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Abstract

Much of modern physics has been built on studying phenomena in isolated sys-

tems. These seemingly simple mechanisms, when applied to larger collection of

system, become more complicated. The tools used to understand these systems

were developed primarily at conditions relevant to the surface of the Earth and

therefore comparison to experiments have been readily available. A similar ad-

dition of complexity exists when transitioning to extreme thermodynamic states.

In these conditions, temperatures in the tens of thousands to many millions of

Kelvin and densities from miligrams per cubic centimeter to kilograms per cu-

bic centimeter, there exists complex collective behaviour that leads a wealth of

interesting new phenomena not present in isolated atomic interaction or under

standard thermodynamic conditions. These phenomena no doubt are critical to

the evolution of astrophysical bodies, such as planets and stars. The modeling

efforts have largely outpaced the experimental capabilities with regards to these

systems at high energy density (HED, equivalently high pressure) and the labora-

tory landscape is moving towards measurements that are challenging to analyze

independent of advanced modeling techniques. This work aims to present a sys-

tematic method for designing, executing, and analyzing HED experiments that

enforces a self-consistent picture of the physics present in the system. This is

done by creating a Bayesian inference framework, similar to those that exist in

other fields of physics, that uses all relevant experimental data to constrain the

integrated physicals model used to understand the experiments. The ultimate goal
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is to move away from ’benchmarking’ techniques and towards proper statistical

constraint of the models used to describe physics under extreme conditions.
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Chapter 1

Introduction

The goal of this thesis is to expand the use of modern statistical techniques in

experimental high energy density physics (HEDP). Currently scientific research

across many fields is jumping at the opportunity to use tools, which are not nec-

essarily new, currently in vogue within the data science community. These tools,

such as artificial neural networks (ANN) and other machine learning algorithms,

have benefitted tremendously from the abundance of data available in modern so-

ciety. Although machine learning tools are powerful, and have already produced

some interesting results within HEDP, there is a less heralded but likely more

powerful tool that has benefited just as much from the recent emphasis on large

datasets.

Bayesian inference, or more broadly Bayesian statistics at large, is an old

concept that has been rejuvenated in the last few decades. Bayesian inference

techniques often get associated with machine learning techniques, although there

is no strict connection between the two, likely due to similar demands with regards

to computational power associated with both. Bayesian inference is a cornerstone

of some fields of physics, most notable high energy physics (HEP), and provides

a powerful framework that emphasizes not only measurements, but uncertainty

associated with those measurements.

Measurements in HEDP are often challenging to make, singular in nature, and

correlated with other unknown quantities, providing an almost ideal application
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Figure 1.1: A temperature and density plot showing a number of relevant contours
for HEDP, calculated for hydrogen, including isobars (black) corresponding to 1
Mbar and 300 Mbar, chemical and atomic energy densities respectively. Regions
of temperature and density are subject to different physical phenomena, some of
which are labelled here. Inset is a diatomic molecule (H2O) representing the defi-
nition of high-energy-density, when thermal pressure is comparable to the energy
density of molecular bonds (around 1 Mbar). Image used from [12].

for Bayesian inference. There are many practical difficulties with implementing

the framework outlined within this text, many of which have been or are cur-

rently being addressed. Ultimately this work will stand as a starting point that

(hopefully) will enable the wide-scale adoption of these methods within HEDP,

providing a self-consistent, rigorous, and reproducible method for inferring funda-

mental physics quantities from HEDP experiments.

1.1 High Energy Density Physics

High energy density physics is defined as the subfield of physics that studies sys-

tems whose energy density is greater than 1011 J/m3 such as those with thermal

pressures of 1011 Pa or 1 Mbar[13]. For context, the energy of the covalent bond

between Hydrogen and Oxygen is 462 kJ/mol and the volume of an H2O molecule
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is 3 × 1029 m−3, giving an energy density of about 0.5 Mbar, so the beginning

of high energy density physics can broadly be thought of as when the thermal

energy pressures are comparable to chemical energy densities. At these condi-

tions chemical changes, such as dissociation[14], and phase changes[15], become

important.

At even larger pressures the atomic energy levels can be perturbed leading

otherwise forbidden transitions[16] and ionization states that are not well described

by the usual tools[17]. The primary focus of this work are systems that extend

into and beyond these atomic pressures.

This introduction will provide a brief history of HEDP physics, not intended

as an exhaustive overview but rather to present some relevant background for the

current state of research, will discuss modern HEDP experimental facilities, how

different experimental geometries can be used to access different pressure regimes,

and finally a broad overview of analysis techniques in experimental HEDP.

1.1.1 Historical Development of HEDP

The 20th century saw many developments in modern physics that ultimately con-

tributed to the creation of HEDP. The path can be traced to Arthur Eddington

who discussed the internal structure of stars[18] in 1920 and made thermody-

namic arguments, mostly based on the radiative properties of matter known at

the time, to suggest that stars exist at very extreme thermodynamic conditions

(much beyond solid density and above 10,000s K ; previously not considered in

physics). These arguments were later developed even further by Subrahmanyan

Chandrasekhar in his seminal text "An Introduction to the Study of Stellar Struc-

ture", originally published in 1939, in which he explicitly states 4 goals of the

text[19]:

1. To derive the complete march of physical variables (the density,



CHAPTER 1. INTRODUCTION 4

ρ; the temperature, T ; etc.), on the one hand, and the variation of

the chemical composition (the relative abundances of the different el-

ements), on the other, throughout the entire configuration.

2. To describe quantitatively the kind of steady state (radiative, con-

vective, etc.) that exists, eventually as a function of the radius vector,

r.

3. To specify the fundamental physics processes that are responsible

for the setting-up of the steady states described under (2).

4. To evaluate quantitatively the irreversible processes that must be

taking place which should be responsible for the continual loss of energy

at the rate L by a star.

These goals necessitated an understanding of physics at extremely high energy

densities and the field of stellar astrophysics can likely be considered the origin of

thinking about these materials at these conditions.

Coincident with the developments in stellar structure, physicists were making

significant progress in understanding nuclear reactions, and Eddington even pro-

posed nuclear fusion as a way of producing the thermal states within a star[18].

In early 1939 Otto Frisch and Lise Meitner published two papers describing a new

type of nuclear reaction, which they named nuclear fission[20, 21], based on work

by Otto Hahn performed in late 1938. This discovery quickly spread and later in

1939 the possibility of nuclear chain reactions was confirmed with the discovery

that Uranium fission produced 3.5 neutrons (later corrected to 2.6) per event[22].

The potential of neutron chain reactions was immediately evident, both for civilian

purposes (energy reactors) and military (nuclear weapons).

Ultimately, amongst the backdrop of the second world war, this lead to the

Manhattan project, which is well studied historically[23] and will not be recounted

here. The most important point here is that during the testing of explosives during
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the Manhattan project incredible thermodynamic conditions were created, and the

first HEDP experiments were performed, the conditions were such that metals,

formerly only considered as incompressible, were compressed causing scientists to

reframe how they thought about materials[23]. Eventually the study of materials

under extreme conditions lead to one of the primary HEDP sources, the book

"Physics of shock waves and high-temperature hydrodynamic phenomena"[24],

published in 1967.

Finally the last canonical driver of HEDP research is the pursuit of fusion

energy through inertial confinement fusion experiments. In particular laser driven

compression of materials for the purpose of fusion research, published in 1972 by

John Nuckolls[25], opened to door to the modern landscape of HEDP. Although

HEDP will always be tied to its application space in national security and energy

research, it is valuable to remember the foundations of the field were laid by

interest in fundamental studies of physical phenomena and mechanisms and this

motivation holds true for many directions of modern research.

The development of HEDP discussed follows from considerations of the most

extreme states, those necessary for thermonuclear fusion either terrestrial or astro-

physical in nature, but there is another line of development, equally as important,

but less heralded within the mythology of the US nuclear laboratories where much

of the HEDP influence lives. These developments start by approaching HEDP con-

ditions from the low end, rather than high end. The field of high pressure physics

can be thought of as a precursor to high energy density physics (although the

units of the two are the same, the details of the subfields are slightly different),

which is its own unique field[26] although the line between HEDP and high pres-

sure physics is increasingly blurry. High pressure physics was generally started

by Percy Bridgman, who invented the first apparatus for compressing materials

to high pressures and did so under static conditions[27]. These studies generally

existed up to 10s of GPa (100s of kbars), short of the definition of HEDP but just
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barely (and predating that definition by many decades).

Although some scientists working on the Manhattan project may have been

surprised by metals being compressible[28], Bridgman and his students had been

compressing metals for some time in his laboratory[27]. One of his students,

Francis Birch, became well known for his work on the Manhattan project and

then afterwards become even more well known for developing the standard model

of Earth’s interior[29]. High pressure physics is intimately related to planetary

interiors in the same way that HEDP is intimately related to stellar interiors. The

two fields overlap in the regime of the largest terrestrial and all manner of gas

giants and brown dwarfs, where the condensed matter approach of high pressure

physics and the plasma physics approach of HEDP are both used to understand

the systems.

This is only a brief summary of historical context important for this thesis,

more details can be found in numerous articles including information on more

recent developments in HEDP, for example[26, 28].

1.1.2 Experimental Facilites

Figure 1.2: A representation of the Omega laser facility which includes the Omega-
EP (left) and Omega60 (right) lasers. Omega-EP is built in a linear configuration
with 4 beams all entering the target chamber from one side, while Omega60 is
spherically symmetric with 60 beams oriented radially around the target chamber.
Image used from [8].

The number of facilities exploring HEDP experimentally has grown consider-
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ably over the last decade. The facilities range from large scale to tabletop and

are too numerous to fully list, but can be placed into broad categories based on

the long pulse lasers, that have nanosecond pulses and terawatts of power, short

pulse lasers, that primarily using chirped pulse amplification to achieve picosecond

or shorter pulses and reach petawatt powers, free electron lasers (FEL), which of-

ten are used in combination with a long pulse laser, magnetic compression devices,

most well known in the Z-pinch architecture, light gas guns which launch impactors

to drive pressure waves, and high explosive hutches which leverage chemical en-

ergy to increase the energy density of a subject. These facilities can be located

on the university scale to the national laboratory scale and there is an increasing

push for mid-scale university based user facilities.

This work will focus exclusively on experimental work performed at long-pulse

laser facilities, and in particular at the Laboratory for Laser Energetics (LLE)

located at the University of Rochester. The LLE has two large scale laser facili-

ties, the Omega EP Laser[30], capable of both long-pulse and short-pulse opera-

tions predominantly in planar geometry, and the spherically configured Omega60

laser[31], a long pulse laser with a maximum of 30 kJ deliverable in ultravio-

let light. The work presented here is based on experiments performed on the

Omega60 laser.

1.2 Experimetnal Geometries

The Omega EP laser and Omega 60 laser both have unique advantages for per-

forming HED experiments. As shown in Fig. 1.2 (left), Omega EP is oriented with

each of the 4 laser beams approach the target from one-side of the target chamber

giving preference to targets that have a planar geometry, that is targets with a

flat edge where the laser is incident. Planar experiments are the most widely used

within HED physics[15, 32, 33], due to the steadiness of pressure profiles able to
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Figure 1.3: Sketches of a typical planar HED target (left) and a typical spherical
HED target (right) for laser driven experiments. Within the planar target com-
pressed material can be accessed through ambient material, but in the spherical
target there is no point of access preventing the use of common probes.

be produced and the diagnostic access available.

The Omega60 laser, shown in Fig. 1.2 (right), has 60 laser beams oriented in

a spherically symmetric geometry, primarily designed for performing ICF implo-

sions. Spherical geometry allows for the highest energy densities to be produced

by not only coupling energy to the target but also by decreasing the volume of the

target. The trade-off for reaching higher pressures is the presence of gradients in

both space and time within converging experiments along with diagnostic access

since the states of interest exist within a plume of plasma, as will be discussed in

Sec. 3.

Figure 1.3 shows a cartoon picture of planar (left) and spherical (right) laser

driven targets, typical of HED experiments on the Omega laser system. Common

factors between both targets are an ablator, which the laser is incident on, ejecting

mass and launching a pressure wave, and the sample, which is the material that

is under study. The planar target has two additional components, a ’pusher’

that helps with matching impedance between the target and the ablator, and a
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’window’ which inertially tamps the sample material and also is able to transmit

radiation for measurement (generally visible spectrum). An important aspect of

planar targets is that the measurements occur through uncompressed material.

Material that is at HED conditions is generally very difficult to probe, due to

unknown optical properties and states that do not transmit visible light. In the

planar case this is not a concern because the measured probe and/or emission

only travels through well-characterized ambient material, while in the spherical

case any measured emission necessarily must travel through already compressed

material, with unknown properties, in order to escape the target. Additionally,

common probes are unable to access the interior of the spherical target preventing

the same measurement techniques from being applied.

Spherical HED targets, the focus of this thesis, require a unique approach for

making quantitative physics measurements.

1.3 Common Diagnostics

There are a wide variety of diagnostics used in HED experiments, with some

key differences between planar and spherical configurations. Planar experiments

make great use of optical diagnostics, in particular the velocity interferometer for

any reflector (VISAR)[34] and streaked optical pyrometers (SOP)[35]. These two

diagnostics are used to measure pressure waves launched in planar targets, VISAR

through a probe laser that reflects off the target and is able to measure velocities

(green arrow in Fig. 1.3), and SOP by collecting the thermal emission coming

from the pressure wave (usually a shock wave). Both diagnostics are streaked in

time and provide 1-D spatial resolution.

Optical diagnostics have much less utility in diagnosing the compressed inner

material in the spherical case where the measurement techniques are much closer

to those found in observational astronomy[36]. The spherical targets usually hot-
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ter and denser than the planar case and the primary quantities that are measured

are self-emission in the form of x-ray emission (because less energetic emission is

unable to escape the target) and energetic particles that are the result of ther-

monuclear reactions. There are a wide variety of diagnostics commonly used in

these experiments[37], but are usually design to measure either particles or x-rays.

Within each of these categories there are diagnostics that discriminate spectrally,

spatially, and temporally, or some combination of the three. For example, a com-

monly used diagnostic in this work is an x-ray pinhole camera, which is simply a

pinhole, usually around 10 µm in size, drilled into an opaque (to x-rays) substrate,

such as Tantalum, that is able to image the x-ray self-emission from the target.

This emission is collected on either an image plate, x-ray film, or using an x-ray

framing camera[38] that provides temporal gating.

