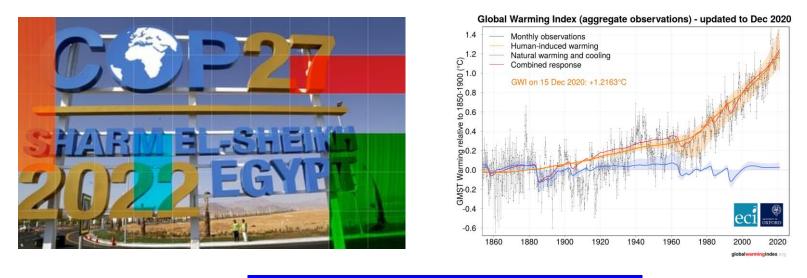
THE FUTURE OF OFFSHORE WIND

What will it take to realise its potential in Vietnam

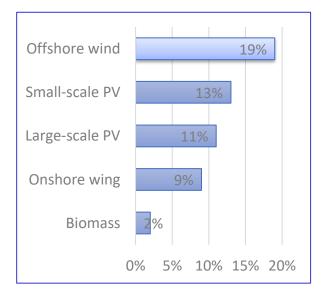
3rd Annual Vietnam Energy and Power Development Summit 2022 November 8-9, Hanoi, Vietnam

Murthy R Nuni Marshal Global Renewable Power Singapore - Vietnam

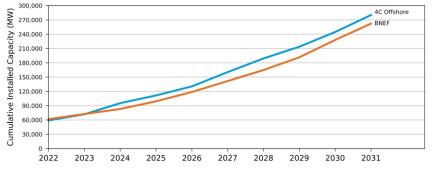


Tel: +44 207 078 3919 info@marshal-funds.com

THE FUTURE OF OFFSHORE WIND


Human-induced warming: +1.261396291 °C

- Renewable Energy in general and Off shore Wind in particular are the key enablers for tackling climate change, limiting Power Sector Carbon Emissions & Global warming
- Offshore Wind : Large Scale Projects, High Capacity Factors and Availability, Cost Competitive at Scale, Stimulate Investments


Offshore Wind is the fastest growing renewable technology

Global renewable installed capacity CAGR 2020 - 2030

Presentation Format

- Global Offshore Wind Industry Status
 - Growth, Technology, Cost Reductions, Supply Chain, Leading Markets
- Offshore Wind in Vietnam
 - Potential, Targets, supply chain development, institutional framework

Source BNEF, USDOE

Global Offshore Wind – Installed Capacity

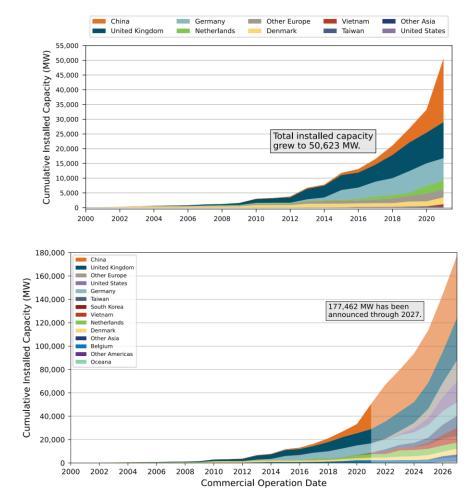
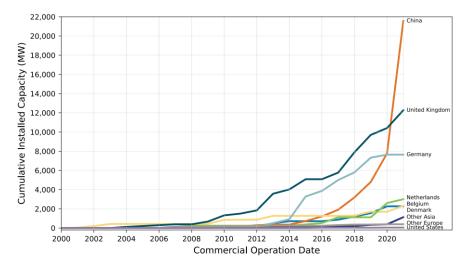
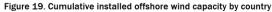
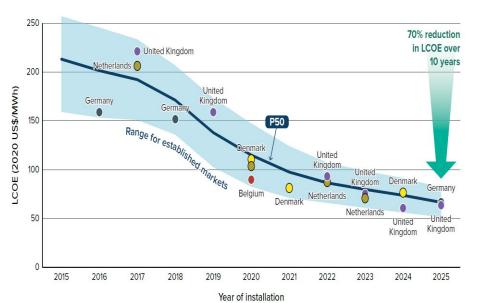


