Common Formulas used in Eddy Current Testing

Conductivity (σ) in % IACS $\sigma_{\% IACS} = \frac{172.41}{\rho}$ ρ = Resistivity in $\mu\Omega$ cm

Conductivity (σ) in MS/m

 $\sigma_{MS/m} = (\sigma_{\% IACS})(.58)$

Material Resistivity (ρ)

 $\rho = \frac{100}{\sigma_{\rm MS/m}}$ $\rho = {\rm Resistivity}$ in $\mu\Omega{\rm cm}$

Material Resistivity (ρ)

 $\rho = \frac{172.41}{\sigma_{\text{\%IACS}}}$

 ρ = Resistivity in μΩcm Magnetic Permeability (μ)

 $\mu = \left(\frac{B}{H}\right)$

 μ = Permeability (H/m) B = Magnetic Flux Density (Wb) H = Applied Magnetic Field (A/m)

> Magnetic Relative Permeability (μ_r)

$$\mu_r = \left(\frac{u}{u_0}\right)$$

 $\begin{array}{l} \mu_r = \mbox{relative permeability} \\ \mu = \mbox{material's permeability in H/m} \\ \mu_0 = \mbox{permeability of free space in H/m} \\ \mbox{(Constant of 0.000001257)} \end{array}$

Fill Factor (η)

$$\eta = \frac{d^2}{D^2}$$

d = smaller diameter *D* = larger diameter

Common Formulas used in Eddy Current Testing

Standard Depth of Penetration (δ) When Resistivity is Known

δ (inches) = $1.98 \sqrt{\frac{\rho}{f \times \mu_r}}$

$$\delta \text{ (mm)} = 50.3 \sqrt{\frac{\rho}{f \times \mu_r}}$$

 ρ = Resistivity in μΩcm f = Frequency in Hz μ_r = Relative Permeability Standard Depth of Penetration (δ) When Conductivity (%IACS) is Known

 δ (inches) $\approx \frac{26}{\sqrt{f\mu_r\sigma}}$

$$\delta \text{ (mm)} \approx \frac{601}{\sqrt{f\mu_r\sigma}}$$

 σ = Conductivity in %IACS f = Frequency in Hz μ_r = Relative Permeability Test Frequency Required to Achieve 1δ at a Specific Depth

$$F = \frac{1.98^2 \times \rho}{\delta^2}$$

f = test frequency in Hz

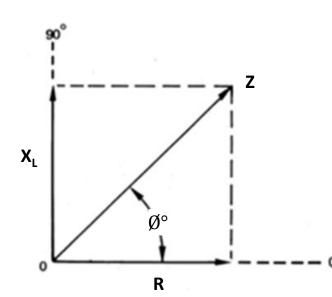
1.98 = constant to determine the standard frequency in Hz

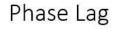
 ρ = the material's resistivity in microhm centimeters ($\mu\Omega$ cm)

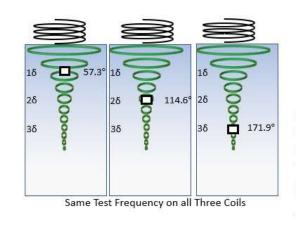
 δ = standard depth of penetration inches

Other Formulas used in ECT

Impedance Phase Angle


$$tan\emptyset = \frac{X_l}{R}$$
 or $\emptyset = \arctan \frac{X_l}{R}$


 \emptyset = Phase angle in degrees X_l = Inductive Reactance in ohms (Ω) R = Resistance in ohms (Ω)



$$\theta = \left(\frac{x}{\delta}\right) \cdot 57.3$$

x = Distance below the surface δ = Standard depth of penetration

Discontinuity Depth	Current Density	Phase Lag in Material	Phase Lag on Display		
Surface 100%		0.0°	0.0°		
1δ	36.8%	57.3°	114.6°		
2δ	13.5%	114.6°	229.2°		
3δ	5.0%	171.9	343.8°		

Assuming that the material thickness exceeds five skin depths and that a largediameter coil is used, theory states that the display of a series of fixed-size voids would perform (approximately) as indicated as their depth form the surface varies, as shown in the table above.