Techniques and diagnostics common to both astronomy[36] and HED[37] di-

agnostics include x-ray crystal spectrometers, x-ray optics such as Fresnel Zone

plates and Kirkpatrick Baez microscopes, micro-channel plates, and scintillators.

When considering measurements and analysis techniques in HEDP it is valuable

to remember this connection to observation astronomy to benefit from progress in

instrumentation and software from across the fields.

1.4 Analysis Methods

HEDP is a broad field, with many different measurements and analysis techniques.

Here measurements are categorized into 3 distinct groups given as subsections

herein. The primary motivation for this work stems from the complexity of HEDP

experiments and the quality of instruments often outpacing the developments in

the analysis techniques of these measurements, which often lead to inconsistent

conclusions and under-predicted uncertainty. There is a richness of information

within HEDP measurements waiting to be accessed through analysis techniques.
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1.4.1 Direct Measurement

The most obvious, and likely most satisfying, measurement that can be made is a

direct measurement of a quantity of interest (QOI), for example if the temperature

of some system is of interest in most cases a thermometer can be used to directly

measure it but the spatial scales, of order tens of microns, and temporal scales,

of order tens of picoseconds, in combination with the extreme temperatures and

densities preclude the use most common instruments designed to measure physical

properties1.

Despite the extreme states and scales present there are a number of instruments

that routinely measure a QOI directly (or as directly as possible i.e. through a well

vetted and tested model). Usually these measurements happen in planar geometry

due to the access available through ambient material. The instrument likely most

well-known and commonly used in planar HED studies is known as a velocity

interferometer for any reflector (VISAR)[34] which uses a probe laser (532nm at

the Omega Laser Facility) to set up an interferogram where one leg reflects off of

a surface in the target. The result is a series of fringes, which are streaked in time,

that move in response to changes in position (velocity). The surfaces that are

measured are either a shock wave or some reflective surface in the target such as a

metallic layer which in turn result in measurements of shock velocity or a particle

velocity within the driven material, both of which are a QOI when considering

the material studies as they relate to the equation of state through the Hugoniot

equations.

Another example commonly used in planar HED experiments is x-ray diffrac-

tion for the determination of crystal structure[39]. In this case a sample material is
1Clearly, a thermometer doesn’t directly measure temperature but rather depends on other

physical processes that couple to the temperature in a system in a known way, for example via
the expansion of mercury. The point here is that thermometers are well calibrated, verified and
give consistent, reproducible, and unambiguous answers. These traits are exceedingly rare when
dealing with systems at extremes.
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compressed and another laser is used to produce a bright x-ray source, by hitting

a metal foil and exciting atomic transitions, which passes through the target and

is diffracted according to Bragg’s law resulting in a unique pattern when they are

recorded that can be used to determine the crystallographic nature of the sample.

These are likely the two best examples of direct measurements of QOI in HEDP

and in combination have lead to many high profile results (for example [15, 40]).

This work focuses solely on spherical geometry, and in regimes where these diag-

nostics are not typically appropriate, but they are discussed here for context with

regards to the measurements possible within the range of HEDP experiments.

1.4.2 Inversion

Inverse problems are a way to think about scientific measurements and analysis

and is generally in tune with intuition. The measurements described in Sec. 1.4.1

can technically be characterized as inverse problems at their core, but have been

established to not suffer from the issues inherent in inverse problems and therefore

have been accepted as direct measurements of QOI.

The example of a thermometer can be used to demonstrate the form of an

inversion problem that is well defined. Thermometers consist of a rigid tube

(generally glass) with a fixed volume that contains some liquid (such as mercury)

with well characterized properties. In particular the way the volume of the liquid

increases as a function of temperature, the volumetric expansion coefficient (αV ),

must be known. Assuming that αV does not change as a function of temperature

(in the range of temperatures that are of interest), the equation relating the change

of volume and change in temperature can be written as

∆V

V
= αV ∆T (1.1)

where V is the volume, ∆V is the change in Volume, and ∆T is the change in



CHAPTER 1. INTRODUCTION 13

temperature.

The thermometer really measures changes in Volume, but the QOI is tempera-

ture, resulting in an inverse problem. In this case the problem is trivial, inverting

Eq. 1.1 is simple algebra to get

∆T = α−1
V

∆V

V
(1.2)

and it is seen that the temperature changes linearly with the fractional change

in volume with the inverse of αV being the rate at which it changes. This result

(along with αV being independent of T) allows the temperature lines on a glass

liquid-metal thermometer to be drawn at regular intervals, a seemingly simple

result but one that has deep consequences for measurements.

The most important part of this is that there is a one-to-one mapping be-

tween temperature and change in volume, likewise similar mappings exist for the

measurements described in Sec. 1.4.1, such as between a diffraction pattern and

a crystal orientation or between VISAR fringe shifts and magnitude of velocity

2. In this case dealing with uncertainty is very straight forward and the classical

error propagation methods taught in introductory courses is sufficient.

Now consider the case where there is a more complicated relationship between

volume and temperature, in particular the case where αV = αV (T ). In this case

the differential form of Eq. 1.1 must be considered

dV

V
=
αV
dT

(1.3)

2There are exceptions to these statements and ambiguity can occur in both measurements,
but in general there are regimes where both x-ray diffraction and VISAR measurements have
been demonstrated to consistently reproduce un-ambiguous measurements.
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which, integrating both sides, gives the equation

ln
(

1 +
∆V

V

)
=

∫ Tf

Ti

αV (T )dT. (1.4)

Solving for the temperature given the change in volume (assuming a known αV )

now requires inverting an integral equation and very quickly numerical methods

or simplifying assumptions must be used to find the temperature, depending on

the complexity of the form of αV (T ), the range of temperatures under study, and

the accuracy with which αV (T ) is known. As problems increase in complexity the

assumptions that must be made to accommodate inversion become cumbersome

and often lead to a severe under-prediction of uncertainties [41], not to mention

that when inverting multiple quantities from an experiment it is not always trivial

to evaluate the self-consistency of the assumptions that went into the analysis.

Inverse problems are well studied in many fields of science and applied mathe-

matics, for example the field of tomography has a rich literature discussing these

issues [42]. Tomographic reconstrucitons are also of interest in HEDP since x-ray

radiographs are a way to probe convergent HEDP systems. Modern research has

given preference to forward modeling techniques for radiographic reconstructions,

in [43, 44] and out [42, 45] of HEDP . Forward modeling in general is discussed in

the following Sec. 1.4.3.

1.4.3 Forward Modeling

Forward modeling describes a general way of solving inference problems, such

as the thermometer example in Sec. 1.4.2 where temperature is inferred from a

change in volume. Rather than inverting Eq. 1.1 to solve for the temperature, a

forward modeling technique would be to guess a temperature, calculate what the

change in volume would be for that temperature, compare it to the observed change

in volume, and iterate, changing the guess temperature, until a temperature is
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found that matches the observed change in volume. In this simple example making

use of forward modeling is superfluous, but without much added complexity the

power of the technique becomes obvious.

Consider the inference of temperature from Eq. 1.4, where the expansion

coefficient is a function of temperature. In this case solving by inversion involves

dealing with an integral operator, which may not be invertible at all depending on

the form of αV (T ), but a forward modeling technique would simply guess values of

Tf (assuming a known starting temperature, Ti) and perform the integral, likely

numerically, resulting in a value for the change in volume. Again, this process

repeats until the value of Tf is found. This process has many advantages, including

1) explicit statement of the model being used to infer quantities from the system

and 2) it is much more robust against noisy measurements, especially when dealing

with integral operators.

Figure 1.4: An example of a tomographic projection. A 3-D object is projected
onto a 2-D plane, and in the case of radially symmetric objects this process is
described mathematically by the forward and inverse Abel transforms. Image
used from the documentation of the PyAbel package[9]

Returning to the example of tomographic measurements, Fig. 1.4 shows an

example of a typical tomographic measurement. The left-hand side shows a 3-D

distribution in space which is projected onto a 2-D space, this analogous to what

occurs when an x-ray image is taken where x-rays travel through an object, such as
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a limb, are partially absorbed, for example by bone, and then are imaged onto a flat

detector, resulting in a 2-D projection of the object. In the example of Fig. 1.4 the

3-D object is radially symmetric, so projection can be described mathematically by

an Abel transform, which is an integral operator that is invertible via the inverse

Able transform. If the 2-D projection is measured but information is desired about

the 3-D object, the inverse Abel transform can be applied, or forward modeling

can be used to guess at the 3-D distribution, forward Abel transform it, and check

against the observed 2-D projection.

In principle inverting the 2-D projection would be preferable but is subject

to practical limitations. The Abel transform assumes radial symmetry, so the

inverted distribution will always be radially symmetric with no way to test validity,

i.e. the inversion technique will give a (likely reasonable) answer regardless of

whether the assumption is appropriate or not. Additionally, in the presence of

noise the inverse transform compounds the noisy signal leading to many artifacts

in the inverted distribution [46].

Forward modeling does not suffer from these two short comings. In the event

that the real 3-D distribution is not radially symmetric, forward modeling sym-

metric distributions will result in 2-D projections that are unable to reproduce

the observed projection, which indicates a model with great complexity should be

used. Additionally, forward modeling avoids the issue of operating on noisy data

and even allows noise to be explicitly modeled.

Forward modeling techniques have long been present in the physical sciences

but their widespread use can be traced back to the advent of information theory

[10] that also coincided with the development of numerical solving machines that

eventually would turn into computers. Figure 1.5 (a) is a reproduction from Shan-

non’s paper that spawned the field of information theory, and presents a simple

forward model for understanding how signals are produced. The key problem was:

how can a sent message be reconstructed from a received message that is subject
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Figure 1.5: A reproduction of a figure from Shannon’s paper on information
theory[10] (a), a recasting of this into the context of experimental physics (b),
and how forward modelling can be used to reconstruct a message(c). Discussed
more in the text and in Ref. [2].

to both transmitter and receiver distortion and an external noise source. This can

be recast to a system of physical measurement, as shown in Fig. 1.5 (b) where

the information source is a physical system and the received signal is a detector

observation. Figure 1.5 (c) demonstrates how a forward technique can be used to

reconstruct the details of the physical system.

There are many benefits to forward modeling, but there are challenges inher-

ent, the most obvious of which is how to properly iterate on guesses. This poses

an optimization problem that is potentially high dimensional and therefore po-

tentially computationally intensive, depending on what the model looks like, and

is still a topic of modern research. The remaining part of this thesis will address

the practical implications of using a forward modeling scheme to understand the

HEDP experiments and in particular how the combination of forward modeling

and Bayesian inference (the topic of Ch. 2) is a powerful tool for understanding

HEDP systems.
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Chapter 2

Bayesian Inference Background

Bayesian methods in statistics is a well developed field, which is often covered

in advanced analysis and statistics classes. Despite this, there are practical lim-

itations to implementation that have prevented its use in many areas of physics,

including high energy density physics (HEDP). While some fields of physics have

fully embraced Bayesian methods [47], such as high energy physics and cosmology

[48], the historical inertia of other methods likely limits usage within HEDP. This

chapter provides an introduction to Bayesian methods and particular examples

with a discussion surrounding their use within HEDP. More general introduction

to the concepts can be found in many textbooks, in particular a very useful prac-

titioners guide by Sivia [49] and an extremely thorough derivation of the field by

Jaynes [50].

This chapter will introduce some terminology and notations, discuss some dif-

ferent kind of Monte Carlo sampling methods, and present some comments on the

practical implementation of Bayesian methods in HEDP.

2.1 Basic Bayesian terminology

Bayesian statistics has a few key concepts that are critical to applying it to HEDP

experiments, and many concepts that are actively studied and under development;

This work is not a conclusive overview nor will it answer all outstanding questions.
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Table 2.1: Common terms and definitions found in Bayesian inference. p(X|Y )
represents the probability density distribution of X given that Y is true.

Term Mathematical Formulation Description
Model M or F Model of physical system
Data D or ~Y Observed data

Model Parameter ~θ Parameters in the model

Parameter Posterior p(~θ|D,M) = p(D|~θ,M)p(~θ|M)
p(D|M)

Probability density distribution
Distribution p(θi|D,M) =

∫
dθj 6=i p(~θ|D,M) of parameters given data

Likelihood p(D|θi,M) or L Probability density of
observed data given a

model and set of parameters

Parameter Prior p(θi|M)
Represents initial information

Distribution about the parameter

Model Posterior p(M1|D) = p(D|M1)p(M1)
p(D)

Probability density of model
given observed data

Marginal Likelihood p(D|Mk) =
∫
d~θ p(D|~θ,Mk) p(~θ|Mk)

Probability of observed data
given a model integrating

over parameter distributions

Bayes Factor B = p(D|M1)
p(D|M2)

Model comparison metric
Assumes p(M1) = p(M2)

This work is a gateway into the rich literature of Bayesian statistics and to provide

a starting point for scientists, and specifically experimentalists, working in HEDP

to start using the these tools.

A critical first step is establishing the language and definitions used within

this work and the Bayesian community at large. A set of quantities, definitions,

and common variables used to describe these quantities is given in table 2.1. In

Bayesian statistics all quantities are treated as random variables with probability

distributions that become more narrow as certainty increases. In the limit of

total knowledge about a parameter the probability distribution will converge to

a delta-function. In practice there is always some range of certainty over which

a quantity is known and this is called a credible-interval. Within this work if a

credible interval is given as, for example, 75% the interpretation should be that

if an identical measurement were made there is an expectation that 75% of the
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time it would fall within the given interval. This should be contrasted with the

confidence intervals of classical statistics which are interpreted as there being a

75% chance that the true value of the parameter is within the interval. Within

Bayesian statistics the concept of a true value is not considered but rather what

degree of belief was gained through a measurement, i.e. what information was

gained by making the measurement.

The primary equation of interest is Bayes’ theorem, given as

p(~θ|~Y , F ) =
p(~Y |~θ, F )p(~θ|F )

p(~Y |F )
(2.1)

where p(X|Y ) notation represents the probability density distribution1 of X given

that Y is true, ~θ is a set of parameters, ~Y is a set of observations, and F is a

model. It is important to understand this equation in terms of Fig. 1.5 and the

discussion of forward modeling in Sec. 1.4.3. This framework requires a model,

F , that takes the parameters of interest ~θ and returns a prediction for observed

quantities, ~Y ,

F (~θ) = ~Ymodel (2.2)

which can then be compared to the observed data ~Yobs, meaning that Bayesian

inference inherently requires problems to be formulated in a forward modeling

way.