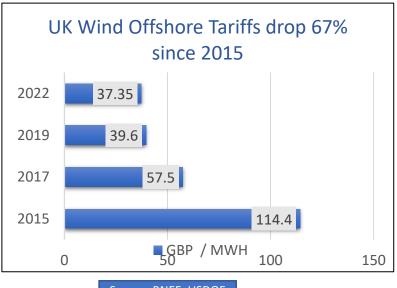
Figure 23. Estimated cumulative offshore wind capacity by country based on developer-announced CODs (the darker areas signify deployed capacity and lighter areas represent projected deployments)

2027 estimated global Installed capacity 177.6 GW


2021 global


Installed capacity


50.6 GW

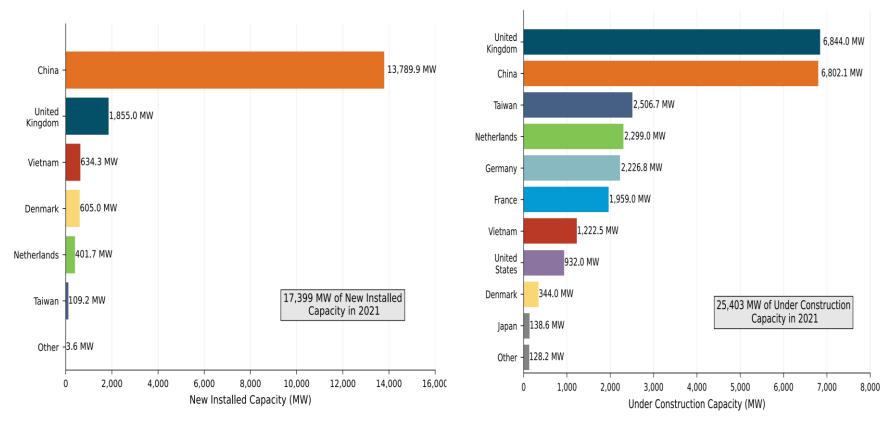

Source USDOE

Global Offshore Wind – Installed Capacity Cumulative

Source BNEF, USDOE

Offshore Wind – Capacity Installed in 2021

Offshore Wind – Capacity under construction after 2021



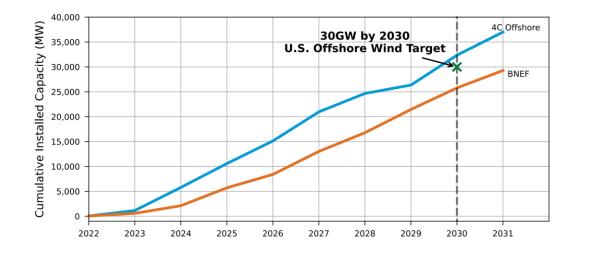

Figure 18. Global offshore wind energy installations in 2021

Figure 21. Offshore wind capacity under construction by country as of 2021

Source : USDOE

USA Offshore Wind - Estimated Cumulative Capacity

Block Island Wind Farm

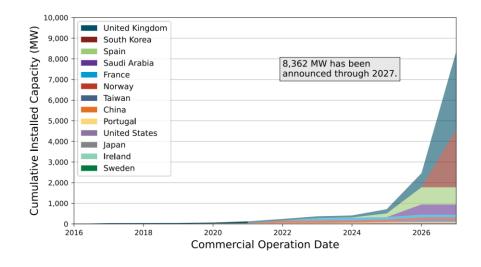
- Operating since 2016
- Capacity = 30 MW
- 5 6-MW Haliade 150 turbines
- Jacket substructures

Coastal Virginia Offshore Wind

- Operating since 2020
- Capacity = 12 MW
- 2 6-MW SWT-6.0-154 turbines
- Monopile substructures

