscillates more rapidly than sin[(wy - w)t/2].

Thus motion is a rapid oscillation with frequency (w, + w)/2,
but with slowly varying sinusoidal amplitude given by

2F, : (a)o — w)t

SN

78 sin 0.1¢

u=2.77778sin 0.1 ¢t sin

This phenomena is called a beat. /\ /\ /\ /\ /\ [\
Beats occur with two tuning forks of U L1 \/\/\\/ ! \//\ ,

knearly equal frequency. - \/ \/ U \/
Sl //\ \ /
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/ Conclusions: \

\

EOFs components: cycles 21-23
Principal components of SBMF are paired
e stronges S cover more than o Of variance

These PCs are shown to reflect 2 dynamo waves
travelling with increasing phase shift from one
hemisphere to another

The waves intercept with the increased turbulence one
year prior and after the cycle maximum

Cross-correlation shows a presence of quadruple
sources in all the cycles and possible sextuple ones in
cycle 23

Mathematical laws derived with Hamiltonian approach
(Euriga) was used for prediction of the reduction of the
solar activity in cycles 25-27 — next Maunder Minimum/

Prediction for 3000 years backwards fits the main

warming and cooling periods — Sun gave us the clues!