Ultimately the desired quantity from Eq. 2.1 is p(~θ|~Yobs, F ) which is called

the posterior probability distribution of ~θ, known simply as the posterior. This

quantity describes the probability of the parameters in ~θ being certain values,

based on the chosen model and the observed data. According to Eq. 2.1 the

posterior depends on 3 quantities, the likelihood function, p(~Yobs|~θ, F ), the prior
1 The quantites of interest in HEDP are general continuous variables, as opposed to discrete,

meaning that the formulation of Bayes’ theorem includes probability densities rather than strictly
probabilities. An implication of this is that there is an integral implied on the right-hand side
of Eq. 2.1 in the denominator over all parameters.
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parameter distributions, p(~θ|F ), known as priors, and the marginal-likelihood or

evidence, p(~Yobs|F ).

The likelihood function is related to the probability of measuring the observed

data, assuming the model, F , and parameter values ~θ. This function can take

many forms that generally depends on the nature of the errors associated with

measurements. As an example, imagine the thermometer example from Sec. 1.4

and Eq. 1.1 which gives the change in volume as a function of change in temper-

ature and the volumetric expansion coefficient. In this case the model, F , is Eq.

1.1, the parameters are ~θ = [αV ,∆T ], and the observation is ~Yobs = ∆V
V
. So given

a measurement of ∆V
V

with some error the likelihood of that measurement can

be calculated2 assuming fixed values for αV and ∆T . Assume that the fractional

change in volume was measured to be ∆V
V obs

= 0.020 ± 0.001 where the error on

the measurement is normally distributed and has a standard deviation of 0.001.

Now assume that ∆T = 100K and αV = 1.8 × 10−4K−1 which, using Eq. 1.1,

would give ∆V
V model

= 0.018. In order to evaluate the likelihood of the measure-

ment, given the model, we consider the distribution implied by the measurement,

a Gaussian random variable with mean 0.02 and standard deviation 0.001, and

evaluate

p

(
∆V

V obs
= 0.020± 0.001|∆T = 100K,αV = 1.8× 10−4K−1;Eq.1.1

)
=

L =
1

0.001
√

(2π)
e
− (0.020−0.018)2

2(0.001)2 = 54.0.

(2.3)

The likelihood function is not very intuitive but can be used to construct the pos-

terior, using Eq. 2.1, requiring sampling the likelihood over a range of parameter

values, and is usually done numerically as discussed in Sec. 2.2
2Note that this ’feels’ backwards, the quantity of interest is change in temperature but we are

calculating the likelihood of change in volume. This is common in Bayesian inference because the
evaluation is of the likelihood of seeing a particular observation, assuming the model is correct.
In this case the model is Eq. 1.1 and values for αV and ∆T which give an expectation for what
∆V
V is, if this expectation is wildly off from what was observed the model must be updated, likely
by changing the values of either ∆T or αV .
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The next term in Bayes’ theorem, the prior, is a way to leverage previous, or

prior, knowledge about the parameters of the model. The priors are probability

density distributions and can take any form. Using the change in temperature as

an example perhaps it is known that the temperature being measured increased

so ∆T > 0. To leverage this information the prior on the variable ∆T would

be a uniform distribution on the range [0,Tmax], where Tmax is some large value

that bounds the upper end of physically reasonable temperatures3. The more

information about a parameter that exists, the more peaked the prior distribu-

tion. Imagine there are well known measurements for αV that give its value to be

αV = 1.80 × 10−4 ± 1.0 × 10−6K−1; an appropriate prior in this case would be a

normal distribution with mean 1.80×10−4 and standard deviation 1.0×10−6. The

effect of this is basically fixing αV to that value, unless there is overwhelming evi-

dence from the measurements to the contrary. In the case of the thermometer the

∆T is unknown and αV is highly informed, so the data will predominantly inform

what the value of ∆T is. The use of priors in Bayesian inference is sometimes a

point of contention, due to the effect they have on the results on an analysis but

prior information is leveraged no matter the form of analysis, Bayesian inference

makes it quantitative and explicit which should be seen as an advantage not a dis-

advantage. Additionally, by using appropriate priors, systems that are otherwise

ill-constrained, i.e. models with more parameters than there are measurements,

can potentially be constrained using relevant prior information.

Finally the last term in Bayes’ theorem is the marginal likelihood, which ap-

pears as a normalization constant within the equation to ensure the posterior is

properly normalized (probability density distributions must integrate to unity).

Beyond this the marginal likelihood is useful for model comparisons but is gen-

erally difficult to calculate [49]. The majority of this work focuses on parameter
3It is important that priors are on closed intervals (or atleast the integral over the prior

converges) because they must be integrable to satisfy the mathematical derivations that go into
Bayes’ theorem.
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estimation, which does not explicitly require the computation of the marginal

likelihood, so it will not be discussed in too much depth.

2.2 Solving Bayes’ Theorem

The primary concern of this thesis revolves around parameter inference, which

means constructing the posterior distributions for all parameters of a given model.

This is precisely what Bayes’ theorem, as presented in Eq. 2.1, is designed for,

but when only the parameter inference is desired the marginal likelihood does not

need to be constructed because it is the shape of the distributions that are of

interest and they do not necessarily need to be normalized.

In principle if the likelihood is known and the priors are known the posterior

is a simple multiplication of the two distributions but in practice the likelihood

is an N-dimensional (where N is the number of model parameters) surface that

has some complicated shape. Once more than 2 or 3 parameters are introduced it

becomes computationally prohibitive to construct most likelihoods so more sophis-

ticated techniques are necessary. This is where the use of Monte Carlo methods

are introduced into Bayesian inference as a way to construct the likelihood (and

therefore the posterior) by sampling the surface only in areas of high probability

density to ensure important regions are well resolved and computational time is

not wasted on unimportant parts of parameter space.

This section will demonstrate the direct calculation of a posterior as an ex-

ample and will then discuss two different Monte Carlo sampling algorithms, the

set of Markov Chain Monte Carlo techniques which are by far the most common,

and Sequential Monte Carlo techniques (also known as particle filters) which are

uniquely suited to many of the problems faced in HEDP.
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2.2.1 Direct Calculation

0 100 200 300 400 500
∆T(K)

Likelihood
Prior on ∆T
Posterior of ∆T

1.0×10−4 1.5×10−4 2.0×10−4 2.5×10−4 3.0×10−4

αV(K
−1)

Likelihood
Prior on αV
Posterior of αV

Figure 2.1: The likelihood (blue dashed line), prior (red dotted-dashed line) and
posterior (purple solid line) for the 1-D inference examples of a fixed αV (left) and
fixed ∆T (right). The posterior is the product of the likelihood and the prior.

The direct calculation of the (unnormalized) posterior is as simple as multi-

plying the likelihood function by the priors along each dimension (determined by

the parameters of the model). Although this is simple, it has limited utility since

the distributions are not often analytic, though, the next simplest opportunity is

a brute force numerical calculation.

Practically, a direct calculation is the simplest numerical way to perform

Bayesian inference and compute the posterior of model parameters. This in-

volves numerically constructing the likelihood and prior distributions gridded

finely enough to capture their true shapes. Using the thermometer example from

previous sections, if only one parameter is a variable and the other is fixed at some

value the prior on the free variable, likelihood, and posterior are all 1-D and can be



CHAPTER 2. BAYESIAN INFERENCE 25

easily compared, shown in Fig. 2.1. On the left the case with a variable temper-

ature is shown and on the right the case with a variable expansion coefficient. A

Gaussian likelihood (blue dashed line) is used, L ∝ exp(−(Yobs−∆TαV )2

2σ2
obs

), as evident

in the figure. Two different prior distributions (red dotted-dashed line) are shown,

in the case of the variable temperature a uniform prior over 0 to 500 Kelvin is

used and in the case of the variable expansion coefficient a narrow Gaussian prior

is used with µ = 1.18×10−4K−1 and σ = 1.0×10−6K−1. Calculating the posterior

(purple solid line) requires sampling the likelihood and priors over the same values

and multiplying them together, for example in python using numpy arrays this

looks like:

"""
Example code for direct calculation of
posterior in the fixed expansion coefficient case.
"""
from numpy import linspace,exp,ones_like
#Set the value of the expansion coefficient
alpha_V = 1.18E-4
#Make grid of temperature values to calculate over
delta_T = linspace(0,500,500)
#Set values of observed change in Volume and the error on measuement
Y_obs = 0.02
sigma = 0.001
#Construct the Gaussian likelihood using the temperature array
likelihood = exp(-(Y_obs - alpha_V*delta_T)**2/(2*sigma**2))
#Uniform prior on T has same value over whole interval
prior_T = ones_like(delta_T)
#Calculate the posterior by multiplying prior and likelihood
unnormalized_posterior_T = likelihood*prior_T

Now consider the case where both ∆T and αV are random variables, with

the same priors given in Fig. 2.14. In this situation the likelihood is now a 2-D

distribution that depends on both variables, the calcuations are not much different

other than handling the likelihood as an [N x M] matrix where N and M are the

number of points ∆T and αV are sampled at, respectively.

Figure 2.2 shows the likelihood function (left) that results from measured values

given above but now across both variables. Since the change in volume is given
4All distributions shown in figures are unnormalized so the height on the vertical axis is not

meaningful. Normalization follows from ensuring the probability density distributions integrate
to unity.
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Figure 2.2: The 2-D likelihood (left) and posteriors for different priors on αV
(middle and right). The priors for αV (red solid lines) are shown on with the
posteriors. The dark shading corresponds to regions of high probability density.

by the product of ∆T and αV there are many combinations that give values in

agreement with the observations (shown by the dark band Fig. 2.2). This is where

prior information becomes necessary to infer distributions for the variables. In the

middle panel of Fig. 2.2 the posterior that results from multiplying the likelihood

by the priors given in Fig. 2.1 (with the αV prior shown for reference) is shown.

The dark color in this case corresponds to regions of high probability density and

is isolated to a very narrow set of αV values, set by the prior, which also establishes

a narrow range of ∆T values that still agree with the measurements.

The right-most column in Fig. 2.2 shows the same process but now with a

prior on αV that is 10 times larger than the other example. This produces a

posterior with a larger range of acceptable values and the correlation between

the two parameters is clear by observing the slope of the ellipse that is created.

Increased uncertainty in αV leads to increased uncertainty in ∆T , as expected.

Since the distribution of ∆T is the quantity of interest the effects of αV can

be marginalized to produce 1-D posterior distributions for ∆T . This process is

simply integrating the 2-D posterior along the αV axis and the results are shown

in Fig. 2.3 for the 2 priors on αV given above and compares the results to the

1-D inference with a fixed value for αV . In the case of the narrow prior (Fig. 2.3
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Figure 2.3: The marginalized 2-D posterior distributions for ∆T (blue solid lines)
compared to the 1-D posteriors with a fixed value for αV (red dashed lines) for
the case of a narrow (left) and broad (right) prior on αV

left) the 1-D and 2-D inference give virtually identical posteriors for ∆T but when

the uncertainty in αV is larger (Fig. 2.3 right) it leads to a broader posterior

distribution in the temperature.

The fact that uncertainty in one parameter of a model leads to increased uncer-

tainty in another correlated parameter is far from novel and is clearly not unique

to Bayesian inference, but, despite its seemingly obvious nature, the effect is often

over-looked in HEDP analysis due to the complexity of the models used to evalu-

ate observations. Often parameters that should be treated as random variables are

over-looked leading to over-confidence in inferred quantities. Bayesian inference

helps to solve this problem by forcing the user to explicitly state the model and

prior assumptions on the parameters. The python code example of how to do the

direct calculation in the 2-D case is as follows:
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"""
Example code for direct calculation of
posterior in the 2-D case with narrow alpha prior.
"""
from numpy import linspace,exp,ones_like,meshgrid,expand_dims
#Make grid of temperature and alpha values to calculate over
delta_T = linspace(0,500,500)
alpha_V = linspace(0,5E-4,1000)
#Set values of observed change in Volume and the error on measurement
Y_obs = 0.02
sigma = 0.001
#Set prior mean and std for alpha
mu_alpha=1.18E-4
std_alpha=1.0E-6
#Create a meshgrid of temperature and alpha values
alpha_mesh, delta_T_mesh = meshgrid(alpha,delta_T)
#Construct the Gaussian likelihood using the mesh
likelihood = exp(-(Y_obs - alpha_mesh*delta_T_mesh)**2/(2*sigma**2))
#Uniform prior on T and Normal prior on alpha
prior_T = ones_like(delta_T)
prior_alpha = exp(-(mu_alpha - alpha_V)**2/(2*std_alpha**2))
#Calculate the posterior by multiplying prior and likelihood
unnormalized_posterior_2d = likelihood*prior_alpha*expand_dims(prior_T,axis=-1)

An important point to note is now the likelihood is a [500x1000] array contain-

ing 500×1000 = 5×105 values. In the case of modern computer architecture this is

easy to compute but now consider a model that requires more parameters, the size

of the likelihood scales as the product of the size of each parameter, very quickly

becoming infeasible to perform direct calculations, especially in cases where the

likelihood function is not well-behaved. In general the shape of the likelihood is

unknown a priori so the number of samples along each dimension is also unknown.

The solution for this is to use more sophisticated sampling techniques rather than

the brute force method for constructing the posterior.

2.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) techniques are the most common method for

constructing the posterior distribution from the likelihood and priors. A markov

chain is a general term describing a sequence of events where the current event only

depends on the previous event. In general Monte Carlo techniques are processes

that have probabilistic components. There are many versions of MCMC sampling
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techniques but the earliest, which is still used today, is the Metropolis-Hastings

algorithm.

This algorithm is able to sample from a probability distribution, P (x), un-

der the condition that there is a known function, f(x), that is proportional to

the desired distribution. In the case of Bayesian inference P (x) is the posterior

distribution and f(x) is the product of the likelihood and the priors.

The algorithm starts with a selection of an initial point, xi, which can be

arbitrary, and choose a probability distribution, g(xi+1|xi), that suggests the next

point xi+1, which can be any symmetric probability distribution; a common choice

for this distribution is a Gaussian centered on xi. Then a random number is

drawn according to the distribution g(xi+1|xi) resulting in a value for xi+1 which

is then used to calculate the acceptance ratio, α = f(xi+1)/f(xi), which determines

whether the new value is accepted or rejected. Finally a random number, u, is

generated on the closed interval [0, 1] and compared to α. If α ≥ u the move is

accepted and xi+1 → xi and if α < u the move is rejected and the value of xi

is unchanged. This process guarantees that if α > 1 the move will be accepted,

meaning that regions of high probability will always be explored preferentially, but

it also gives a non-zero chance of accepting moves to lower probability locations

in the space to try to search for global features.