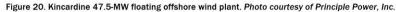
Equipment	Nos	Est Cost
Offshore wind turbines & towers	2057	\$43.9 billion
Offshore turbine & substation foundations	2110	\$17.0 billion
Kilometers of export & array cables	8000	\$12.9 billion
Offshore & onshore substations	53	\$10.3 billion
Other CAPEX1		\$16.0 billion
Development Expenditure (DEVEX)		\$6.16 billion
Operational Expenditure (OPEX)		\$2.83 billion
Total Expenditure (TOTEX)		\$109 billion

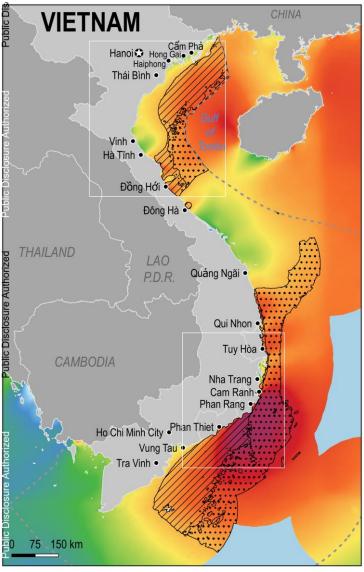
Source : USDOE, NREL

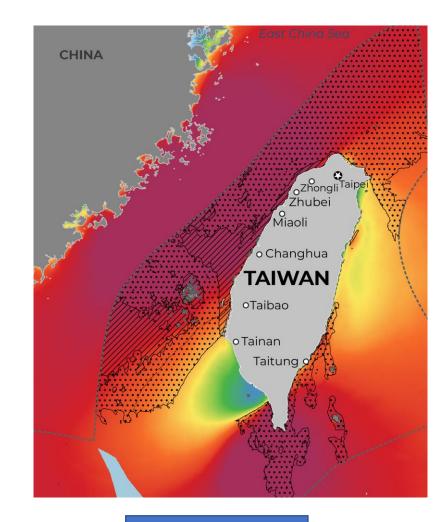


USA Supply Chain Development

Component	Location	Investors	Status	Announced Investment (\$ million)
Blades	Portsmouth Marine Terminal (Virginia)	Siemens Gamesa	Announced	200
Nacelles	New Jersey Wind Port (New Jersey)	Vestas, Atlantic Shores	Announced	Not Announced
(Final Assembly Only)	New Jersey Wind Port (New Jersey)	GE, Ørsted	Announced	Not Announced
Towers	Port of Albany (New York)	Marmen Welcon, Equinor	Announced	350
	Paulsboro Marine Terminal (New Jersey)	EEW, Ørsted	Under Construction	250
Monopiles	Tradepoint Atlantic (Maryland)	U.S. Wind	Announced	150
Foundation Platforms	Port of Providence (Rhode Island)	Eversource, Ørsted	Announced	40
Secondary Steel	Port of Coeymans (New York)	Eversource, Ørsted	Announced	86
Transition Pieces	Port of Albany (New York)	Marmen Welcon, Smulders	Announced	Not Announced
	Nexans High- Voltage Cable Facility (South Carolina)	Nexans	Operational	200
	Kerite (Connecticut)	Kerite, Marmon Group, Vineyard Wind	Operational	4
	Tradepoint Atlantic (Maryland)	Ørsted, Hellenic Cables	Announced	140
Array and Export Cables	Brayton Point (Massachusetts)	Prysmian, Avangrid	Announced	200
Offshore Substations	Ingleside (Texas)	Kiewit, Eversource, Ørsted	Operational	Not Announced ¹⁷
Total Announced Investments Made in 2021-2022 (\$ million)				1,166


Floating Offshore





Source : USDOE, NREL

Offshore Technical Potential Taiwan & Vietnam

In GW	Fixed	Floating	Total Potential
Vietnam	261	338	599
Taiwan	67	427	494

Source : World Bank, ESMAP

Vietnam PDP8 : Offshore Wind Targets

(marsha**Funds**)