Other Formulas used in ECT

Inductance

Impedance

 $L = \frac{0.8(rN)^2}{6r+9l+10b}$

 $L = \text{coil inductance in microhenries } (\mu \text{H})$ N = number of turns in the coil r = coil radius in inches l = length of the coil in inchesB = depth or thickness of coil in inches

Coil Merit

 $Q = \left(\frac{X_l}{R}\right)$

Q = merit of the coil $X_l =$ the inductive reactance in ohms (Ω) R = resistance in ohms (Ω)

$$Z = \sqrt{X_L^2 + R^2}$$

Z = Impedance in ohms (Ω)

 X_L = Inductive Reactance in ohms (Ω)

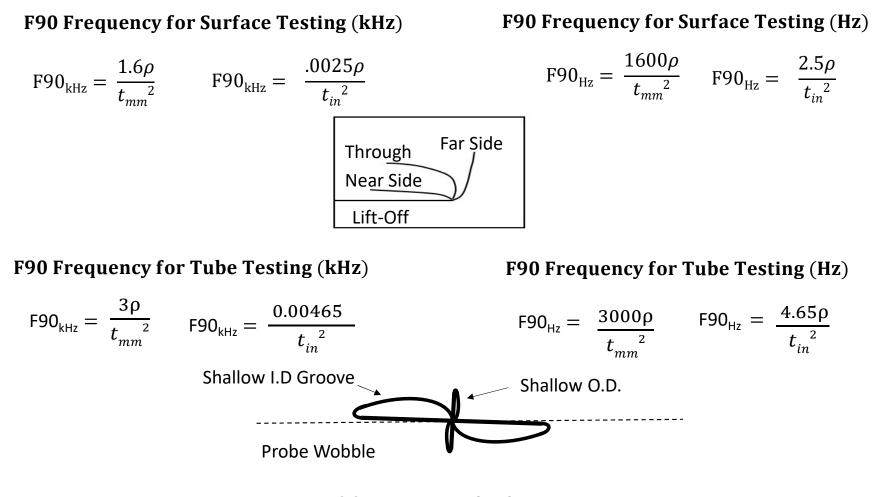
 $R = Resistance in ohms (\Omega)$

Inductive Reactance (X₁)

 $X_l = 2\pi f L$

 X_l = Inductive Reactance in ohms (Ω)

 π = constant of 3.1416 f = test coil frequency in hertz L = coil inductance in henries


Current (Ohm's Law)

 $I = \left(\frac{V}{R}\right)$

I = Electrical Current inamperes (amps) V = EMF in voltsR = resistance in ohms (Ω) Inches/mm Conversion 1 Inch = 25.4 mm 1 Inch = 2.54 cm 1/25.4 = .03937

Convert inches to mm: inch X 25.4 Convert mm to inches: mm X . 0.0393701

F90 Frequencies for Flaw Detection

Symbols

Common Greek Letters (Symbols) used in **Eddy Current Testing Formulas**

 β "beta" – Phase Lag (° or rads)

 π "pi" – 3.14159 (Math Constant)

Scientific Notation

Frequently in ECT mathematics, frequency and depth of penetration charts (and various formulas) use scientific notation. For example, $4 \cdot 10^{6}$ is equal to 4,000,000 whereas $4 \cdot 10^{-6}$ is equal to .000004 and so on. The following tables list some examples of scientific notation:

δ "delta" – Standard Depth of Penetration	Multiple	Prefix	Symbol	Sub-multiple	Prefix	Symbol
η "eta" – Fill Factor	1012	tera	Т	10-1	deci	d
θ "theta" – Degrees	10 ⁹	giga	G	10-2	centi	С
μ"mu" – Permeability	10 ⁶	mega	Μ	10 ⁻³	milli	m
ρ "rho" – Resistivity	10 ³	kilo	k	10 ⁻⁶	micro	μ
σ "sigma" – Conductivity	10 ²	hecto	h	10 ⁻⁹	nano	n
θ "phi" – Magnetic Flux	10 ¹	deca	da	10 ⁻¹²	pico	р