Metropolis-Hastings MCMC sampling is very simple to implement but has

some shortcomings that need to be noted. Firstly it is inefficient since it only uses

information from the previous step to inform the next step and because of this the

samples are correlated so care must be taken to ensure enough samples are drawn

that the final distribution is representative of the true distribution. Generally an

accepted practice is to discard the some portion of the initial samples (of order

thousands) known as a ‘burn-in’ to allow the sampler to settle into a reasonable

estimate of the true distribution with finite steps.

There are more sophisticated sampling algorithms with the domain of MCMC
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Figure 2.4: Comparison of the posterior for ∆T generated using the Metropolis-
Hastings MCMC algorithm, with 10,000 samples, (blue histogram) and the pos-
terior calculated directly (red line).

techniques, such as Hamiltonian Monte Carlo (HMC) algorithms which avoid the

‘random-walk’ aspect of Metropolis-Hastings by making use of the gradient of

f(x), the sampling distribution. This is a powerful method, but requires that

f(x) be differentiable and that the gradient is known, which is not necessarily

true in the case of complex models. In particular within the models presented

here neither of these conditions is met so it limits the utility of HMC methods.

The major benefit of using MCMC methods is that, unlike the direct calcula-

tion ‘brute force’ method, as the number of parameters increases the number of

function evaluations scales favorably. There is not a precise scaling for the neces-

sary number of samples but in general these methods are appropriate for sample

models with even hundreds or thousands [48] parameters.

An python script of a Metropolis-Hastings Sampler is give here with the results

shown in Fig. 2.4.
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"""
Example code of sampling a probability density P
using a Metropolis-Hastings MCMC sampler.

This example uses the 1-D case with fixed expansion coefficient
from the section on direct computation.
’’’
"""
from numpy import random, empty, exp

#Set values of observed change in Volume and the error on measurement,
#expansion coefficient, and prior of the change in temperature, which
#is uniform so it is a constant for all values of T in its domain.
Y_obs = 0.02
sigma = 0.001
alpha_V = 1.18E-4
def prior(T):
if T>=0 and T<=500:
return 1

else:
return 0

#Define the function f(x), which is proportional to P(x)
def f(x):
likelihood=exp(-(Y_obs-alpha_V*x)**2/(2*sigma**2))
return likelihood*prior(x)

#Set the initial sampling point, which is arbitrary.
x0=200
#Make array for sampled values
mcmc_samples=empty(0)
#Define a number of samples to take
N_sample=1E5
#Define a burn_in period
N_burn=1000
#Here is the actual Metropolis-Hastings algorithm
for i in range(int(N_sample)):
#This uses a Gaussian with std 100 for g(x1|x0) to determine x1.
x1=random.normal(loc=x0,scale=100)
alpha_mcmc=f(x1)/f(x0)
if alpha_mcmc >= random.uniform():
x0=x1

mcmc_samples=append(mcmc_samples,x0)

2.2.3 Sequential Monte Carlo (Particle Filters)

Sequential Monte Carlo (SMC) sampling techniques[51], also known as particle

filters, are an alternative to samplers that use Markov Chains and have a different

set of advantages and disadvantages. In particular SMC samplers are designed to

deal with distributions that have multiple peaks or have complex structure and

that have a moderate dimensionality. The work presented in this thesis modeling

HEDP systems falls comfortably into this category where the models usually have



CHAPTER 2. BAYESIAN INFERENCE 32

about 10-15 parameters and form a complex likelihood surface, and therefore SMC

sampling is used throughout. The downfall of SMC samplers is that they do not

scale as well as other sampling techniques, in particular HMC samplers, so as the

dimensionality of the problem grows the sampling efficiency will decrease and the

posterior will take much longer to construct. In general when this occurs depends

on the specifics of the models but once tens of parameters (roughly > 20-25) are

introduced SMC samplers may begin to have challenges. A final advantage is

that SMC samplers do not require gradient information, another critical aspect

for models used within this work.

SMC algorithms can vary in detail, but the the principle involves sampling

from a tempered posterior distribution by using a ‘temperature‘ parameter, β,

such as in simulated annealing, which smooths the likelihood surface in order to

better capture all of contours present. The posterior that is sampled is given by

p(~θ|~Y ) ∝ p(~Y |~θ)βp(~θ|F ) (2.4)

where β starts at 0, initially sampling only from the priors, and is slowly increased

until eventually it reaches β = 1 and the posterior is being sampled. Along the

way regions of high probability density are discovered and given weights based on

Metropolis-Hastings Markov Chains that are run.

The algorithm used within this work is implemented within the python package

PYMC3 [52] and takes the following steps5:

1) Start with β = 0 and take N samples, Sβ, from the prior distribution.

2) Increase β until the effective sample size is equal to some value, usually

≈ 0.5N (with weighting based on the tempered likelihood).

3) Calculate N importance weights W , computed as the ratio of the tempered

likelihoods between stage i and i+ 1.
5This is adapted from PYMC3 documentation found at

https://docs.pymc.io/notebooks/SMC2_gaussians.html.
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4) Take N weighted samples, SW , according to W .

5) Use SW to create a Gaussian proposal distribution [g(x1|x0) from Sec. 2.2.2].

6) Use the acceptance rate to scale the proposal distribution and calculate the

number of step, m, used in the next sampling.

7) Run N Metropolis-Hastings MCMC chains, each with length m, each start-

ing from a different sample in SW .

8) Repeat steps 2-7 until β ≥ 1, and if β > 1 set β = 1.

the final result of this process is a collection of N samples from the posterior.

Ultimately the SMC sampling borrows methods from a number of other sta-

tistical concepts, in particular importance sampling, tempering, and the use of

a proposal distribution like in MCMC methods. Additionally, the stage based

methodology where the samples are assigned weights and used to generate future

samples can be thought of in the same vein as genetic algorithms.

2.3 Bayesian Inference in HEDP

Bayesian inference addresses many of the common issues found in analyzing ex-

perimental data from highly integrated HEDP measurements. Perhaps the most

important advantage comes from the full construction of the posterior probabil-

ity distributions, which not only give insight into the uncertainties on any given

parameter, but also captures multiple explanations for the observed phenomena.

This is critically important because in these systems there is no guarantee that

the observations are sufficient to uniquely infer the parameters and this knowl-

edge would be lost when using a point estimate technique. Additionally, Bayesian

inference includes the use of prior distributions allowing previous measurements,

physical constraints, and any other relevant information to be used to constrain a

model that would otherwise be under-described by a single measurement.

There are a wide range of physical models used in HEDP ranging from simple
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empirical models to full integrated 3-D radiation hydrodynamics codes. The most

complex codes are often used to design experiments and interpret experimental

data but their application to data analysis is challenging due to the extremely

large number of parameters involved and the layers of different computations,

such as equation of state calculation and atomic physics calculations, upon which

the codes are built and often the codes are ‘tuned‘ to match experimental data

in a particular region of parameter space. This practice is unsatisfactory for the

goals of this work so a different approach is used, in particular this thesis depends

on constructing reduced physics models to describe experimental systems. These

reduced physics models seek to isolate the key physical mechanisms that determine

the observations from an experiment and in doing so reduce the parameter space

of the models from many tens to hundreds, in the case of the full hydrodynamics

codes, to approximately 10 in most cases.

This work intends to quantitatively determine meaningful measurements from

experimental data. This end requires that whatever model used is parameterized

by physically meaningful quantities so when a fit of these parameters is made

to experimental data the results are able to be abstracted beyond the model.

There is no guarantee of uniqueness when constructing a model. When faced with

multiple models that adequately explain the observations preference is given based

on Ockham’s Razor, that is the simpler of the models is preferred. This can be

evaluated quantitatively in multiple ways [47], for example by making use of Bayes

factors [53] or other information criteria [54]. Additionally, it is desirable for the

model to be computationally efficient enough to be sampled for Bayesian inversion,

especially if there are multiple candidate models that need to be compared. This

is not always possible, and depends on the specific requirements and complexities

of the system; even when not possible directly there is potential for a surrogate

model [55, 56] to be used in order to regain the computational efficiency needed

to sample the model with an MCMC.
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This does not eliminate the utility of the full physics codes, to the contrary they

are an important and necessary tool in the flow of Bayesian inference in HEDP.

In general it is critical to use the full physics codes to support the efficacy of the

reduced physics models, since at a minimum the reduced physics models should

be able to reproduce the quantities from the code with the region of parameter

space the experiment is expected to reside, otherwise the inferred quantities from

the reduced model are have ambiguity to their interpretation.

There are three key details that determine the efficacy of Bayesian inference in

HEDP: (1) The full-physics model being used is believed to reasonably represent

the experimental system; (2) The reduced-physics model accurately represents

quantities of interest from the full physics model; and (3) the reduced-physics

model can be constrained by the available measurements.

The first point is likely the most challenging to be fully convinced of and re-

quires additional effort beyond what is presented here. The full-physics model

need not be predictive of experiments but it must contain the essential physics

of the experiment. For example, if there was significant asymmetry observed in

an experiment, it is obvious that a 1-D model will not be sufficient to describe

the system and a 2-D or 3-D simulation would be more appropriate along with a

more sophisticated reduced model. The benefit of the reduced model over the full

physics models is that they recast the full simulation parameter space, which has

some large dimensionality dependent on the detailed physics in the model, into

the reduced model parameter space that is less flexible in general but sufficient

to describe an experiment that exists with a particular region of parameter space.

The second point is addressed by seeing if there are a set of reduced model param-

eters that are able to reproduce profiles from the full simulation. The third point

is addressed through the use of Bayesian inference [2], assuming that the system

under consideration is well described by the full-physics model (first point), and

the reduced-physics model adequately represents the pertinent quantities from the
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full model (second point), the question remains as to whether the reduced model

can be constrained by observations that are readily available or, if not, what mea-

surements are required to constrain the model.

Ultimately, this process can be done with or without experimental data in hand.

In the event the analysis is occurring after the experiment Bayesian inference can

be used to figure out how much information about the physical system can be

extracted from the data and, in the preferred case of performing this process before

experimentation, the inference can inform what is able to be constrained through

measurement and which measurement, or likely combination of measurements, are

necessary to constrain the quantities of interest.

2.4 Practical Implementation

Implementing Bayesian inference tools is becoming increasingly easy given the

growing support system surrounding these techniques and the efforts put into

open source computational tools. Some of the most common tools exist natively

within the statistical programming languages R and Stan and many packages

exist within both Python and Matlab, commonly used in physics. The work in

this thesis was done completely within Python, favored for its flexibility and large

support for open-source software. Standard scientific and mathematical packages

are used for data analysis, such as Scipy and Numpy, and the statistical package

used for Bayesian inference is PYMC3 [52], which is a powerful tool for model

specification and Bayesian inference. Since PYMC3 is actively developed there

will not be many code examples given within this thesis, as they would likely be

out of date fairly quickly. Rather general practices will be discussed which can be

implemented with any number of tools in any of the widely available statistical

packages or built from scratch. Nothing presented within this work is unique to

any particular implementation and is reproducible in any framework.
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The goal of this section is to provide some generally useful insight that may aide

in implementing Bayesian inference in an HEDP setting and help in diagnosing

problems that may occur.

2.4.1 Useful Heuristics

The models used in HEDP are likely fairly complicated relative to most examples

that are available and include solving differential equations, numerical integration,

convolutions, and other complex operations. This often requires troubleshooting

difficult code that interfaces with some external packages that are not fully trans-

parent. There are a number of simple checks that can be performed to ease the

burden of this troubleshooting.

The first rule to keep in mind has been called the "folk theorem of statistical

computing" by statistician Andrew Gelman6 and says that when computational

problems occur, it is usually due to a problem with the model being used. This

is important to keep in mind because it is often tempting to think the sampling

algorithm is at fault or the computational package being used but the sampling

algorithms, as shown in Sec. 2.2.2, are not overly complicated and the statistical

programs are widely used and tested by experts. This is not to say that bugs

in the software do not happen but it is prudent to first look inward and confirm

the model is well described and appropriate and if a bug is still suspected then

reproduce it in as simple an example as possible and submit it to the developers

of the relevant package.

When testing if a model is working properly there are a few basic quantities

to check first. When doing Bayesian inference using a statistical programming

package there are usually a few key pieces as laid out in the following pseudo

code, which should be referenced along with Sec. 1.4.3 and table 2.1:

6https://statmodeling.stat.columbia.edu/2008/05/13/the_folk_theore/
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"""
Psuedo code describing the general form of
Bayesian inference codes

Here:
Y_data = Measurements
F = the model funciton that generates predictions of data
theta = the vector of parameters of the model
L = the likelihood function
"""
import necessary_function from necessary_packages
#Read in the experimental data and uncertainties from a file.
Y_data,sigma = load_data(’data_file’)
#Define some complicated function F(theta) that returns a vector in the
#same shape as Y_data
def F(theta):
...
return Y_model

#Define a function that calculates the likelihood, here Gaussian
def L(theta,F):
Y_model = F(theta)
return exp(-(Y_data-Y_obs)**2/(2*sigma**2))

#define prior distributions, this can happen within a
#a model enviornment (like PYMC3) or not how these are
#defined depends on the library used for sampling.
priors = ...
#pass the priors and likelihood into the sampler which results in a posterior
posterior = statistical_package.sampler(likelihood,priors)

In the flow of this framework there are a few simple checks to administer if sam-

pling is either going unusually slow (indicative of something wrong) or giving

poor results. First it should be confirmed that the model function, F, is giving

the expected results over the domain of parameter space under consideration. Of-

ten times some combination of parameters unexpectedly yields a ‘Not a Number‘

(NaN), which will break the samplers, due to an unforeseen issue. Once F is

confirmed to be working properly the likelihood function, L, should be confirmed

to be giving reasonable results by checking values for reasonable estimates of the

parameters involved. Thankfully in HEDP our models are often built on physical

intuition so a reasonable range of parameters are known, such as temperatures,

densities, etc. so some L can be confirmed to give larger numbers for more reason-

able parameters and smaller numbers for less reasonable parameters. Ultimately

the vectors Ydata and Yobs should be plotted against each other and checked, in ad-

dition to the error σ, and checked against the relevant likelihood values to confirm
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all of the calculations are correct.

