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The Guderley model of a self-similar imploding shock based on the group invariance of the flow equations is a pow-
erful tool in understanding the behavior of converging shock waves. Two modifications described here improve the
predictions of observable quantities in spherical-shock wave experiments. First, a non-infinite boundary condition is
established by the isentropic release of the outer pressure. Second, a two-temperature system of ions and electrons
allows description of higher temperatures while conserving energy and without perturbing the overall hydrodynamics
of the solution. These modifications of the Guderley model improve the prediction of the observables in laser driven
spherical shock experiments in reference to a one dimensional (1-D) hydrodynamics code.

I. INTRODUCTION

Converging shock waves appear in diverse locations
throughout nature such as in inertial confinement fu-
sion experiments,1–3 supernovae explosions,4,5 and cavity
collapses.6 Guderley7 found a self-similar solution that can be
used to describe all these systems across the different size and
temporal scales found in nature. Despite significant work8–10

exploring the numerical properties of the Guderley solution
and using it to benchmark hydrodynamic codes,11–13 little
work exists in using the solution to understand experimental
results. Work has been done to treat the boundary of self-
similar solutions, such as the Guderley, in order to better re-
late them to numerical hydrodynamic codes12–14. This work
describes a new boundary condition and scheme for the treat-
ment of temperature, motivated by experimental comparison.

Shock wave experiments in spherical geometry are chal-
lenging to perform and diagnose and thus direct isolated mea-
surements of the extreme physical states or processes accessed
with such convergent experiments are usually beyond state
of the art techniques, so design and analysis of such con-
vergent experiments often employ radiation hydrodynamic
codes.2 Semi-analytic solutions to hydrodynamic systems of-
fer a valuable baseline for comparison to integrated models.12

These solutions are used to inform experimental observations
in diverse regimes of spherical shocks, for example such as in
rarefied gas.15 A direct analogue to these solutions is challeng-
ing to create experimentally16, so modifications of the solu-
tion are sometimes necessary16,17 to understand experiments
outside the realm of the solution such as ones containing mag-
netic fields18,19. The scheme presented in this work when
combined with previous work,15,20–22 makes for a powerful
tool in quantitatively determining the states and processes im-
plicit to convergent experiments, and is an important step to-
ward constraining physical models from a collection of exper-
imental observables.

a)Electronic mail: jruby@lle.rochester.edu.
b)Also at Mechanical Engineering Department, University of Rochester,
Rochester, New York, 14627, USA

A. Review of the Guderley Problem

The Guderley problem of a converging shock wave has
been described extensively elsewhere.1,8,23 The solution starts
with the non-viscous ideal conservation equations of fluid me-
chanics:
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where ~u is the velocity field, P, ρ , and S are the gas pressure,
density, and entropy, respectively, and the three equations cor-
respond to the conservation of momentum, mass, and energy
(entropy), respectively. Additionally, for this solution an ideal
adiabatic equation of state is assumed, taking the form

PV = NkBT,
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)
,
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where V is the volume, N is the number of particles, kB is
the Boltzmann constant, and γ is the ratio of specific heats or
the adiabatic index. Finally, invoking spherical or cylindrical
symmetry the problem is reduced to a 1-D radial set of equa-
tions of the form
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where n is a parameter that sets the geometry of the prob-
lem taking on the values 1, 2, and 3 for planar, cylidrical, and
spherical geometries, respectively. These equations evolve in
a self-similar fashion with the similarity co-ordinate ξ defined
as

ξ = ξ0
r/r0

|t/t0|α
. (4)
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FIG. 1. The particle trajectories (solid black curves), r0 particle trajectory (dashed-dotted black curve), and shock trajectory (dashed black
curve) in the Guderley solution for a particular set of parameters (κ = 0, γ = 5/3, α ≈ 0.6883768, and n = 3). Note that in the Guderley
solution the trajectories starting from r0 are not significant because the flow extends out to infinity and is self-similar. The shading represents
different regions of flow: unshocked (red), singly shocked (white), and doubly shocked (blue). Top left is a cartoon of the physical system: a
spherical (or cylindrical) shock (dashed) is converging inward into unshocked material (red) as seen in the first and second frames. The shock
then rebounds and moves back outward through the singly shocked (white) material leaving doubly shocked material (blue) in its wake. Note
that the white region extends out to infinity. Marked with thick black lines are the locations of a temporal and a radial lineout of the temperature
and density profiles shown to the right. The temporal profile is shown in (b) and the radial profile is shown in (c).