PDP8 2030 capacity 4,000MW, Registered capacity 51,659 MW

Registered by Province	Capacity (MW)	No of projects
Quảng Ninh	6,000	2
Hải Phòng	16,200	5
Thái Bình	3,700	2
Nam Định	12,000	1
Thanh Hóa	5,000	1
Hà Tĩnh	1,050	2
Quảng Bình	4,109	5
Quảng Trị	3,600	4
Northern Provinces	51,659	22

PDP8 2030 capacity 3,000MW, Registered capacity 95,177 MW

Registered by Province	Capacity (MW)	No of projects
Bình Định	8,600	7
Phú Yên	850	2
Ninh Thuận	25,802	14
Bình Thuận	30,200	10
Bà Rịa - Vũng Tàu	3,760	6
Trà Vinh	10,300	7
Sóc Trăng	4,900	4
Bến Tre	6,460	8
Bạc Liêu	5,255	10
Cà Mau	8,500	6
Southern Provinces	95,177	65

PDP8 Offshore Wind Targets are ambitious particularly after 2030 The future of Vietnam's Net Zero Targets depend on the success of Offshore Wind

	PDP8 Capacity	by Provincial Areas	2030 GW	2045 GW
1	Northern area	NinhBinh and North		13,000
2	North Central Coast	Thanh Hoa to Quang Binh	4,000	5,000
3	Center Central Coast	Quang Tri to Quang Ngai		3,000
4	South Central Coast	Binh Dinh to Binh Thuan)		30,500
5	Southern Vietnam	Ba Ria Vung Tau and South	3,000	13,000
	Total		7,000	64,500

Cumulative operating capacity	Low Growth Scenario WB	High Growth Scenario WB	PDP8 Targets
2030	5 GW	10 GW	7 GW
2035	11 GW	25 GW	
2045			64.5 GW
2050	35 GW	70 GW	
Maximum			
annual	1 .6 GW	3 GW	
installation rate			3.6 GW

Source : Draft PDP8

World Bank Vietnam Offshore Wind Road Map Timeline

	2020	2021	2022	2023
Vision and volume targets				
Publish a vision for offshore wind to 2050				
Set offshore wind installation targets to 2030 and 2035				
Leasing, permitting, and power purchase				
Develop a marine spatial plan for offshore wind				
Create a leasing and permitting authority Determine preferred approach to seabed leasing and power purchase				
Transition to a competitive system for offshore wind				
Set out leasing competitions (GW leased in period) Revise the terms and conditions of the FIT; offer it to 2025				
Project finance				
Ensure bankability of future PPA arrangements				
Encourage financial mechanisms to reduce cost of capital				
Transmission and port infrastructure				
Mandate substantial transmission reinforcements				
Determine approach to transmission investment				
Enable investment in port facilities				
Supply chain development				
Prepare supply chain plan and local content guidance				
Enable investment in local supply chain businesses				
Undertake skills and training assessment				
Address barriers to inward investment				
Standards and regulations				
Create framework for environmental and social impact assessment				
Create health and safety framework for offshore wind				

Cumulative operating capacity	Low Growth Scenario	High Growth Scenario
2030	5 GW	10 GW
2035	11 GW	25 GW
2050	35 GW	70 GW
Maximum annual installation rate	1 .6 GW	3 GW

Phase 1: Initiation - 2020 to 2023 Build momentum Enable early projects to progress Establish frameworks and regulations Educate stakeholders Start transmission upgrades Start port upgrades

Phase 2: Industrialization - 2024 to 2028

Increase installation rate x 1.5 First large conventional fixed projects Transition from FIT to auction Grow Industrial and skills base Implement Transmission upgrades Complete port upgrades

Phase 3: Full capability - 2028 to 2034

Increase installation rate x 2 Accelerate exports First large floating projects Last intertidal projects build out

Vietnam Offshore Wind Targets & Framework required to achieve these targets

2030	2040	2050
10	40	70
43	54	56
30	170	330
580	980	1,210
(65 GW)	(110 GW)	(140 GW)
5	17	27
72	46	37
	10 43 30 580 (65 GW) 5	10 40 43 54 30 170 580 980 (65 GW) (110 GW) 5 17

Marine Spatial Planning

Deciding in broad terms where it is most beneficial to site offshore wind projects, taking a holistic view of marine resources, avoiding areas of high environmental and social risk.