Once the basic checks above are made, if the sampling is still slow, it is possible

that the model is technically well specified (i.e. calculates correctly) but is poorly

specified statistically. In particular it is good practice to make the expected values

of the input parameters of order unity 7, since the kernel of the MCMC, g(X0|x1)

is usually a multidimensional Normal distribution and some sampler implementa-

tions have trouble dealing with very different scales across different dimensions.

The easiest way to accomplish this is simply by changing units of parameters in the

model, for example if there is a length parameter rather than using 10−6 meters

it would be prudent to use 1 micron instead.

Another issue that can cause problems when sampling is if the model param-

eters are highly correlated. In general some correlation is no problem and likely

cannot be simply avoided, but if there are highly correlated variables, especially

with a large dimensional problem, the sampler may struggle to properly map the

likelihood surface. In this case it is appropriate to re-parameterize the model to

eliminate correlations. Within HEDP this is often possible through physical rela-

tionships such as equation of state where some problems are best served by using

particular state variables as the parameters.

Finally a common issue in HEDP models is a multimodal posterior. It is good

practice to run multiple chains, whether they be MCMC or SMC chains, to ensure

the resulting posterior is stable. Sometimes the sampler will be stuck in a local

extremum and not explore the whole space but different chains starting at different

locations have a better chance of mapping this. This is a reason to use SMC

samplers since they are more robust with respect to multimodal distributions.

Often many issues can be identified by plotting a few quantities including the

full posteriors for each variable, the posterior predictions for the observations,
7Actually best practice is to scale all variable to mean 0 and variance 1 if possible, but this

sometimes requires onerous transformations.
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and the pairwise posteriors for the parameters. The posteriors in an individual

variable should be free of high frequency features which are usually an indication of

an under-sampled distribution. The posterior predictions, which are the posterior

distributions for ~θ passed through F to get Yposterior should be compared to Yobs. If

the range of Yposterior is either too big or too small as compared the observations and

errors that indicates a problem. Finally in the pairwise posterior plots correlations

can demonstrate which parameters are correlated and if oddly shaped contours

exist it can be confirmed that enough samples exist in those regions of parameter

space.

2.5 Areas of active research

There are two areas that require comment as actively being researched, both of

which are important for Bayesian inference in HEDP settings and require signifi-

cant research. These areas potentially depend on the details of the specific models

being used and systems being studied as well.

2.5.1 Combining disparate datasets

HEDP experiments have a number of different modalities of measurement includ-

ing spectral measurements, images, scalar numbers, and others. If all measure-

ments are to be used simultaneously (as they should be) there must be a method

for combining their contributions to the likelihood. The simplest method is to

simple sum the likelihoods from each separately calculated measurement; a valid

procedure if the measurements are uncorrelated. Summing the likelihoods implic-

itly asserts a weight to each measurement, but it is unclear whether they should be

equally weighted or not. Does one scalar measurement have the same information

content as a spectrum? Should each pixel in the image count individually or the

entire image as one? Very quickly there is a set of questions that arise with no
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clear answers. This issue is present in other areas of physics and in particular

cosmology has faced this issue by adding weights to each likelihood component as

parameters in the model and marginalizing over them [48]. This approach has yet

to be tested on HEDP systems.

2.5.2 Choice of likelihood function

Another area of research includes the choice of likelihood function in a Bayesian

inference analysis. In this thesis the default choice is a Gaussian likelihood, as

described in Sec. 2.1. This choice is common because it is appropriate for normally

distributed and uncorrelated errors and is a common choice in classical statistical

methods but it is not necessarily always the best choice. As described in the

supplemental material of Ref. [41] there are disadvantages to using this likelihood

in particular for some of the data types common in HEDP. In particular data that

is correlated such as spectra and images with finite resolution elements can lead to

wildly under-predicted errors from using Gaussian likelihoods. This underscores

the importance of carefully examining the results from a sampling to ensure that

the resulting posteriors give predictions that are physically reasonable. It is likely

there is not a single most appropriate likelihood for HEDP but rather each model

and dataset will benefit from careful consideration and comparison across multiple

choices.
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Chapter 3

Convergent HED Experiments

Portions of this chapter are reproduced from [J.J. Ruby, J.A. Gaffney, J.R. Rygg,

Y. Ping, and G.W. Collins. High-energy-density-physics measurements in implo-

sions using Bayesian inference. Physics of Plasmas, 032703(28), 2021], with the

permission of AIP Publishing.

Convergent geometries are suited for reaching the most extreme thermody-

namic states as discussed in Sec. 1.2, and these systems have been used as a

means achieving thermonuclear fusion since the Manhattan project. The study of

convergent HED systems is dominated by increasing the efficacy of fusion plat-

forms, either with the goal of achieving thermonuclear ignition on the laboratory

scale[25, 57] or for the development of novel particle[58, 59] or x-ray sources[60–65]

useful for other applications, but recently a new series of experimental platforms

have been developed that capitalize on the unique conditions generated in implo-

sion experiments to study the fundamental properties of matter[2, 3, 46, 66–68].

Designing implosion experiments with fundamental inquiry in mind, rather

than application, necessitates working in a different region of design parameter

space. This section will detail important design considerations for these experi-

ments and give some examples of currently possible measurements and the infor-

mation potentially available from such measurements.
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3.1 Design of a convergent HED experiment

The design space of laser-driven implosions is expansive, consisting of target ma-

terials, layer thicknesses, laser pulse designs and target scales, that even when

accounting for engineering constraints becomes effectively infinite. Even the sub-

space of "hot-spot ignition" [57, 69] targets that (broadly) consist of a hydrocar-

bon plastic outer shell layer, a solid deuterium-tritium (DT) ice layer, and DT

gas, there are enough design parameters1 to make optimization for a particular

metric, such as neutron yield, difficult [55, 56, 70], a well-studied issue in the ICF

community. In this work a narrow subspace is used as an example of how design

changes can move experiments between different physical regimes. A list of com-

mon design parameters includes both laser drive conditions, such as total energy,

pulse shape, and beam spot size, and target design, such as shell material, diame-

ter, aspect ratio (shell thickness), fill material, and fill pressure, along with design

differences that differ between direct-drive [69] and indirect-drive experiments [57]

such as choice of hohlraum material and shape. Here direct drive experiments are

considered with super-Gaussian spatial and temporal laser profiles, and targets

that consist of plastic (CH or CD) and deuterium fill (where appropriate) with a

fixed outer diameter. The target parameter that is varied is the thickness of the

shell or the aspect ratio between the inner cavity and the shell, which moves the

experiment through different regimes of energy transport.

The targets considered here can be broadly split into two defining groups, de-

scribed by the mechanism of energy transport that dominates the implosion. The

first group are shock-dominated targets in which the energy transport is dictated

by the transit of a single spherical shock. Here the shock initially converges, com-

pressing the target material that begins to flow inwards, upon reaching the target

center, it rebounds, re-shocking the inflowing material. A key characteristic of
1In addition to the vastness of the design parameter space there is uncertainty in the proper

values of underlying physics parameters that can effect the designs of experiments as well.
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Figure 3.1: (a) A representation of the different implosion targets discussed within
this work, (top-left) a gas filled thin shell, the subject of chapter 4, (top-right) a
solid density sphere, and (bottom) a gas filled thick shell, the subject of chapter
5. Changing the thickness of the shell material moves the experiment between the
compressive regime (thick-shell) and the shock dominated regime (others). (b)
The shock trajectory (solid lines) and inner shell surface trajectory (dashed lines)
for the targets shown in (a). Target thin-shell is shown in blue where the shock
moves in, rebounds, hits the shell and reverses the shell trajectory, while the shock
in target the thick-shell, shown in grey, reverberates off the converging shell and
undergoes multiple passes through the gas leading to an isobaric hot spot. The
solid sphere, shown in dark grey, has the same dynamics as the thin-shell, a single
converging shock wave, but does not feature any shell since it is a single material
target. Each trajectory is labelled with the corresponding representation from (a).
Originally published in reference [4].

these systems is that after the shock rebounds and passes back through the ma-

terial the flow of material is outwards leading to decompression. These targets

have strong gradients in both space and time. The gradients in temperature, for

example, result in temporally peaked x-ray emission. There is a self-similar semi-

analytic model developed by Guderley that can be used to describe these types of

implosions [1, 71].

The second group of targets are compression-dominated targets in which the

energy transport is dictated by a massive shell that compresses and inertially con-

fines an inner fuel. These systems also feature a strong converging shock wave that

rebounds at the center of the target but when the rebound shock wave interacts

with the massive converging shell of mass, this shell continues inwards leading to

shock reverberations and further compression of the fuel. Standard ICF targets
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fall into this category and there are a number of reduced models developed to

describe the behavior [72–74] such as those characterized by a fuel with no spatial

pressure gradients (isobaric).

Figure 3.1 shows examples of the targets that will be discussed in this work,

including two shock dominated systems, solid density spheres and thin-shelled gas

filled targets, and a compression dominated system consisting of a thick-shelled

gas filled target. Figure 3.1 (b) shows a radius-time plot of trajectories for these

different targets where the solid line is the shock-wave trajectory and the dashed

lines are the shell trajectories (for the targets with shells). These trajectories are

derived from the output of a 1-D radiation hydrodynamics code called Lilac[75].

This figure shows that for the solid target and thin-shelled target the shockwave

simply converges inwards, rebounds, and diverges (reversing the trajectory of the

shell in the thin-shell case). The thick-shell target shows the shockwave reflecting

off the shell after rebound and undergoing multiple rebounds leading to the isobaric

compressive hot-spot. This occurs because the shell has enough inertia that the

shock wave is unable to reverse its direction on the initial interaction.

The dynamics of energy transfer, primarily driven by the hydrodynamics in

the system, play a crucial role in when measurable emission is emitted and the

nature of that emission. Diagnostic choices are a critical aspect of experimental

design and the following section will discuss the types of measurements commonly

made in convergent HED experiments.
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3.2 Self emission measurements in HED experi-
ments

Self-emission2 in an HED context broadly falls into two categories, electro-magnetic

(EM) emission (light) and particle emission. Within each of these categories there

are a number of processes that give rise to different types of emission. EM emission

in HEDP is predominately focused on the visible and x-ray parts of the spectrum,

mostly for practical reasons. Laser facilities use either visible or near visible light,

351 nm in the case of the Omega60 Laser, so absorbed and scattered light can be

diagnosed by observing these wavelengths and many systems reach temperatures

where the black-body emission produces significant visible light which is relatively

easy to measure[35] and therefore capitalized upon.

In spherical geometry, other than scattered light measurements diagnosing cou-

pled laser energy and laser-plasma interactions, only limited parts of the spectrum

are able to escape the system due to the absorption by highly compressed matter

the emission needs to transit. X-rays with energy in the keV range (≈ 1nm) are

able to penetrate this compressed matter, escaping the target, and are therefore

most commonly measured.

3.2.1 X-ray Emission

There are a number of processes that can produce photons with keV energies,

most of which are interactions between a free or bound electron with an ion.

These processes can broadly be categorized in terms of the initial and final state

of the electron and include free-free emission (also known as bremsstrahlung), free-

bound emission (also known as recombination), and bound-bound (also known as

line emission). Considering an electron ion system, free-free emission refers to a
2Here self emission describes a process internal to the target of interest that generates observed

radiation which can be contrasted with backlighting or probing techniques which use an external
source to generate emission that interacts with the target.
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free electron that interacts with an ion and remains free afterwards, free-bound

emission refers to a free electron that enters a bound state with an ion releasing

a photon in the process, and bound-bound refers to a bound state electron that

transitions to another bound state releasing a photon in the process.

Similarly there are corresponding processes that determine the opacity of a

material, the propensity of a material to absorb photons. Whether a photon is

emitted or absorbed depends on energy conservation of the system, so in free-free

processes the electron can interact with the ion and lose energy, emitting a photon,

or the electron can absorb a photon in a 3-body interaction mediated by the ion

and gain energy. Likewise with bound states an electron can transition from a

higher energy state (or a free state) to a low energy state and release a photon

or absorb a photon and be promoted from a low energy state to a high energy

state, sometimes even to a free state (photoionization). Understanding the x-ray

emission from an experiment requires a detailed accounting of these processes.

There is a rich study of atomic physics within HEDP plasmas [76–79] trying

to understand the detailed processes of these atomic transitions. In this work

primarily low atomic number (low Z) materials are used, such as hydrogen and

carbon, and the temperatures are high enough to consider all of the electrons

liberated from their respective nuclei and the dominant form of emission to be

from free-free interactions.

The free-free spectral emission coefficient (emissivity) is derived by considering

the Coulomb interaction between 2 free particles and integrating over all of the

possible paths of approach. This derivation can be found in multiple sources

[24, 80, 81]. The resulting emission coefficient is given by

Jν =

√
211π3

3

( e2

4πε0
)3Z̄2n2

e

m2
ec

3Z̄
√

3kTe/me
e−

hν
kTe

[
Js−1m−3Hz−1

]
(3.1)

where e, ε0, me, c, k, and h, are the usual fundamental physical constants, A is



CHAPTER 3. CONVERGENT HED 48

the total number of protons and neutrons in the ions, Z̄ and Z̄2, are the average

ionization state and average squared ionization state, Te is the electron temper-

ature, ne is the electron density, and ν is the frequency of emitted photon. All

quantities are in S.I. units and Jν has the units of joules per second per meter3 per

hertz. Note that a closely related quantity is ην = Jν/4π which is the emissivity

per steradian.

The propagation of radiation is given by the radiative transfer equation[24, 80,

82]
1

c

∂Iν
∂t

+ ~Ω · ∇Iν = ρη̃ν

(
1 +

c2

2hν3
Iν

)
− ρκνIν (3.2)

where Iν is the spectral intensity, which can be thought of as a photon distribution

function [80], ~Ω is the direction vector, ρ is the mass density, η̃ν is the specific

spectral emissivity or spectral emission coefficient per unit mass3 (ην/ρ) and κν is

the mass absorption coefficient, also known as the opacity.

In this work emission is considered under the conditions of local thermody-

namic equilibrium (LTE), meaning that individual populations of particles have

had sufficient time to relax into Boltzmann distributions meaning a temperature

can be prescribed. This does not require that different species, i.e. electrons and

ions, have the same temperature nor does is it taken to mean that the particles

are in equilibrium with the radiation field.