The choice of this coordinate is derived from the scaling sym-
metries that exist in the equations.1 ξ introduces the parame-
ters ξ0, r0, t0, and α . Both ξ0 and α help to define the shock
trajectory and strength, and there is a unique α for the choice
of γ , the ratio of specific heats or the adiabatic index, and ge-
ometric factor, n. It is important to note that α is independent
of boundary conditions, but ξ0 depends on the specifics of the
boundary, in particular the strength of the pressure wave at
infinity. Scaling parameters r0 and t0 set the spatial and tem-
poral scales of the system being modeled. This allows the
fluid properties to be given in terms of the similarity coor-
dinate. In order to solve the system, only three of the fluid
properties (particle velocity, sounds speed, density, tempera-
ture, pressure, entropy, etc.) need to be defined and the rest
can be derived. Different references choose to define different
properties. As an example10,24, the flow velocity, density, and

sound speed are given as

u(r, t) =
αr
t

U (ξ ) ,

ρ (r, t) = ρ0

(
r
r0

)κ

G(ξ ) ,

c(r, t) =
αr
t

C (ξ ) ,

(5)

where there are an additional two parameters: ρ0 is a refer-
ence density and κ is the density exponent defining the initial
density profile. Inserting the scaled quantities into the flow
equations allows one to derive a set of autonomous ordinary
differential equations of the form

dU
dC

= f (U,C) . (6)

These equations can be solved numerically and then trans-
formed back to the radius and time space1,13,24. The parame-
ters introduced in this solution are given in Table I.



3

TABLE I. Parameters in the Guderley solution to the converging
shock-wave problem. Note that one of r0, t0, and ξ0 can be defined
in terms of the other two so they are not all independent.

r0 Radial scaling factor
t0 Temporal scaling factor
ξ0 Shock strength parameter
γ Adiabatic index
n Geometric factor
κ Density profile parameter
ρ0 Density scaling factor

B. The Guderley Solution

The particle and shock trajectories that result from solv-
ing the Guderley problem provide insight into the dynamics
of a converging shock wave. These trajectories are shown
in Fig. 1 where the temporal axis is shifted by tc, the time
that the shock reaches the center, r = 0. The slope of the
profiles is determined by the equation of state, namely the γ

used, but the general features of the solution are independent
of γ . The particle trajectory originating from r/r0 = 1 is the
dashed-dotted line. This trajectory has no unique significance
in the Guderley solution because the flow extends out to infin-
ity and is self-similar, but in experimental configurations there
is usually a reference radius that carries significance such as
an outer boundary of material. This boundary will be dis-
cussed in Sec. II

The density and temperature profiles are critical when de-
scribing shock waves in nature. The right-side top and bottom
of Fig. 1 show temporal and spatial lineouts of the temper-
ature and density, respectively, denoted by the arrows in the
particle trajectory plot. The temperature at fixed radius is rel-
atively steady in time between the two shock events. Con-
versely, the temperature is extremely steep in its radial profile
with the temperature peak at r = 0 for all times after the shock
collapse. The density is shocked as expected according to the
strong shock condition to ρ/ρ0 = (γ +1)/(γ−1). After that
point, the density continues to rise, a consequence of the mate-
rial converging into a smaller volume. Finally, after re-shock
the material relaxes and the density falls off. A single fluid
temperature is shown but a scheme for separate treatment of
electron and ion temperatures will be addressed in Sec. III.

II. FINITE BOUNDARY CONDITIONS

The self-similarity of the Guderley solution means the flow
extends out to infinity. This implies that the shock wave is
supported for all time and that the problem describes a system
of infinite mass. In real physical systems, the finite boundary
conditions often plays a key role in the dynamics, necessi-
tating a treatment of the boundary condition. The simplest
condition that can be used is to track the flow from a ref-
erence point, for example r0, which may correspond to the
outer boundary of an experimental target (dashed-dotted line
in Fig. 1), and truncate the solution outside of that bound-

ary. This scheme is valid while the pressure at the boundary is
held constant, supporting the wave dynamics for the duration
of the shock. The support of the pressure wave in the Gud-
erley solution is a problem when the pressure is not held at
the outer boundary indefinitely, such as in laser-driven shock
experiments.

