Planck-Scale Rotating Black Holes in f(R) = R + aR? Gravity as
Dark Matter Candidates

Abstract

We examine metric f(R) gravity with f(R) = R + aR? in the high-curvature regime, with
emphasis on microscopic, rapidly rotating black holes. A Hartle-Thorne slow-rotation expansion
is developed through second order in the rotation parameter. The resulting equations exhibit
curvature-dependent suppression of rotational deformations and of frame-dragging gradients
when f/(Rp) > 1. This provides a controlled setting in which evaporation arguments based on
General Relativity can fail near Planckian curvature, permitting long-lived remnants that may
contribute to dark matter.

1 Gravitational Framework

We consider metric f(R) gravity with action
S = ﬁ /d‘*x\/fgf(R) + Smatters  f(R) = R+aR?* a>0. (1)
The field equations are
J B Ry = 5§ (R + (900 = 9,90) F'(R) = $7G T, @)

with f'(R) = 1+ 2aR.

2 Static Background and High-Curvature Scale

Let (M, ¢g(9) be a static, spherically symmetric background with metric

dsg = 22 g2 4 2 gp2 4 r2(df? + sin® 6 dp?), (3)

and Ricci scalar Ry(r). In the regime Ry ~ a~! one has
J'(Ro) =1+ 2aRy > 1, (4)
so the characteristic length scale of curvature corrections is ¢, := y/a and a microscopic horizon

may satisfy rg ~ £,.



3 Hartle-Thorne Slow-Rotation Expansion Through Second Or-
der

3.1 Ansatz and bookkeeping

Introduce a dimensionless rotation parameter ¢ < 1 and expand the stationary, axisymmetric

metric as

ds? = — ™) [1 422 h(r,0)] dt* + M [1 4+ 262 m(r, 0)] dr

(5)
+ 72 [1+ 2€% k(r, 9)] <d92 + sin? 0 dg02> —2ew(r)r?sin® @ dt dp + O(€®),

where w is first order and the functions h, m, k are second order.

A standard Legendre decomposition is adopted:
h(r,0) = ho(r)+ha(r)Pa(cos0), m(r,0) = mo(r)+ma(r)Pa(cost), k(r,0) = ka(r)P2(cost), (6)
with Py(z) = 3(3z% — 1). The scalar curvature is similarly expanded:
R(r,0) = Ro(r) + & (Rao(r) + Roa(r) Pa(cos 9) ) + O(c?), (7)
so that
F(R) = f'(Ro) + €f"(Ro) (Rm + RopPy(cos 9)) +OEE), (R = 2a. (8)

3.2 First-order frame dragging equation

To first order in ¢, the only new field equation is the (¢, ¢) component of , which reduces to

d | 4 —(@4n) QW |
o [7" f'(Ro)e e 0. (9)
Hence J o

aw d+A

dr  1*f(Rp) < (10)

where C'is an integration constant determined by asymptotic behavior (or matching to an exterior

region). In particular, when f’(Rg) > 1 one obtains the curvature-suppressed gradient

3.3 Second-order sector: structure of the equations

At order €2, the field equations yield coupled equations for

ho,mo  (monopole sector), ha,ma,ka (quadrupole sector),



together with the curvature perturbations Rgg, R2s. The system splits into £ = 0 and ¢ = 2 blocks

because the only angular dependence in (9] is via Pa(cos6).

Monopole block (¢ =0). The ¢ =0 equations may be written schematically as a linear system

ho S(()tt)
Lol mo | =51, (12)
Rao S

where Ly is a matrix of second-order radial differential operators depending on the background
(®, A, Ry) and on f'(Rp) and f”(Rp), and where the sources are quadratic in the first-order rotation:

S§r) = ad (1) ! (r)? + B8 () w(r)?. (13)

Using , the dominant scaling in the high-curvature regime is

provided w remains bounded and w’ controls the rotational stress terms.

Quadrupole block (¢ =2). Similarly, the £ = 2 sector is

ho Sétt)
(rr)
L = , 15
2| 5 (15)
Roo SR
with sources again quadratic in rotation:
S (r) = ¥ (1) o' (1)? + 85 (1) w(r)? + 48 (1) w(r)w! (7). (16)

The same curvature-suppression mechanism yields

Sg) = O(f’(;o)Q) (in the regime f'(Rg) > 1). (17)

3.4 A representative second-order equation

To make the second-order content explicit, we record a representative equation of Hartle-Thorne

type, generalized by f'(Ry), for the quadrupole deformation combination

E(r) := ha(r) + ma(r).



A typical linear combination of the (0,6) and (r,r) components yields

[1]

=" <i + @' — A/) g - %€2A = Q(r)w'(r)* + H(r) f"(Ro) Roz + O(ww'), (18)

where Q(r) and H(r) are background-dependent functions determined by (®, A, Ry, f'(Ro)). By
one has w? = O(f'(Ro)~2). Moreover, the scalar perturbation Rgy satisfies an effective massive

radial equation sourced by the same rotation terms:

d? 2 d 6
[drz + < + - A') i ( + %)] Rys = Sp(r) o/ (r)? + O(ww), (19)

with mé = (6a)~! and some background function Sg(r).
Equations f exhibit explicitly that the second-order rotational deformations and cur-

vature multipoles are driven by w2, and hence are suppressed when f’(Rg) > 1.

4 Surface Gravity and Evaporation (Formal Statement)

et x" = + Qg e € norizon generator Ior € Statlionary axisyminetric geometury. (§]
Let x* = 9" + Qudl; be the hori tor for the stati i tri try. Th

surface gravity is

1
K = =5 (Vo) (V'X) (20)
r=rg
In the slow-rotation regime one has the expansion
K = ko + 2rg + 0(63), (21)

where kg is determined by the static background and k2 depends linearly on (hg, mg, ha, ma, k2)
evaluated at rg. If the high-curvature regime produces f'(Rp) > 1 near ry and if kg is regulated
by the R? corrections, then the semiclassical temperature Ty = x/(27) is not forced to diverge
as M — Mp,, and remnant formation becomes consistent with the modified near-horizon field

equations.

5 Cosmological Interpretation

Assume that a nonzero fraction of the early-universe energy density collapses into microscopic
horizons with rg ~ y/a and with angular momentum in the slow-rotation regime of the above
expansion (or near it). If evaporation is suppressed and leaves long-lived remnants with M ~ Mp,

then their macroscopic behavior is that of pressureless matter:
pBH ~ 0, pBH(t) o< a(t) ™. (22)

Such relics can therefore contribute to the cold dark matter budget.



6 Conclusion

A Hartle-Thorne slow-rotation expansion through second order in € for f(R) = R + aR? gravity
yields: (i) a first-order frame-dragging equation with curvature-suppressed gradient proportional
to 1/f'(Ry), and (ii) second-order monopole and quadrupole deformation equations sourced by
w? and curvature multipoles. In the high-curvature regime f’(Ry) > 1, rotational deformations
are correspondingly suppressed, providing a controlled setting in which Planck-scale rotating black

holes can be long-lived and serve as dark matter candidates.
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