When the radiation field is in equilibrium the photon distribution takes the

form a Planckian, or black body, given by

IBB =
2hν3

c2

1

ehν/kT − 1
(3.3)

3Note the difference from Eq. 3.1. Terminology in many texts is confused but for dimensional
consistency the spectral emission coefficient that appears in the radiation transfer equation must
be per unit mass, although this distinction is often omitted.
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and this can be inserted into Eq. 3.2 to obtain Kirchhoff’s law

η̃ν
κν

=
ην
ρκν

=

(
2hν3

c2

)
e−hν/kT (3.4)

which relates the emissivity of a material to its opacity. Kichhoff’s law, despite

using radiative equilibrium to derive it, holds in general under LTE conditions

meaning Eq. 3.2 can be recast to

1

c

∂Iν
∂t

+ ~Ω · ∇Iν = ρκ′ν (IBB − Iν) (3.5)

where the explicit dependence is only on the opacity through the modified expres-

sion

κ′ν = κν
(
1− e−hν/kT

)
. (3.6)

Using Eqs. 3.1 and 3.4 we can get an expression for the free-free opacity

ρκν = αν =
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(3.7)

where αν is the linear attenuation coefficient at frequency ν. When plasmas are

fully ionized there are no bound electrons left attached to the ions so free-free ab-

sorption is the only mechanism that needs to be considered (neglecting scattering

which becomes important for high photon energies > 100keV ). The fully ionized

case is the limit of lowest opacity and the limit of highest opacity is known as

the ’cold’ opacity and is the value when there is no ionization (which is general

true at lower temperatures) meaning bound electron interactions dominate. In

HED plasmas the opacity of the system can take the value between the cold and

free-free limit. Examples of the opacity predicted for a Silicon (Si) plasma at solid

density, 2.33 g/cc, and 3 different temperatures (10 eV, 1 keV, and 10 keV) are

shown in Fig. 3.2 (left). The core electrons of Si require energies of 2440 eV and
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2670 eV to be liberated and the most weakly bound electrons require energies of

8.15 eV and 16.3 eV to be liberated meaning that, to a good approximation, at 10

eV Si has most of its electrons still bound (potentially singly ionized), at 1 keV

Si is likely ionized all the way up to the K-shell (quantum number n=1 electrons)

because the the highest ionization energy in the M-shell (n=2 electrons) is 523 eV

meaning is has an ionization, Z̄=12, and at 10 keV Si is likely fully ionized with

Z̄ = 14.

In Fig. 3.2 (left) the 3 different curves show the cold opacity, the free-free

opacity, and calculated opacity from astrophysical opacity tables (AOT) [83] that

span the difference between the cold and free limits depending on the conditions.

The feature in the cold and AOT opacities around 2 keV is the K-edge of Silicon,

an absorption feature from the bound-free transition of the K-shell electrons which

have a binding energy of 1.839 keV.

Using free-free opacity, a simple example of a solution to the radiation transfer

equation is presented for the case of a uniform slab of material in steady state.

Inspecting Eq. 3.5 this scenario eliminates the temporal derivative term on the

left and ultimately results in a first order inhomogeneous ODE whose solution is:

Iν(x0) =

∫ x0

0

ρ(y)κ′ν(y)IBB[T (y)]e−
∫ x0
y ρ(z)κ′ν(z)dzdy + I0e

−
∫ x0
0 ρ(x)κ′ν(x)dx (3.8)

where x is along the axis of interest through the slab and I0 is the radiation incident

on the slab, which we will take to be 0 for this example. The way Eq. 3.5 is cast

emphasizes how Iν reaches the equilibrium distribution, IBB, and the results are

shown in Fig. 3.2 (right). Here the solution, Eq. 3.9, is plotted for a slab of

fully ionized hydrogen plasma at 1 keV with thickness 50µm for different densities

(shown in the legend). The dotted line is the black-body distribution, which is

nearly achieved for the highest density shown (1 kg/cc). As the density increases

the equilibrium distribution is reached for progressively larger photon energies as
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Figure 3.2: (let) A comparison of 3 different linear attenuation coefficients derived
from the cold opacity (blue), Los Alamos astrophysical opacity (red), and free-
free opacity (purple) for solid density Silicon at 3 different temperatures. At the
lowest temperature (5 eV) Si is, at most, singly ionized making the astrophysical
opacity very similar to the cold opacity, while at 1 keV Si has significant ionization
but likely retains core electrons leading to an opacity between the cold and free-
free limit, and at the highest temperature, 10 keV, Si is fully ionized leading the
modeled opacity to match the free-free calculation. (right) The transition of a
50 µm thick slab of hydrogen plasma at fixed temperature (1 keV) from optically
thin, at low densities, to optically thick at higher densities eventually converging
towards the black body limit (dashed line) for spectral intensity.

the plasma becomes optically thick at those energies. At higher energies, and lower

densities, the plasma is optically thin, meaning there is not significant absorption

effects, meaning that Iν takes on a temperature and density dependence associated

with free-free emission

Iν ∝ ρ2e−hν/kT . (3.9)

This result is heavily used in convergent HED studies where there is usually other

absorbing material (namely remaining dense shell material) that limits measure-

ments of x-rays to higher photon energies where the emitting plasma is optically

thin.
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3.2.2 Particle Emission

The extreme density and temperature environment produced in HED experiments

can result in nuclear fusion reaction, depending on the chemical composition of

the material. The fusion reactions serve as an indicator of environment from

which they were produced. Commonly observed products from fusion reactions

in HED experiments include neutrons and protons from the fusion reactions such

as the Deuterium reactions D(d,p)T and D(d,n)3He and the deuterium-tritium

reaction D(t,n)α, significant due to its high cross-section at conditions relevant

for terrestrial fusion reactors. This work has focused exclusively on the D(d,n)3He

deuterium-deuterium (DD) fusion reaction and one of its products, a neutron with

2.45 MeV of energy.

The nuclear production rate in a differential volume element, for a DD fusion

reaction, is given by
d2N

dtdV
=

1

2
n2
D < σv >DD (3.10)

where nD is the number density of Deuterium ions, the factor of 1
2
is to pre-

vent double counting interactions between 2 deuterium ions, and < σv >DD is

the local thermal reactivity averaged over a Maxwellian ion velocity distribution

with temperature T and can be calculated using the fusion reactivities from, for

example, Bosch and Hale [84].

Assuming there is a volume of deuterium plasma with temperature T and

density ρ sufficient to produce thermal DD fusion reactions the energy spectrum

of the resulting particles will be influenced by the local thermodynamic conditions.

In an isolated environment the spectrum of DD fusion neutrons would have a sharp

peak located at ≈ 2.45 MeV but when born in a thermal bath the spectrum will

be broadened proportional to the ion temperature, Ti, an effect that is well studied

[85, 86] as a primary means of diagnosing ICF implosions [87] An example of a

calculated neutron birth spectrum can be seen in Figure 3.3. Additional interesting
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Figure 3.3: DD fusion neutron birth spectrum for a 3 keV deuterium plasma.
The spectrum is both shifted and broadened due to the temperature. The mean
energy is shifted up by ≈ 10 keV . The full-width half-max, W, of the spectrum
is 143.47 keV and is related to the ion temperature of the emitting plasma by Eq.
3.11. The vertical dotted line shows the nominal birth energy of the neutron in a
non-thermal environment.
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quantities follow from various integrals of Eq. 3.10, such as total neutron yield

(given by the volume and time integral of equation 3.10) and the time dependent

neutron production history (given by the volume integral of equation 3.10).

An example spectrum [86] of thermonuclear DD fusion neutrons is shown in

Fig. 3.3 for a pure deuterium plasma with a mass density of 100 mg/cc and an

ion temperature, Ti = 3 keV. The spectrum is upshifted in energy, with the peak

at about 2.46 MeV rather than 2.45 MeV (shown by the vertical dotted line), and

broadened with both effects due to the velocity distribution of the fusing ions. The

width of the spectrum is often used as measure of integrated ion temperature[87]

in ICF implosion the relationship of the full-width half-max, W , to Ti is given by

[85]

W = ω0(1 + δω)
√
Ti (3.11)

where ω0 and δω are fitting parameters given in [85] and take the values of

82.542keV1/2 and 0.005 for DD fusion at 3 keV. When W = 143.47 is plugged

in from the generated spectrum the resulting ion temperature is 2.99 keV, consis-

tent with the value used to generate the spectrum.

3.2.3 Types of Measurements

There are 3 primary axes upon which both the x-ray and particle emission can be

scrutinized: spatial, temporal, and spectral. Measurements can be isolated to any

individual axis or can be some combination of all 3. There are many advanced tools

[37] that are routinely used to make measurements in these extreme environments.

This section will provide a brief discussion of commonly used diagnostics but

should not be considered a comprehensive survey of the field.

Imaging techniques of high energy4 particles whether photons, neutrons, or
4The scale of energies in physics covers many orders of magnitude and the range of energy

considered in this work to be high, in the keV to MeV range, is likely considered low to many
researchers in high energy physics (particle physics) where particles routinely reach GeV and
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charged particles are generally non-refractive, unlike most optics used in the visible

and near visible spectral ranges, due to nature of the radiation. This requires either

simple apertures, such as pinholes or slits, or diffractive optics, such as Kirkpatrick-

Baez (KB) microscopes [88] or Fresnel Zone Plates (FZP) [5]. Here imaging will

be discussed in terms of x-ray emission, which is a standard measurement in

convergent HED experiments, but most techniques apply to high energy particle

imaging as well. The simplest and most widely used imaging element is a pinhole,

whose spatial resolution is roughly equivalent to the diameter of the pinhole [89]

until the Fraunhofer limit is reached and diffractive effects, determined by the

wavelength of the radiation being imaged, prevent further resolution.

The pinholes can routinely be manufactured to 5µm but the solid angle of

acceptance scales as the diameter squared, meaning there is a trade-off between

signal and resolution. Another aspect of pinholes that can be beneficial or detri-

mental, depending on the measurement, is that they are able to image broadband

sources, such as a plasma emitting thermal free-free emission. Pinholes can be

pushed to much larger solid angle and resolution by making use of penumbral

imaging [90] although this introduces an additional step of having to reconstruct

the source from imaged penumbra. Diffractive optics image monochromatically

based on the characteristic length scale of the material used, whether it be natu-

rally occurring crystals or manufactured patterns. These optics have the benefit of

both larger solid angles and higher resolution, for example KB microscopes used

on HED experiments have shown 5µm resolution [89] and FZPs have been demon-

strated to have ≈ 1µm resolution on HED experiments, limited by the detecting

medium [5].

Detectors that provide temporal resolution broadly require 2 stages when mea-

suring the radiation considered here: 1) a conversion from x-rays (or nuclear prod-

ucts) to electrons, either directly or by first converting to near visible light 2) the

greater energies.
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electrons are then focused to different spatial location via a time-varying voltage

mapping temporal information to a spatial dimension within the detector. This

process primarily used streak cameras [91] to attain temporal resolutions as low

as 10 ps. There are numerous detectors that operate on these principles across

HEDP [92–95].

Spectral discrimination works differently between particle and photon detection

in large part due to the difference in time-of-flight (tof) between the types of

radiation. Experiments happen within a vacuum chamber where the x-rays that

are detected all propagate at the speed of light while the particles that are detected

travel with some velocity that depends on their energy. Particle spectra leverage

this difference in velocity by placing detectors far away from the source (≈ meters)

and detecting when particles arrive which then informs the energy of the particles

[37, 87, 96].

The spectral discrimination of x-rays makes use of Bragg’s law [97] 2dsin(θ) =

nλ which relates the spacing of some grating, d, and the angle of diffraction, θ,

to the order of diffraction, n, and the wavelength of the light that is diffracted

λ. Making use of diffraction x-rays can be spectrally dispersed by using gratings

with appropriate spacings; for the x-rays under consideration here the gratings

take the form of crystals with various d-spacings within the lattice depending on

the specific range of x-ray energies being investigated. Another way to achieve

spectral discrimination, in both x-rays and particles, is by using transmission

filters to allow only radiation of a certain energy to get through. This can be done

with simple thresholding [98] or by using different k-edges to create Ross-pairs [99]

to allow only a particular range of energies through.

Finally different combinations of these detection schemes can be used in con-

junction to get temporally resolved images or spectra by coupling an imaging

slit or a crystal spectrometer to a streak camera, spectrally dispersed imaging by

coupling a slit to a crystal spectrometer or using a series of different filters on a
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pinhole, and more. This work makes great use of a temporally gated pinhole im-

ager called an x-ray framing camera (XRFC) [38, 100] which uses similar principles

to a streak camera to record pinhole images at snapshots in time.
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Chapter 4

Thin Shell Experiments

Portions of this chapter are reproduced from [J.J. Ruby, J.R. Rygg, D.A. Chin,

J.A. Gaffney, P.J. Adrian, D. Bishel, C.J. Forrest, V.Yu. Glebov, N.V. Kabadi,

P.M. Nilson, Y. Ping, C. Stoeckl, and G.W. Collins. Constraining physical models

at gigabar pressures. Physical Review E, 102(5):53210, 2020] and [J.J. Ruby,

J.R. Rygg, D.A. Chin, J.A. Gaffney, P.J. Adrian, C.J. Forrest, V.Yu. Glebov,

N.V. Kabadi, P.M. Nilson, Y. Ping, C. Stoeckl, and G.W. Collins. Energy Flow in

Thin Shell Implosions and Explosions. Physical Review Letters, 125(21):215001,

2020] Copyright (2020) by the American Physical Society

The first experimental system used to demonstarate Bayesian infrence in im-

plosion experiments is a shock driven system, as discussed in Sec. 3.1, where a

strong shock wave is driven in a gas density target with a thin outer shell. This

particular experiment was performed on the 60-beam OMEGA Laser System [31]

at the Laboratory for Laser Energetics. A sketch of the experimental setup is

shown in Fig. 4.1 (a) where the target is an 879-µm SiO2 glass shell with 3−µm-

thick walls. The shell was filled with 18.9 atm of deuterium gas. The target was

illuminated with 60 spherically configured UV laser beams containing 230 J per

beam in a 600-ps super-Gaussian square pulse. The beams were configured with

SG-5 distributed phase plates [101], resulting in a super-Gaussian spatial profile

with diameter of about 850 µm.
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Figure 4.1: (a) Schematic of the experimental setup, showing a 3-µm SiO2 shell
filled with 18.9 atm of D2 gas. Symmetric laser illumination drives a shock wave
(dashed gold curve) through the shell into the gas and the shell continues to
converge. The shock wave reaches the center of the target and then returns moving
outward and eventually interacts with the shell a second time. (b) The time history
of the laser drive and measurements along with the time that the shock reaches
the center of the target given by the nuclear bang time (vertical green line), a
measurement of thermonuclear fusion products due to the extreme temperatures
and densities created by the converging shock wave. When the rebounding shock
wave interacts with the shell, the conditions generate the x-rays (e) measured
in the roughly 30-ps snapshots. (d) The peak of the radially averaged lineouts
corresponds to the ring of emission in the (c) individual snapshot and the red
data points shown in (b). Originally published in reference [3].
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4.1 Self-Emission Measurements of Exploding Shell

When the laser drive hits the shell a strong spherically converging shock wave

is launched via mass ablation [80], first into the glass shell, transiting the shell

and breaking out into the deuterium gas, eventually reaching the center of the

target. Once at the center, the shock is strong enough to generate deuterium-

deuterium fusion reactions and a nuclear particle yield is measured. The shock

then moves back outward through the deuterium gas and eventually interacts with

the glass shell that was set on a converging trajectory by the first shock interaction.

