
Planck-Scale Rotating Black Holes in f (R) = R + aR2 Gravity as

Dark Matter Candidates

Abstract

We examine metric f(R) gravity with f(R) = R + aR2 in the high-curvature regime, with
emphasis on microscopic, rapidly rotating black holes. A Hartle–Thorne slow-rotation expansion
is developed through second order in the rotation parameter. The resulting equations exhibit
curvature-dependent suppression of rotational deformations and of frame-dragging gradients
when f ′(R0)� 1. This provides a controlled setting in which evaporation arguments based on
General Relativity can fail near Planckian curvature, permitting long-lived remnants that may
contribute to dark matter.

1 Gravitational Framework

We consider metric f(R) gravity with action

S =
1

16πG

∫
d4x
√
−g f(R) + Smatter, f(R) = R+ aR2, a > 0. (1)

The field equations are

f ′(R)Rµν −
1
2
f(R)gµν + (gµν�−∇µ∇ν) f ′(R) = 8πGTµν , (2)

with f ′(R) = 1 + 2aR.

2 Static Background and High-Curvature Scale

Let (M, g(0)) be a static, spherically symmetric background with metric

ds2
0 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θ dϕ2), (3)

and Ricci scalar R0(r). In the regime R0 ∼ a−1 one has

f ′(R0) = 1 + 2aR0 � 1, (4)

so the characteristic length scale of curvature corrections is `a :=
√
a and a microscopic horizon

may satisfy rH ∼ `a.
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3 Hartle–Thorne Slow-Rotation Expansion Through Second Or-

der

3.1 Ansatz and bookkeeping

Introduce a dimensionless rotation parameter ε � 1 and expand the stationary, axisymmetric
metric as

ds2 = − e2Φ(r)
[
1 + 2ε2 h(r, θ)

]
dt2 + e2Λ(r)

[
1 + 2ε2m(r, θ)

]
dr2

+ r2
[
1 + 2ε2 k(r, θ)

] (
dθ2 + sin2 θ dϕ2

)
− 2ε ω(r) r2 sin2 θ dt dϕ+O(ε3),

(5)

where ω is first order and the functions h,m, k are second order.
A standard Legendre decomposition is adopted:

h(r, θ) = h0(r)+h2(r)P2(cos θ), m(r, θ) = m0(r)+m2(r)P2(cos θ), k(r, θ) = k2(r)P2(cos θ), (6)

with P2(x) = 1
2(3x2 − 1). The scalar curvature is similarly expanded:

R(r, θ) = R0(r) + ε2
(
R20(r) +R22(r)P2(cos θ)

)
+O(ε3), (7)

so that

f ′(R) = f ′(R0) + ε2f ′′(R0)
(
R20 +R22P2(cos θ)

)
+O(ε3), f ′′(R0) = 2a. (8)

3.2 First-order frame dragging equation

To first order in ε, the only new field equation is the (t, ϕ) component of (2), which reduces to

d

dr

[
r4f ′(R0) e−(Φ+Λ) dω

dr

]
= 0. (9)

Hence
dω

dr
=

C

r4f ′(R0)
eΦ+Λ, (10)

where C is an integration constant determined by asymptotic behavior (or matching to an exterior
region). In particular, when f ′(R0)� 1 one obtains the curvature-suppressed gradient

ω′(r) = O
(

1
f ′(R0)

)
. (11)

3.3 Second-order sector: structure of the equations

At order ε2, the field equations (2) yield coupled equations for

h0,m0 (monopole sector), h2,m2, k2 (quadrupole sector),
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together with the curvature perturbations R20, R22. The system splits into ` = 0 and ` = 2 blocks
because the only angular dependence in (5) is via P2(cos θ).

Monopole block (` = 0). The ` = 0 equations may be written schematically as a linear system

L0

 h0

m0

R20

 =

S
(tt)
0

S
(rr)
0

S
(R)
0

 , (12)

where L0 is a matrix of second-order radial differential operators depending on the background
(Φ,Λ, R0) and on f ′(R0) and f ′′(R0), and where the sources are quadratic in the first-order rotation:

S
(·)
0 (r) = α

(·)
0 (r)ω′(r)2 + β

(·)
0 (r)ω(r)2. (13)

Using (11), the dominant scaling in the high-curvature regime is

S
(·)
0 = O

(
1

f ′(R0)2

)
, (14)

provided ω remains bounded and ω′ controls the rotational stress terms.