When the pressure at the boundary is released, a decom-
pression wave is launched, changing the fluid property pro-
files. To model this, a released density profile of the form

ρ(r) = ρR

(
Rout− r

Rout−Rin

)ε

(7)

is assumed, based previous solutions to isentropic release
waves in imploding media using the conservation of mass.25

In this work, ε will be left as a free parameter that will be sys-
tem specific. Here Rin and Rout are the inner edge and outer
edge of the release wave, respectively, and ρR is the value of
the density at the inner edge of the release wave, given by the
density of the original Guderley solution. Rout is the boundary
of the system beyond which there is no material. Rin is cal-
culated using the sound speed in the compressed and moving
material. Since the sound speed and density are given by the
Guderley solution, the only unknown in the density profile is
Rout. To find Rout, conservation of mass is used. The mass
contained in the shell of material bounded by Rin and Rc, the
location of the outermost fluid element, must equal the mass
within the new released profile:

M =
∫ Rc

Rin

ρG(r, ti)4πr2dr =
∫ Rout

Rin

ρR

(
Rout− r

Rout−Rin

)ε

4πr2dr

(8)
where ρG(r, ti) is the undisturbed radial Guderley density pro-
file at time ti. Solving the integral on the right hand side results
in a third order polynomial for Rout given as
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(9)

Solving this polynomial at each time step gives the trajec-
tory of the outer edge of the release wave. This process is
truncated when the inner edge of the release begins to interact
with the rebounding shock wave. When this occurs, the tra-
jectory of the outer edge is then extrapolated and the density
at the inner edge of the release is solved by rearranging the
polynomial to get

ρR =
M
4π

(
aR3

out +bR2
out + cRout−

R3
in

3+ ε

)−1

. (10)
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FIG. 2. A comparison of the Guderley solution radial density profiles
before the time of shock collapse for the same parameters used in
Fig. 1 and a release wave launched at t = 0.45 t0 and ε = 3/2. The
original Guderley result (dashed-dotted black curve) is shocked up to
a compression ratio of 4 (corresponding to the strong shock condition
for γ = 5/3) and then rises to a peak value of just below 10 as a result
of the converging material behind the wave. The profile that includes
the release wave (dotted black curve) also is shocked to the same
compression ratio of 4 and rises beyond that because of converging
material but the release wave can be seen around r/r0 = 0.45. The
density in the released region falls according to Eq. (7) reaching
zero at the outer extent of the release region. The released density
profile has a peak compression ratio about 35% smaller than that of
the standard solution. The shaded regions correspond to the shading
shown in Fig. 1.

The density profiles for the standard Guderley solution and
the release modification are compared in Fig. 2.

As the shock moves out re-shocking material, it will even-
tually interact with the released material, modifying the den-
sity, pressure, and temperature. This is treated by scaling the
density behind the second shock by the ratio of the released
density value and the Guderley density value at the location
of the re-shock:

ρreshock =
ρR

ρG (+Rin)
ρG, (11)

where +Rin is referencing the density value on the singly
shocked side of the discontinuity (the white region in Figs.
1 and 3). This is done in order to preserve the shock condition
which is determined by the equation of state, through γ . The
different trajectories and density regions are shown in Fig. 3.

Finally, following from the adiabatic relationship PV γ =
constant and the ideal equation of state, the temperature and
pressure profiles in the released material are given by

P = P0

(
Rout− r

Rout−Rin

)εγ

,

T = T0

(
Rout− r

Rout−Rin

)γ

.

(12)

FIG. 3. Different wave trajectories in the Guderley solution with the
release wave model. The shock front (dashed black curve), r0 parti-
cle boundary (dashed-dotted black curve), and shading of the regions
all correspond to Fig.1. The inner edge of the release wave (solid
gray curve) and outer edge of the release wave (dotted gray curve)
are also shown. Different regions are labeled with the density within
that region: Outside of the release, there is no material (beige shad-
ing); interior to the release, the density is given from the Guderley
solution (red and white shading); within the release, density is given
by the functional form assumed (light-red shading); and within the
doubly shocked region, the density is scaled according the released
density value (blue shading). The top shows a cartoon of the physi-
cal system (similar to Fig. 1). In the cartoon note now that the shock
(dashed curve) and outer edge of the release wave (dotted curve) are
shown. The shading corresponds to the lower part of the figure where
the beige denotes ρ = 0 and the white and light-red regions denote
the released density profile. Now there is no material outside of the
release wave, so the boundary no longer extends to infinity.