Once the rebound shock hits the shell, the material becomes hot enough to have

significant ionization and produces bremsstrahlung x-ray emission. This emission

is measured using a pinhole array that projects 2-D images onto an x-ray framing

camera that uses a voltage sweep to temporally gate the images [38]. This gives a

series of snapshots of the emitting shell projected onto the 2-D camera as shown

in Fig. 4.1 (e). The center of each snapshot [Fig. 4.1 (c)] is found, and a radially

averaged measurement of the x-ray emission is taken, shown in Fig. 4.1 (d). Since

the shell emission is localized in space, this measurement gives the trajectory of

the shell, which will be the focus of the Bayesian methods implemented here. The

trajectory is shown in Fig. 4.1(b) along with the initial radius, laser pulse, and

nuclear bang time. The errors on the trajectory points are determined from the

experimental uncertainty in magnification and from the variation in the radially

averaged location of the peak emission.

4.2 Modeling Efforts

This work makes use of 2 distinct types of models: 1) The reduced models designed

to extract information from measurements and 2) integrated physics models that

are used as a surrogate for experiments to test analysis methods including the
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reduced models. A key aspect of this work is that the integrated physics models are

not used to interpret experimental data (however tempting that may be) the reason

being that these models are over-parameterized and under-constrained by the

measurements available oftentimes making the interpretations unclear in difficult

to quantify ways.

There are three key details that determine the efficacy of this process: (1) The

full-physics model being used (in this case a 1-D radiation-hydrodynamics code) is

believed to reasonably represent the experimental system; (2) The reduced-physics

model accurately represents quantities of interest from the full physics model; and

(3) the reduced-physics model can be constrained by the available measurements.

4.2.1 Mechanical Model of Shell

The reduced model used to describe the thin shell experiment uses ten total pa-

rameters. There are three parameters that describe the shell, Mf , Rf and vf which

are the mass of the shell, radius of the shell, and velocity of the shell, respectively.

The second-order ordinary differential equation (ODE),

d2R

dt2 = a, (4.1)

where R is the radial location of the shell and a is the acceleration of the shell.

The acceleration takes the form

a(t) =


0 t < ta
4πR2P
M
− Ṁve

M
ta ≤ t < tl

4πR2P
M

t ≥ tl

(4.2)

where P is the pressure pushing outward on the shell due to the fuel inside and

M is the mass of the shell both of which (along with the radius, R) are time-

dependent quantities, while the ablation rate, Ṁ , and exhaust velocity, ve, are
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both time independent. The acceleration starts when t ≥ ta, interpreted as the

time ablation starts. At this point there is an outward force from the fuel inside

the shell and an inward force from the rocket effect of the ablated mass. Once the

laser turns off at tl the force from mass ablation stops and only the outward force

from the fuel remains. The pressure profile from the fuel is given by

P (t) =

 (Prs)e−γg(ts−t) t ≤ ts

(Prs)e−γd(t−ts) t ≥ ts.
(4.3)

with exponentially growing term with growth rate, γg, for times before ts and an

independent exponentially decaying profile with decay rate, γd, for times after ts.

The peak pressure reached is given by Prs, which is interpreted at the pressure of

the rebounding shock wave.

The mass of the shell is given by

M(t) =

 M0 − Ṁ(t− ta) t ≤ min[ts, tM ]

Mmin + Ṁ(t−min[ts, tM ]) t > min[ts, tM ]
(4.4)

where tM is the time it takes to lose all of the mass of the shell and Mmin is the

minimum mass the shell achieves. The shell continually loses mass to ablation at a

constant rate while the laser is on and to material release after the laser stops until

the shell trajectory reaches its minimum. At this point the shell starts moving

outward and regains the released mass as it moves out.

4.2.2 1-D hydrodynamics simulation for synthetic data

Addressing whether this model has a physically relevant parameterization and can

be constrained given a particular measurement must be addressed before using

the model to extract information from the experimental data. This is done by

using a synthetic experiment, in this case generated by using the 1-D Lagrangian
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hydrodynamics code LILAC [75] and producing synthetic experimental data which

is then fit by the model. The underlying physics in the simulation can then be

scrutinized to see how well the model parameterization compares. The ability to

simulate both physical systems of interest and detectors used to measure those

systems is a critical aspect of Bayesian inference and provides great insight into

not only analysis, but also the design of experiments.

The LILAC simulation was run using experimental spatial and temporal laser

beam profiles, a flux-limited thermal-transport model with flux limiter = 0.12, a

3µm SiO2 shell using SESAME equation of state 7380 [102] (for reference more

recent tables include SESAME 7360 and 7361), and 436.5 µm of deuterium gas

at initial density = 10.4 mg/cm3 (pressure = 18.9 atm) using SESAME equation

of state 5262 [102]. The simulation outputs were post-processed to calculate the

x-ray emission in each zone by calculating the bremsstrahlung emissivity (Eq. 3.1)

given by

Jν =

√
211π3

3

( e2

4πε0
)3Z̄2n2

e

m2
ec

3Z̄
√

3kTe/me
e−

hν
kTe

[
Js−1m−3Hz−1

]
(4.5)

here Z̄ = 1 for deuterium and Z̄ = 10 for SiO2. The emissivity of each zone is then

multiplied by the zone volume, integrated over 30 ps, and integrated for photon

energies above 5 keV. The temporal and spectral integrations both are meant to

roughly represent the temporal and spectral response of the framing camera used

in the experiment. The result of this is a series of radial lineouts of x-ray emission

from the simulation, which are then Abel transformed in order to replicate the

signal of the projected 2-D image measured in the experiment.

The posterior distributions were sampled using a sequential Monte Carlo (SMC),

discussed in Sec. 2.2.3, from the PyMC3 [52] library. A sampling for the simulated

data, ~Ysim was done using Gaussian likelihood function and assuming 3 µm error

on each of the points.

The choice of priors is one way that additional information, outside of measured
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data, can be used to constrain an otherwise underdescribed model. In this case

there are ten parameters in the model in total but five of the parameters have

strong priors due to physical limitations or measurement. These five parameters

are R0,M0, ta, tl, and ts. The first two are target parameters that are metrologized

prior to the experiment so they take the form of normal distributions around

the central values with uncertainty given metrology limitations. The last three

parameters all coincide with temporal events observed in the experiment, such

as the laser turning on and off, and the onset of shell emission corresponding to

shock heating. Additionally, physical considerations such as the mass, radius, and

pressure all being strictly positive provide constraint. The other parameters, which

are not as well constrained a priori, receive broad normal priors that are mostly

uninformed with the exception of physical of bounds such as for the ablation

rate and exhaust velocity both of which must be strictly positive quantities. The

Bayesian framework allows all of this information to be explicitly imposed and

uses them to further constrain the system.

Once the posterior distributions of the model parameters are constructed (through

the SMC sampling) values can be drawn from the distributions and passed through

the model to generate posterior predictive distributions (PPD) for the shell tra-

jectory and pressure profile. The PPD gives a prediction for what additional

measurements would provide, based on the given model. In this case for a given

time there is a probability distribution for the radius and the pressure and by sam-

pling the PDD at many times a probabilistic band of trajectories and pressures

profiles can be constructed.

Since there is not a unique model to describe the system. It is important to

consider a range of models and quantify how they compare. Differences in model

can come in the form of different functional forms, F (~θ), or simply a different

choice of priors on models that otherwise have the same expressions. Here, an

example of a comparison between two different models with different functional
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forms is given. M1 is the model previously described, and model M2, has identical

parameters except for the pressure profile, which has an additional parameter

changing the amplitude before and after ts,

P(t) =

 (P0)e−γg(ts−t) t ≤ ts

(P1)e−γd(t−ts) t ≥ ts.
(4.6)

This profile is meant to represent the jump in pressure due to the shock front

hitting the shell. Although it may seem obvious that a model with a pressure

jump would be more appropriate, there is no guarantee that the measurements,

which happen in trajectory space and after the shock hits the shell, have leverage

on the pressure profile earlier in time. This coupled with the additional parameter

for pressure means the M2, while physically motivated, may not be preferred over

M1 based on the data.

Model comparison is standard practice in Bayesian inference, and there are

many methods that can be used. In this case three different methods were com-

pared: widely applicable information criteria (WAIC)[54, 103], leave one out cross

validation (LOO)[54, 103], and Bayes factor[104, 105] calculations.

Unlike model comparisons based on point estimates of parameters, such as like-

lihood ratios or F-test metrics, Bayesian model comparisons account for the full

posterior distribution of parameters. This means that the uncertainty in parame-

ter estimates is also part of the calculation[54]. The Bayesian information criteria

(WAIC and LOO) attempt to quantify the predictive capability of the model to

unobserved data, while comparing Bayes factors amounts to a more-generalized

form of a likelihood ratio test that includes marginalizing over the posterior dis-

tributions of each parameter, therefore not relying on a point estimate.

All three metrics agree when comparing M1 and M2, showing a slight favor

for M1. A benefit of Bayesian model comparison is that it provides a weighting
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Figure 4.2: PPD for the trajectory and pressure profiles for (a) M1, (b) M2, and
(c) the averaged model based on weightings from the WAIC. The weights for M1

and M2 are given above the images and are 55% and 45%, respectively. The
averaged model is constructed by taking the samples from each model based on
the relative weightings. The combined model shows improved agreement with the
with simulation trajectory falling within the 68.3% HPD interval at all times and
better agreement in both the pre-shock pressure profile than M1 and around the
time of peak pressure than M2. Originally published in reference [2].

to average the models together. In this case PPD samples of the trajectory and

pressure profiles are sampled based on the weights assigned by the information

criteria, resulting in PPD’s for the trajectory and pressure profile based on both

models. An example composite model is shown in Fig. 4.2 (c), where the trajectory

and pressure profile shown in (c) are composed of a weighted sampling of the

model, M1 and M2, shown in (a) and (b), respectively. In this case, the weighting

was established by using the WAIC information criteria, but LOO and the Bayes

factors gave very similar weightings.

Since the synthetic data were generated from a hydrodynamics code, the trajec-

tory of the shell and pressure profile is known for all times. In this case comparison

is made to the innermost zone of SiO2 in the code, which is the zone that borders

the fuel. The trajectory and pressure in this zone are shown as solid black lines

in Fig. 4.2. Intervals of increasing probability for the PPD are shown by the

colorscale. The model displays good predictive capability across all times, with

the "true" values from the code usually falling inside the 68.3% confidence inter-

val (dotted-dashed blue lines). This demonstrates that the model has predictive
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capability outside of the regions where data are directly measured.

4.3 Results

After testing the utility of the reduced model using a synthetic experiment, the

same process can be applied to experimental data. M1 and M2 were sampled the

same way as the synthetic experiment, but now using the real experimental data,

~yexp. The models were then averaged the same way, with relative weightings of

0.54 and 0.46 respectively (given by WAIC).

The posterior distributions of the parameters give important insight into how

well constrained the models are by the data. Figure 4.3 shows the posterior dis-

tributions for the nine parameters that are common to both M1 and M2. Among

these, most have similar distributions except for Ṁ and ve. The difference in these

distributions, specifically the fact the they are more peaked for theM2 case, is due

to how the pressure profile is treated early in time. The posteriors for the peak

pressures, which are not common between the two models, are shown in Fig. 4.4.

Figure 4.5, displaying pair-wise correlations between parameters, shows a strong

correlation between Ṁ , ve, and γg, which is physically intuitive because the tra-

jectory of the shell is set by a balance between the outward pressure from the gas

(determined by γg) and the ablation pressure (determined by a combination of Ṁ

and ve). It was shown in Fig. 4.2 that M2 is better at constraining the early-

time pressure profiles and therefore would have less uncertainty in the correlated

parameters, Ṁ and ve, leading to more peaked distributions.

Another benefit of constructing the full-posteriors and examining pair-wise cor-

relations is the opportunity to identify methods of constraining otherwise difficult

to measure variables [56]. Since Ṁ and ve are tightly correlated, the measurement

of either the mass ablation rate or the exhaust velocity of the ablated material

would tightly constrain the other value. Likewise, a measurement of either of these



CHAPTER 4. THIN SHELLS 68

would also be very constraining of the pressure exerted on the shell by the fuel

or, conversely, a measurement of the pressure exerted on the shell would be very

constraining on the mass ablation rate and exhaust velocity. Examining one self-

consistent model of the entire experimental system provides insights that would

otherwise be difficult to identify (although in retrospect seem obvious).

Given the full parameter distributions from the sampling the PPDs for the

derived quantities such as pressure and trajectory can be constructed. The exper-

imentally inferred shell trajectory and temporal pressure profile at the fuel shell

interface and ablation front, Figs. 4.6(a), 4.6(b) and Figs. 4.6(c), are a direct

result of the model inference. The trajectory (a) and ablation pressure (c) are

both tightly constrained, at the 5% and 10% levels respectively. Pressure is a

key quantity that characterizes an HED system (as it is the measure of energy

density), and specifically the ablation pressure is a measure of how efficiently laser

energy couples into the converging shell. Ablation pressure is usually measured

in either planar geometry [106] or inferred from hydrodynamics codes in spherical

geometry [107], in both cases the utility for testing the coupling models for implo-

sions is limited. These particular measurements are but one example of the utility

provided by the richness and complexity of the results derived from this analysis

method.