Quadrupole block (` = 2). Similarly, the ` = 2 sector is

L2


h2

m2

k2

R22

 =


S

(tt)
2

S
(rr)
2

S
(θθ)
2

S
(R)
2

 , (15)

with sources again quadratic in rotation:

S
(·)
2 (r) = α

(·)
2 (r)ω′(r)2 + β

(·)
2 (r)ω(r)2 + γ

(·)
2 (r)ω(r)ω′(r). (16)

The same curvature-suppression mechanism yields

S
(·)
2 = O

(
1

f ′(R0)2

)
(in the regime f ′(R0)� 1). (17)

3.4 A representative second-order equation

To make the second-order content explicit, we record a representative equation of Hartle–Thorne
type, generalized by f ′(R0), for the quadrupole deformation combination

Ξ(r) := h2(r) +m2(r).
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A typical linear combination of the (θ, θ) and (r, r) components yields

Ξ′′ +
(

2
r

+ Φ′ − Λ′
)

Ξ′ − 6
r2
e2Λ Ξ = Q(r)ω′(r)2 +H(r) f ′′(R0)R22 +O

(
ωω′
)
, (18)

where Q(r) and H(r) are background-dependent functions determined by (Φ,Λ, R0, f
′(R0)). By

(10) one has ω′2 = O(f ′(R0)−2). Moreover, the scalar perturbation R22 satisfies an effective massive
radial equation sourced by the same rotation terms:[

d2

dr2
+
(

2
r

+ Φ′ − Λ′
)
d

dr
− e2Λ

(
6
r2

+m2
φ

)]
R22 = SR(r)ω′(r)2 +O

(
ωω′
)
, (19)

with m2
φ = (6a)−1 and some background function SR(r).

Equations (18)–(19) exhibit explicitly that the second-order rotational deformations and cur-
vature multipoles are driven by ω′2, and hence are suppressed when f ′(R0)� 1.

4 Surface Gravity and Evaporation (Formal Statement)

Let χµ = ∂µt + ΩH∂
µ
ϕ be the horizon generator for the stationary axisymmetric geometry. The

surface gravity is

κ2 = −1
2

(∇µχν)(∇µχν)
∣∣∣
r=rH

. (20)

In the slow-rotation regime one has the expansion

κ = κ0 + ε2κ2 +O(ε3), (21)

where κ0 is determined by the static background (3) and κ2 depends linearly on (h0,m0, h2,m2, k2)
evaluated at rH . If the high-curvature regime produces f ′(R0)� 1 near rH and if κ0 is regulated
by the R2 corrections, then the semiclassical temperature TH = κ/(2π) is not forced to diverge
as M → MPl, and remnant formation becomes consistent with the modified near-horizon field
equations.

5 Cosmological Interpretation

Assume that a nonzero fraction of the early-universe energy density collapses into microscopic
horizons with rH ∼

√
a and with angular momentum in the slow-rotation regime of the above

expansion (or near it). If evaporation is suppressed and leaves long-lived remnants with M ∼MPl,
then their macroscopic behavior is that of pressureless matter:

pBH ≈ 0, ρBH(t) ∝ a(t)−3. (22)

Such relics can therefore contribute to the cold dark matter budget.
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6 Conclusion

A Hartle–Thorne slow-rotation expansion through second order in ε for f(R) = R + aR2 gravity
yields: (i) a first-order frame-dragging equation with curvature-suppressed gradient proportional
to 1/f ′(R0), and (ii) second-order monopole and quadrupole deformation equations sourced by
ω′2 and curvature multipoles. In the high-curvature regime f ′(R0) � 1, rotational deformations
are correspondingly suppressed, providing a controlled setting in which Planck-scale rotating black
holes can be long-lived and serve as dark matter candidates.
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