The modified temperature profile can now be used as the
single fluid temperature inherent in the Guderley solution. A
two-fluid temperature calculation is discussed in Sec. III.

III. TWO-FLUID TEMPERATURE TREATMENT

The Guderley problem is usually solved in terms of entropy
(as developed in Sec. I A) or sound speed [as given in Eqs.
(5)] both of which can be related to the temperature of the
fluid. Working in the framework already established for the
problem, the entropy or sound speed can easily be converted
into the temperature through the equation of state, for exam-
ple, c =

√
γkBT/m, where m is the mass of the particles being

considered.
One primary result from the Guderley solution is that the

temperature, while being a single-fluid temperature, reaches
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extremely high values at the collapse point because of the
strong shocks in the system. The combination of high tem-
peratures and short time scales that are associated with shock
waves necessitates the treatment of ions and electrons as two
fluids with separate temperatures. The presence of these large
temperature gradients can be addressed through other method-
ologies, for example by including heat conduction.26 This
work includes a two fluid treatment, specifically with the goal
of reproducing experimental observables that have separate
dependencies on the electron and ion temperatures as shown
in Sec. IV.

The separation of the temperature into two different pop-
ulations begins with how the energy is partitioned into those
populations. Throughout this work, charge neutrality is as-
sumed such that ne = Z̄ni, the number density of electrons in
a fluid element is equal to the average ionization state times
the number density of ions. In shocked material the particles
will move with the same velocity so the energy imparted to
the particle is proportional to the mass of the particle. In other
words the ratio of the energy goes as the ratio of the masses

Ei

Ee
=

Āmu

me
≈ 1823 Ā, (13)

where me is the electron mass and Āmu is the ion mass, with Ā,
the average atomic mass number and mu, the atomic mass unit.
The temperature is proportional to the energy for an ideal gas
population of particles given by E = NkBT/(γ−1) (assuming
that γ is the same for electrons and ions), so the temperature of
the population is also proportional to the mass of the particles
comprising the population. The shock leaves the electrons and
ions with a temperature ratio of

Ti

Te
=

Āmu

Z̄me
≈ 1823

Ā
Z̄
, (14)

following from the energy of each population, determined by
their masses. Here Z̄ is the average ionization state of the ions,
which determines how many electrons there are per ion.

The strong shock wave in the problem leaves the electrons
and ions far out of equilibrium. Considering τei as the charac-
teristic time scale of equilibration between electrons and ions,
the electron-electron and ion-ion time scales, τee and τii, are
much smaller, i.e., they equilibrate faster as a result of the
greater efficiency of the energy transfer between collisions of
particles with the same mass.27 Since this is the case, the elec-
tron and ion distributions are assumed to be Maxwellian at all
times but relax to different temperatures, Te and Ti.

The equilibration is treated in a way that leaves the single-
fluid temperature of the Guderley solution, TG, unperturbed, in
order not to change the hydrodynamic evolution of the system.
The electron and ion temperatures are constrained to obey

1
γi−1

niTi +
1

γe−1
neTe =

1
γ−1

nTG, (15)

i.e., the energy in any given fluid element remains the same
and is just partitioned between the electrons and ions. As-
suming that γi = γe, ne = Z̄ni, and n = ni +ne the relationship
between the temperatures is given by

FIG. 4. A comparison of the Guderley solution radial temperature
profile [solid black curve; as seen in Fig. 1 (b)] with the electron
(dotted black curve) and ion (dashed black) radial temperature pro-
files for the same parameters used in Fig. 1 and τei given by Spitzer.
The ion temperature increases much more drastically than the elec-
tron temperature from the first shock due to the large difference in
mass between the particles as discussed in the text. The two popu-
lations then begin to equilibrate and almost come to equilibrium be-
fore the second shock. The second shock boosts the ions a bit higher
again, and the two species equilibrate shortly thereafter.