Leasing

Giving rights to a project developer to survey a potential site, then eventually to construct and operate a wind farm.

Permitting

Providing permissions for a project developer to survey, construct, and operate a wind farm, following a robust Environmental and Social Impact Assessment (ESIA).

Offtake and Revenue

Lowering the risk of the revenue stream sufficiently to enable a final investment decision to be made by investors.

Export Systems and Grid Connection

Enabling timely and cost-effective grid connections.

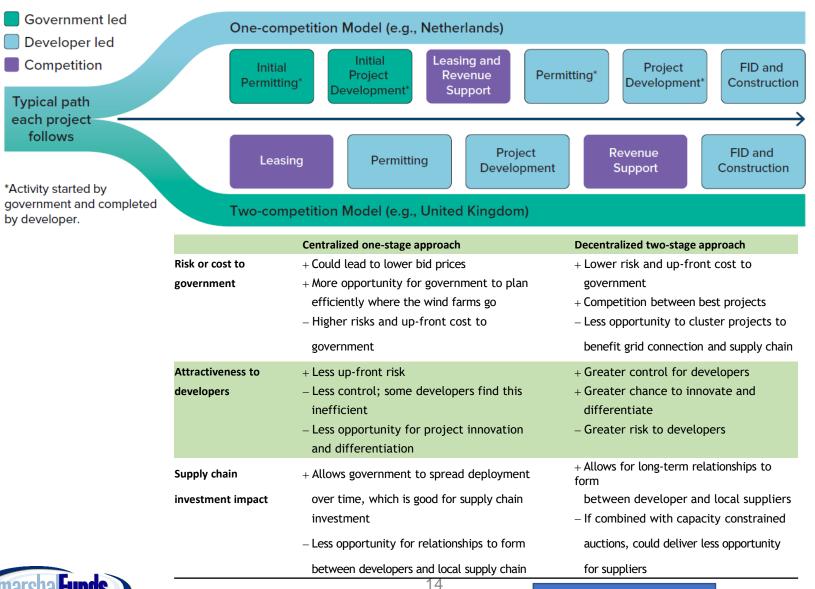
Health and Safety

Keeping workers safe on industrial-scale projects both offshore and onshore.

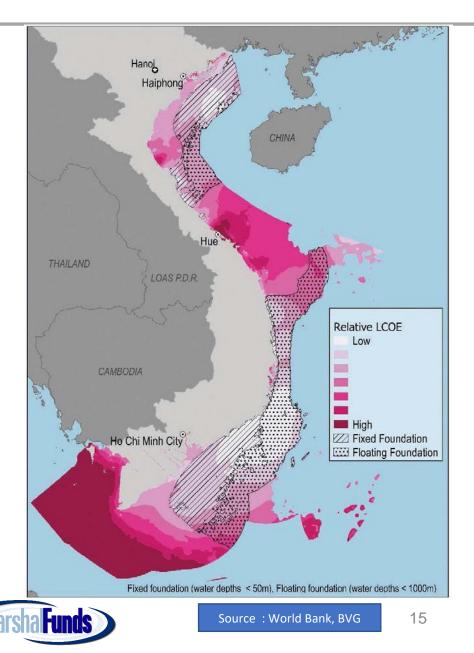
Standards and Certification

The confirmation of the engineering suitability of a new wind farm.

