
A Probabilistic and Combinatorial Analysis of a Digit–Sum Power

Game

Fix integers k ≥ 2 and p ≥ 1. The game proceeds as follows. There are N tables, each
with exactly m students, so that the total number of participants is M = Nm. Each student
independently selects a k-digit base–10 integer n uniformly at random from the set {10k−1, 10k−1 +
1, . . . , 10k−1}. Equivalently, the leading digit is uniformly distributed on {1, . . . , 9} and each of the
remaining k− 1 digits is uniformly distributed on {0, . . . , 9}, all digits being independent. Writing

n =
k∑
i=1

di10k−i,

with d1 ∈ {1, . . . , 9} and d2, . . . , dk ∈ {0, . . . , 9}, define the digit sum

T =
k∑
i=1

di.

Each student computes the score
S = n− cT p,

where the scalar c ∈ R is fixed in advance and announced before play begins. Each table computes
the average of its students’ scores, and the class outcome is defined as the average of the N table
averages. Since all table sizes are equal, the class outcome coincides exactly with the grand mean

SM =
1
M

M∑
j=1

Sj

of the M independent scores.
Under the uniform distribution on k-digit integers, the expectation of n is

E[n] =
10k−1 + (10k − 1)

2
=

11 · 10k−1 − 1
2

.

The digit sum satisfies

E[T ] = 5 + 4.5(k − 1) = 4.5k + 0.5, Var(T ) =
20
3

+ (k − 1)
33
4
.

The exact distribution of T is given combinatorially by the generating polynomial

Pk(x) = (x+ x2 + · · ·+ x9)(1 + x+ · · ·+ x9)k−1,

so that

P(T = t) =
[xt]Pk(x)
9 · 10k−1

,
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and consequently

E[T p] =
1

9 · 10k−1

9k∑
t=1

tp[xt]Pk(x).

For analytic purposes, a second–order Taylor expansion of xp about µT = E[T ] yields the
quadratic approximation

E[T p] ≈ µpT + 1
2p(p− 1)µp−2

T σ2
T ,

where σ2
T = Var(T ).

To enforce unbiasedness, define

c = c? =
E[n]
E[T p]

,

so that E[S] = 0 and hence E[SM ] = 0. Substituting the quadratic approximation gives

c? ≈ E[n]

µpT + 1
2p(p− 1)µp−2

T σ2
T

.

The random variable S is bounded almost surely, since

10k−1 − c(9k)p ≤ S ≤ 10k − 1− c.

In particular, all moments of S exist. Writing σ2
S = Var(S), one has the exact identity

σ2
S = Var(n) + c2Var(T p)− 2cCov(n, T p).

A quadratic approximation for σ2
S is obtained by expanding T p to first order around µT , which

gives
Var(T p) ≈ p2µ2p−2

T σ2
T , Cov(n, T p) ≈ pµp−1

T Cov(n, T ).

Since

Cov(n, T ) =
k∑
i=1

10k−iVar(di) = 10k−1 20
3

+
k−2∑
j=0

10j
33
4
,

and

Var(n) =
102k − 102k−2

12
,

one obtains the quadratic variance approximation

σ2
S ≈ Var(n) + c2p2µ2p−2

T σ2
T − 2cpµp−1

T Cov(n, T ),

with c = c? or its quadratic approximation.
Because S is bounded, Hoeffding’s inequality applies. For all ε > 0,

P
(
|SM | ≥ ε

)
≤ 2 exp

(
− 2Mε2

(b− a)2

)
,

where a = 10k−1 − c(9k)p and b = 10k − 1− c.
Moreover, since E[S] = 0 and 0 < σ2

S <∞, the Berry–Esseen theorem implies that

sup
x

∣∣∣∣∣P
(√

M SM
σS

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C E|S|3

σ3
S

√
M

,
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where Φ denotes the standard normal distribution function and C is an absolute constant.
Consequently, for fixed α ∈ (0, 1) and letting z1−α/2 denote the (1 − α/2)–quantile of the

standard normal law, the central limit theorem yields the asymptotic design condition

P
(
|SM | < γ

)
≈ 1− α when M ≈

(
z1−α/2σS

γ

)2

.
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