Ti + Z̄Te = (1+ Z̄)TG, (16)

Using this constraint, the electrons and ions are equilibrated
according to27

dTe

dt
=

Ti−Te

τei
. (17)

Here τei is usually given as a function of electron temperature
as well. The Guderley solution gives TG(r, t) so using this and
the constraint on the energy partitioning gives an ODE for the
electron temperature as a function of time for a given radius
ri:

dTe

dt
= (1+ Z̄)

(
TG (ri, t)−Te

τei (Te)

)
. (18)

This can then be numerically solved, and the ion temperature
as a function of time is given as Ti = (1+ Z̄)TG(ri, t)− Z̄Te(t).
The temperature dependence of Z̄ can also be entered into this
equation, but for this work the calculation of Z̄ was made us-
ing the initial ion temperature post-shock before equilibration.
Fig. 4 shows a comparison of the temporal profiles of the Gud-
erley, electron, and ion temperatures.

IV. EXPERIMENTAL USAGE

The temperature equilibration and release modification of
the Guderley solution are used to predict the observables of
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TABLE II. Parameters in the Guderley solution to the converging
shock wave with the addition of the release model and temperature
equilibration. The values selected for Sec. IV are given.

r0 Radial scaling factor 443 µm
ξ0 Shock-strength parameter 151.6 µm/nsα

t0 Temporal scaling factor (r0/ξ0)
1/α = 4.58 ns

γ Adiabatic index 1.5
α Derived from γ 0.7044
n Geometric factor 3
κ Density profile parameter 0
ρ0 Density scaling factor 1.04 g/cm3

ε Release density exponent 7/2
tr Time release is launched 0.45 t0
τei Electron-ion equipartition time Eq. (21)

a high-energy-density experiment. The predictions are com-
pared to the 1-D hydrodynamics code Lilac.28 The experimen-
tal configuration includes a strong laser-driven spherical shock
in a solid deuterated polystyrene ball that is 0.890 mm in
outer diameter. This is a type of experiment conducted on the
Omega Laser system29 at the Laboratory for Laser Energet-
ics. The key observables of interest are x-rays and deuterium-
deuterium fusion neutrons produced around the time of shock
collapse. To properly model these in the modified Guderley
solution, the addition of an ionization model and x-ray opacity
model is necessary; neutron scattering is neglected here due
to its negligible effect on calculating the total neutron yield.
Neutron scattering is important for higher order moments of
the neutron spectrum which are not calculated in the current
framework but can be added in future studies. The ionization
model from Hu et al.30 is used, providing a Saha-like frame-
work for calculating the ionization levels in CH (the isotopic
difference between CH and CD is neglected). Tabulated opac-
ity values31 are used and the emission is assumed to be emitted
radially. The choice of ionization model and opacity values
are used in order to make comparison to Lilac, with the same
models being used in both. A benefit of this methodology is
that different models can be easily implemented and the sen-
sitivity to these models can be explored. The x-ray emission
is calculated assuming only Bremsstrahlung emission,1,23,32

due to the lack of spectral lines in the region of experimental
observation in the few keV x-ray energy range, according to

Jν =

√
211π3

3

( e2

4πε0
)3Z̄2n2

e

m2
ec3Z̄

√
3kTe/me

e−
hν

kTe
[
Js−1m−3Hz−1]

(19)
and the neutron emission is calculated according to

d2N
dtdV

=
1
2

n2
D < σv >DDn

[neutrons
m3s

]
(20)

where <σv>DDn is the deuterium-deuterium thermal reactiv-
ity as given by, for example, Bosch and Hale33. All quantities
are in S.I. units and the resulting units are given in brackets.

FIG. 5. Trajectory comparison for the Lilac particles (black) and
the modified Guderley solution shock (solid red curve), inner re-
lease (dashed red curve), and outer release (dashed-dotted red curve)
trajectories. Shock and release trajectories are seen to be in agree-
ment,with the ingoing trajectory never deviating more than 5% be-
tween the two. The release behavior similarly agree until around
the time of shock collapse where the release accelerates in the Lilac
code. The laser pulse used in the Lilac simulation (light-blue dashed
curve; left axis) is shown. The start of both the shock wave and the
release wave in the modified Guderley model was chosen based on
the beginning and end of the laser pulse, respectively.