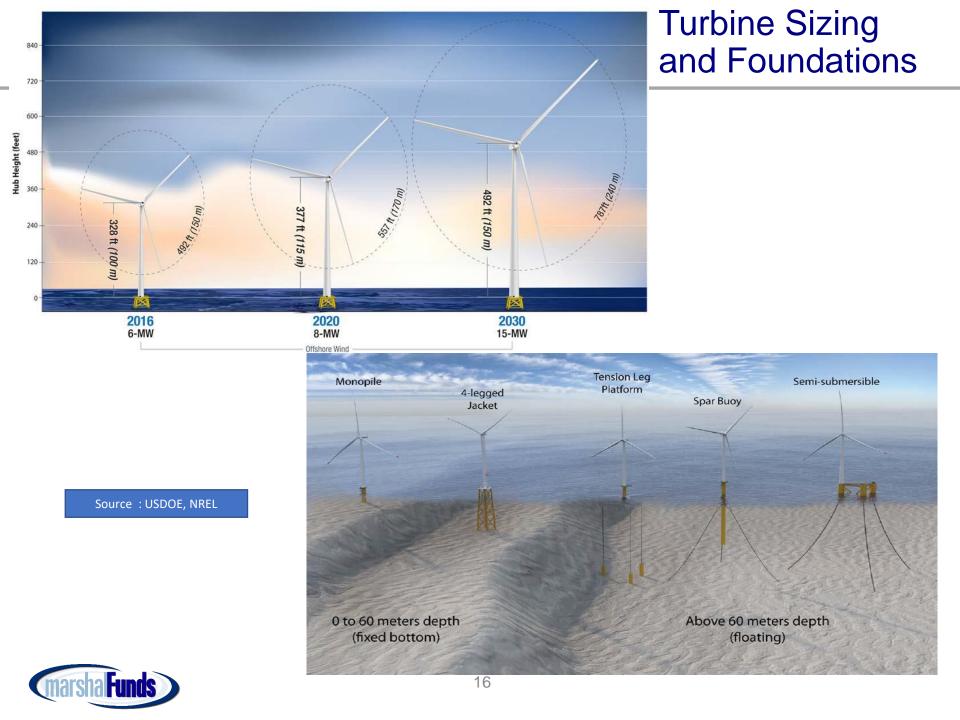
Source : World Bank, BVG


Supply Chain Investments to meet 2030 Targets

Investment	Low Growth Scenario	High Growth Scenario	Timing	Amount
Turbine towers	Upgrade to existing CS Wind factory to produce 100 offshore Towers annually and provide waterfront loadout	Upgrade to existing CS Wind factory to produce 100 offshore Towers annually and provide waterfront loadout	Investment decision in 2027	US\$5-30 million
Turbine blades	n/a	New factory to produce 100 blade sets a year	Investment decision early 2027	US\$30-100 million
Foundations	Upgrade to fabrication yards	Upgrade to fabrication yards	Investment decision early 2027	US\$5-30 million
Subsea cables	n/a	New factory at waterfront location	Investment decision early 2027	US\$30-100 million
Installation	New cable installation vessels	New turbine, foundation and cable installation vessels	Investment decision	US\$30-300 million


Source : World Bank, BVG

Permitting Models for Offshore Wind


Source : World Bank, BVG

LCOE along the Vietnam coastline

THE FUTURE OF OFFSHORE WIND IN VIETNAM – KEY TAKEWAYS

- Offshore wind is growing rapidly worldwide, offering clean power at a large-scale; high capacity factors and availability; cost-competitive with fossil fuel led generation; and provide a strong stimulus for investment
- Offshore Wind is set to play a major role in limiting Greenhouse gas emissions, enabling major countries to achieve net zero targets.
- Vietnam Government as per latest PDP8 draft documents, has set ambitious targets to realize the potential of Offshore Wind along its long 3200 km coastline, perfectly suitable for large scale installations
- Following the success of the last Solar and Wind tariff regimes over the last 3 years, Vietnam has the drive and capacity to implement institutional framework to achieve these targets.
- Offshore Wind requires access to state-of-the-art technology and large-scale investments. Strong Institutional Framework to provide sufficient confidence to all the stakeholders in this nascent industry is essential. Bankability is perhaps most critical in addition to predictable, pre- announced guidelines for permitting, leasing and tariff mechanism.

Thank You

Disclaimer : This presentation has been prepared for informational purposes only. No representative or warranty (express or implied) is made or can be given by Marshal Funds group with respect to the accuracy or completeness of the information in this Presentation