A. Prediction of observables

The parameters of the Guderley solution including the mod-
ifications are chosen based on the experimental setup or com-
parison to the hydrodynamics code. The parameters are given
in Table II. Many of the values used are given by nominal tar-
get specifications (n, ρ0, r0, κ) or laser configurations (tr, t0);
ε is chosen based on previous literature on shock releases25

and τei is given by Spitzer27 as

τei =
3meĀmuk3/2

B

8
√

2πniZ̄2ln(Λ)(e2/4πε0)

(
Te

me
+

Ti

Āmu

)
[s] , (21)

where all quantities are in S.I. units, the resulting units are
given in brackets and ln(Λ) is the Coloumb Logarithm given27

as

Λ =
3(kBTi)

3

2
√

πneZ̄(e2/4πε0)3/2 . (22)

The choice of γ and ξ0 follows from matching the initial
strength (pressure) of the shock and the time of shock col-
lapse between the Lilac and the Guderley solution. Once the
full solution is established, a set of common experimental ob-
servables is calculated in order to compare. These quantities
include the total neutron yield, given as the integral of Eq. (20)
over volume and time; the total x-ray yield, given as the inte-
gral of Eq. (19) over volume, time, and spectral frequency;
and the x-ray energy where the peak of the spectrum is lo-
cated. The x-ray quantities are dependent on the absorption,
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TABLE III. Comparison of the deuterium-deuterium fusion neutron
yields (YN), x-ray (YX) and peak x-ray spectral energy from the dif-
ferent model configurations. The comparison includes the 1-D La-
grangian hydrodynamic code Lilac and the Guderley (Gud) solution
with equal electron and ion temperatures (Te = Ti), with the tempera-
ture equilibration (τei), with equal electron and ion temperatures and
the release modification (Te = Ti + Rel), and with the temperature
equilibration and the release modification (τei+Rel).

Simulation YN YX (mJ) Spectral Peak (keV)
Lilac 7.320×106 1.151 7.1
Gud (Te = Ti) 6.625×106 0.078 10.0
Gud (τei) 7.742×106 0.016 15.0
Gud (Te = Ti + Rel) 5.874×106 1.410 7.0
Gud (τei + Rel) 7.116×106 0.895 8.0

which is a strong function of the density, while the neutron
emission is primarily a function of temperature. The release
modification, which primarily changes the density profile, has
the most leverage on the x-ray emission quantities, while the
temperature equilibration scheme determines the temperature
affecting both x-ray and neutron emission.

B. Comparison to Lilac

The comparison simulation was run in Lilac using nonlocal
heat transport,34 the same opacity31 and ionization30 values
used in the Guderley calculations, and the sesame equation-
of-state tables.35 As was previously stated, the only tuning re-
quired for the modified Guderley model to match the Lilac
results was based on the initial (ablation) pressure and the
time of shock collapse. The Lilac simulation has an abla-
tion plasma resulting from the direct laser illumination on the
outside of the target, which can contribute to self-emission
quantities; Lilac quantities were calculated using only the re-
gion inside of the ablation plasma, i.e. only contributions
from the shock-generated states. The resulting trajectories are
compared in Fig. 5. The trajectories show good agreement,
deviating less than 5% on the ingoing trajectories, with the
largest deviations occurring with the release around the time
of shock collapse and with the shock post-collapse. The inner
release trajectory is calculated according to the sound speed
so the difference in trajectory is due to a difference in local
sound-speed between Lilac and the Guderley model. Since
the sound speed is dictated by the equation of state deviations
of the used equation of state from an ideal gas account for the
differences. The post-collapse shock trajectory is unmodified
by the release in this model, which accounts for the Guder-
ley shock diverging more slowly than the Lilac shock post-
collapse. This is not, however, a critical period of these exper-
iments because by this time most observable quantities have
already been produced. The neutron and x-ray emission quan-
tities are compared in Table III. The quantities are calculated
for the Lilac simulation and the Guderley solution with and
without the release model both for the fully equilibrated case
and the case with dynamic equilibration. The neutron yield is

FIG. 6. Comparison of the (a) zeroth and (b) first radial moments
of the density distributions as a function of time for Lilac (blue dot-
ted curve), the Guderley solution with the equilibration model but
no release model (τei ; green dashed-dotted curve), and the Guderley
solution with the equilibration and release models (τei + Rel ; red
dashed curve) as described in Table III. Note that the Guderley so-
lutions with Te = Ti and with the temperature equilibration have the
same moments of the density distribution so only one is shown.

primarily a function of the ion temperature, which is notably
under-predicted in both Te = Ti cases. The x-ray quantities are
functions of electron temperature, but they primarily depend
on the mass density due to the attenuation of the x-rays. The
models without the boundary treatment under-predict the x-
ray yield and over-predict the peak spectral energy because
only the high-energy x-rays are able to escape the system.
The model with the equilibration and boundary treatment ad-
dresses both of these issues and is within 3%, 30%, and 13%
for the neutron yield, x-ray yield, and spectral peak, respec-
tively.

The x-ray emission is dominated by the absorption that is
determined by the opacity and areal density (ρR) of the ma-
terial. Fig. 6 compares the zeroth and first radial moments of
the density distribution as a function of time. The zeroth mo-
ment gives the average areal density, 〈ρR〉, the ratio of the first
and zeroth moments gives an average radius, and the second
moment is directly proportional to the mass. The first three
moments are given by

0th Moment =
∫

∞

0
ρ(r)dr,

1st Moment =
∫

∞

0
rρ(r)dr,

2nd Moment =
∫

∞

0
r2

ρ(r)dr.

(23)

Since mass is conserved throughout all of the models, the sec-
ond moments are trivially identical throughout, so the com-
parison is limited to the zeroth and first moments.

Figure 6 shows that the standard Guderley model greatly
over-predicts both of the moments. The zeroth moment of
the modified-Guderley solution is larger than Lilac by about
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FIG. 7. Comparison of different models’ predictions of x-ray yield
as a function of initial density of the targets scaled from the nominal
density (ρ0 = 1.04 g/cm3). In the limit of lower density, the temper-
ature equilibration is the more important modification, because the
electron and ion fluids are far out of equilibrium due to the presence
of higher temperatures and lower densities. As the density increases,
the equilibration becomes less important (because the electrons and
ions are much closer to equilibrium) and the release wave modifi-
cation becomes more important. This agreement between the full
model (τei + Rel) and Lilac is best over the entire density space sam-
pled. The full model has the same trend as the hydrocode but is
displaced by some amount that can be attributed to the difference
in equilibration models used in Lilac versus the Guderley model. All
Lilac simulations were run with the same conditions as shown earlier
and only the initial density of the target was varied. Each Guderley
fit was done as described in the text, namely by matching the time of
shock collapse and the initial pressure of the shock.

20% around the time of shock collapse. This is caused by the
different timing of the release wave late in time, which is seen
in Fig. 5. The difference in the zeroth moment around the time
of peak x-ray emission (≈ 5 ns) corresponds to a greater areal
density and is the reason for the lower x-ray yield (Table III)
and harder emission predicted by the Guderley solution with
release resulting from greater absorption. The first moment is
also larger in the Guderley solution with release by about 20%
before the time of shock collapse, but after collapse, the value
is much closer to Lilac below about 5%.

Figure 7 shows how the x-ray yield scales as a function
of the initial density for the different model shown in Table
III. At lower densities, the attenuation is minimized and the
electrons and ions are far out of equilibrium, so the solutions
with and without the dynamic equilibration converge to the
same values, respectively. At higher densities, the electrons
and ions fully equilibrate very quickly but the attenuation is
magnified, so the solutions with and without the release model
converge to the same values. Only the fully modified Guder-
ley model is able to reproduce the scaling of the x-ray yield
over the entire density space considered.

V. CONCLUSIONS

The Guderley solution of an imploding shock wave with
the addition of a boundary condition and electron-ion energy
partitioning is effective at reproducing the simulated behavior
of a high-energy-density experiment of interest. The particle
trajectories of the Guderley solution with the release model
boundary condition and Lilac simulations are consistent. Self-
emission quantities compared between the Guderley solution
and the Lilac simulation are within about 10% or less for most
quantities when the complete Guderley system with boundary
condition is considered. The favorable comparison between
the hydrodynamics code and the Guderley solution with tem-
perature equilibration and the release model demonstrates that
the physics contained in the Guderley model is sufficient to
explain most of the system. Additionally, similarity in the
experimental quantities predicted by the two models demon-
strates that these measurements are not sensitive to the addi-
tional physics contained in the hydrodynamics code, such as
thermal conduction and radiation transport.

This model and similar models of this type are a critical step
toward understanding which physics dominates a particular
experimental setup and the physical mechanisms that can be
probed using current observations. Additionally, this model
has fewer parameters than a typical hydrodynamics code and
can be better constrained by a limited set of experimental data
when doing a model-fitting through, for example, a Bayesian
framework, presenting a path forward in understanding which
aspects of fundamental physics are dominant in integrated
high-energy-density experiments.
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