The pressure profile in Fig. 4.6(b) shows a peak pressure of 2.2+0.7
−1.0 Gbar cor-

responding to the outgoing shock wave hitting the shell. The pressures measured

here exceeds the energy density defined by binding energy of core electrons and

the volume of their orbitals (≈ 500 Mbar for Si), meaning if there are still bound

electrons (very likely prior to the return shock hitting the shell), their orbitals

will be highly perturbed by neighboring atoms leading to complex collective be-

havior [108]. Beyond the direct pressure effects that may occur, measuring the

pressure profile at the fuel shell interface, and specifically the pressure when the

shock reaches the interface, is interesting for two reasons: (1) The direct mea-
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Figure 4.3: The posterior probability density distributions resulting from the
MCMC sampling for the nine parameters that are common to both model M1

(red) and M2 (blue). The mean values of each distribution are given by the points
on the bottom axis. The only parameters with a significant deviation are Ṁ and
ve, due to how they are related to the different pressure profiles used between the
models. Originally published in reference [2].
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surement of pressure is one of the most challenging aspects of making an absolute

equation-of-state measurement, especially at gigabar conditions, and (2) in tradi-

tional (compressive) ICF implosions, the fuel is generally regarded as isobaric, so

a measurement of the pressure at the fuel shell interface gives the pressure of the

entire fuel.

In addition to the pressure profiles, the use of a self-consistent mechanical

model for the shell gives insight into how energy is partitioned throughout the

experiment. The kinetic energy of the imploding shell follows from the velocity of

the shell [calculated when solving Eq. 4.1] and the mass of the shell, KE = 0.5Mv2,

and the work done on the fuel by the shell follows from the trajectory of the shell

and the pressure profile at the interface. The work, dW , at a given time is equal to

the change in volume, dV , of the fuel (given by the position of the shell) multiplied
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Figure 4.6: The inferred (a) shell trajectory, (b) pressure at fuel shell interface,
and (c) ablation pressure resulting from Bayesian parameter estimation based on
the experimentally measured data (red points on the left). Color bar shows high-
est posterior density intervals (HPD’s) for each quantity with the 68.3% credible
interval given by the dashed line in each. On the right, (a) 68.3% credible intervals
for the different energy components within the model. The energy components in-
clude shell kinetic energy (dark blue shading), total fuel energy (red shading), shell
kinetic energy that does not shading), and ablated kinetic energy (green shading).
Also shown is the total mechanical energy in the model (gray shading), the laser
energy deposited (light blue shading), and the difference (magenta shading) being
a measure of non-mechanical energy in the system including internal energy of the
corona and shell, radiation losses, and uncoupled laser energy. The mechanical
energy of the system accounts for approximately half of the total incident laser
energy, but of that only about 10% contributes to doing work on the fuel. (b)
Mass credible intervals from the model including the shell mass (dark blue shad-
ing), ablated mass (green shading), the released mass (gold shading), and the fuel
mass (red shading) as a function of time. Originally published in reference [3].
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by the pressure, P , at the boundary,

dW = PdV. (4.7)

the total work done on the fuel and, assuming adiabatic compression, the total

energy of the fuel, follows from integrating the work. There are additional forms of

mechanical energy modeled and there are additional forms of energy not accounted

for by the model, all of which are presented in Fig. 4.6(d). The solid blue line is the

laser energy as a function of time, from integrating the measured on-shot power.

The shaded regions represent the highest posterior density intervals with 68.3%

of the probability for each of the energy components. Components constrained

in the model include the shell kinetic energy (dark blue shading), the energy in

the fuel (red shading), the kinetic energy of the ablated mass (green), and the

kinetic energy of the shell which does not do work on the fuel due to material

release (gold shading). The sum of these components (gray shading) represent

the total mechanical energy in the system. The remaining difference between the

mechanical energy and the total laser energy (magenta shading) represents all of

the different energy sinks that are not captured in the model. These components

include internal energy of the corona and shell, radiation losses, and uncoupled

laser energy.

The mechanical energy of the system plateaus prior to the laser energy, show-

ing the time when the shell decouples from the ablation surface. At this point,

additional laser energy does not increase the kinetic energy of the shell and does

not contribute to adding energy to the fuel. This point coincides with the peak of

the kinetic energy of the shell, which is an important metric for the performance

of ICF implosions, although it is rarely directly measured [109, 110]. Additional

laser energy deposited after this point likely stays in the already ablated mass in

the form of thermal energy. Although about half of the incident laser energy goes
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into mechanical energy of the system, only about 10% of this energy ends up in

the fuel. All of the shell mass does not contribute to doing work on fuel [111],

demonstrated in Fig. 4.6(e) where the different mass components are shown as a

function of time.

The mass that does work on the fuel is the shell mass, about 60% of which is

ablated by the time the laser turns off, after which the mass from the shell begins

to release. This released mass also does not do work on the fuel. Ultimately

the shell changes direction when the pressure from the fuel is sufficiently high, at

which point released mass is recaptured as the shell moves out.

Previous measurements of mechanical energy and mass remaining in implosion

experiments rely on backlit radiography techniques [110, 112], which are pertur-

bative to the system and require the removal of drive beams reducing symmetry.

They also often make use of hydrodynamics codes to infer system quantities mak-

ing uncertainty analysis challenging [56, 73, 109, 113]. The method developed

here provides the peak kinetic energy of the shell, the complete time history of the

kinetic energy of the shell, and the work done on the fuel in a non-perturbative,

in-situ measurement. The analysis technique provides a method for gaining quan-

titative insight from integrated HED measurements that was previously not pos-

sible.

To provide perspective, Fig. 4.7 shows a temperature-density diagram and

a series of isobars (curves of constant pressure) corresponding to other relevant

HED regimes such as 1 Mbar, the top pressure achieved in static compression

experiments (with some exceptions)[114]; 50 Mbar, the top pressures measured in

planar dynamic experiments [33];2.2 Gbar, the highest pressure measured in this

experiment; and 300 Gbar, the pressure predicted to be in the core of the sun [115]

and the highest predicted pressures in HED experiments [109, 116]. The orange-

yellow color map shows the modeled temperature and density states as functions

of radius within the solar interior [115]. The green-yellow colormap shows the
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color scale) and the states found in the fuel during the experiment presented
here assuming an ideal equation of state. The gray shaded region is where most
HED experimental measurements are historically made, generally below 50 Mbar.
Originally published in reference [3].

temperature and density states of the fuel in this experiment as functions of time

derived from assuming a fully ionized ideal equation of state and conservation of

mass using the trajectory of shell to determine fuel volume and the pressure at the

interface, treating the fuel as isobaric, a reasonable approximation (due to the high

temperatures, > 106 K, leading to high sound speeds) despite the spatial gradients

likely within the temperature and density. This provides a useful illustration of the

average temperature and density states within the fuel given the measured energy

deposited within the fuel. Generally, as seen here, convergent HED systems reach

pressures relevant to solar interiors but through higher temperatures and lower

densities, although experimental designs can be tuned to achieve densities more

relevant to stellar interiors.
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In summary, the interaction of a laser-driven glass shell with a gigabar rebound-

ing shock wave was studied using Bayesian inference and in-situ x-ray self-emission

imaging. The peak pressure achieved by the shock wave was 2.2+0.7
−1.0 Gbar, higher

than any previous mechanical measurement of a shock wave strength. The mea-

surement of ablation pressure and shell trajectory can both be used to test key

physics used in implosion modeling and the full temporal history of the kinetic

energy of the shell provides insight into both the efficiency of laser conversion into

mechanical energy and ultimately into the work done on the fuel. The implications

of these measurements are far reaching; the possibility of absolute equation-of-state

measurements using a mechanical measurement of pressure [68], diagnosing the

conditions within implosions for studies of atomic spectroscopy [78], fundamental

nuclear science under extreme thermodynamic conditions [117], and more robust

methods for quantifying the performance of ICF implosions [56, 73, 109, 113]. The

numerous results presented here demonstrate the richness of information that is

available from Bayesian inference of integrated data from convergent HED exper-

iments.



76

Chapter 5

Thick Shell Modelling

Portions of this chapter are reproduced from [J.J. Ruby, J.A. Gaffney, J.R. Rygg,

Y. Ping, and G.W. Collins. High-energy-density-physics measurements in implo-

sions using Bayesian inference. Physics of Plasmas, 032703(28), 2021], with the

permission of AIP Publishing.

As stated in the previous chapter conducting synthetic experiments is not only

valuable for post fact analysis development but also for pre-experimental design

and decision making. There is a strong argument to be made that performing

synthetic experiments and developing an analysis process before conducting an

experiment is the most valuable application of these tools because of the insight

it provides in identifying which quantities from an experiment are informed by

which measurements and whether those measurements are feasible. This chapter

presents an example of this process for a thick-shell compressive target as described

in chapter 3.

Targets with significant compression from the inertia of the shell material are

well studied [57, 80], primarily due to efforts made in ICF and in particular,

producing experiments that generate significant amounts of fusion energy [69, 74,

118]. In this work, a subset of compressive implosions is considered, specifically

with the goal of being as robust against 3-D effects as possible and therefore

explicable through the lens of a radially symmetric 1-D model. The highest-

performing ICF implosions require high implosion velocities and low shell masses,
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Figure 5.1: Lagrangian particle trajectories for the shell material (grey) and gas
(blue) in the simulated target. Also shown is the laser pulse (red) used to drive
the target. On the left a wedge of the target is shown for context. Originally
published in reference [4].

leading to high convergence and significant perturbation growth [119], while the

implosions discussed here use thicker shells and lower implosion velocities and

higher entropy states (driven by a single strong shock) in order to emphasize the

1-D symmetry of the system.

The primary mode of energy transfer into the fuel in these experiments comes

from kinetic energy transfer from the high inertia shell as it slows down and com-

presses the fuel. Unlike the shock systems, where the states are established by

an evolving converging and diverging shock wave, the dynamics of energy transfer

in the compressive regime make electronic thermal conductivity and radiative en-

ergy losses important factors in the overall evolution of the states that are created

[57, 72, 73, 80, 120] implying that the measurements from implosion platforms

are sensitive to the details of thermal conductivity and radiative properties. Al-

though the targets discussed here firmly exist in either the shock or compression-

dominated regime there is no binary transition between the two but rather a

spectrum of targets that share the qualities (and complexities) of both types of

targets.

Here the 1-D Lagrangian hydrodynamics code LILAC [75] is again used as the
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more complete physics model to produce the synthetic experiment. The simulated

system includes a 30 − µm beryllium shell filled with 15 atm. of D2 gas and has

an outer diameter of 860− µm. This target is driven with 27 kJ of UV laser light

in a 1-ns square pulse. The laser pulse and target are shown in Fig. 5.1 along

with Lagrangian zone trajectories for the fuel and shell. The details of this target

were chosen to promote as uniform an implosion as possible. A thick shell driven

with a single strong shock is a "high-adiabat" [72, 80, 116] implosion, robust to

hydrodynamic perturbations.

5.1 Synthetic Measurements

The simulation output includes the thermodynamic states (temperature, density,

pressure, etc.) in each zone, and these are used to calculate the amount of x-ray

self-emission (Eq. 3.1) and neutron self-emission (Eq. 3.10 with the reactivity

from [84]). These quantities are then used to produce synthetic measurements

based on typical implosion diagnostics, in particular time-gated radial x-ray pro-

file measurements (such as would be measured by an x-ray framing camera [38]),

time-resolved x-ray emission with multiple different spectral channels (as would be

measure by multiple diagnostics [95, 121, 122]), the temporal history of the neu-

tron production, neutron spectrum, and neutron yield, all of which are standard

measurements in ICF experiments [87, 96]. These are "idealized" synthetic data,

meaning an attempt was made to account for the instrument response functions

for each measurement and typical uncertainties were used for each but no attempt

was made at simulating typical background signals or other noise sources associ-

ated with each measurement. Additionally, the spectral and temporal channels

were chosen such that sources of emission other than the hot spot, such as xrays

from the shell material either during the laser drive or when the hot spot is assem-

bled, are ignored. This is a plausible set of measurements, but care must be taken
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Figure 5.2: An example of producing synthetic measurements showing the (left)
emission in each zone calculated from the hydrocode output at a particular wave-
length, (middle) the integral used to calculate the spectrally integrated x-ray power
through a particular spectral filter with transmission given below, and (right) the
resulting x-ray power as a function of time. There is a large peak in the x-ray
power in early time corresponding to emission from the hot plasma created While
the laser is on and a peak later in time corresponding to the hot-spot emission of
interest.

to determine the exact photometrics of these measurements prior to performing

an experiment.

Figure 5.2 shows an example of calculating synthetic data from the LILAC

output for the time resolved x-ray emission. In this case the x-ray emission gen-

erated in each Lagrangian zone is calculated and then integrated over the volume

and spectrum to produce the x-ray power as a function of time. The integral

over the spectrum includes a transmission function corresponding to the spectral

response of the detector. Not shown in the figure is a final step of convolving

the output with the temporal response of a particular detector to mimic the final

measured signal.

The synthetic data (the right most plot in Fig. 5.2) shows a large peak early in

time that corresponds to coronal emission from when the laser is incident on the

target and a smaller peak later in time corresponding to the hot-spot emission of

interest. These correspond to the signals seen in the left most plot in Fig. 5.2 in

the top left and bottom right respectively. The hot-spot emission is much greater

per unit volume but is a much smaller volume than the coronal emission meaning
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that in terms of total x-ray energy emitted the corona is a few times brighter,

meaning the diagnostics used to measure the hot-spot emission must be able to

distinguish between these two signals temporally, spatially, or spectrally. This is

an important finding that needs to be accounted for during the execution of an

experiment.

5.2 Hot Spot Model

The reduced model used to describe the system is heavily influenced by previous

work[57, 72, 73, 80, 120], the thermodynamic states of the hot spot are established

through energy balance and conservation equations starting with a time-dependent

parameterization of the hot spot energy, given by a Gaussian function

E(t) = E0e
−(t−tE)2

2σ2
E (5.1)

where E0, tE, and σE are the peak internal energy, time of peak energy, and width

of the temporal energy profile, respectively. Each of these is a free parameter of

the model.

The radial extent of the hot spot, R, is defined by a trajectory of constant

acceleration,

R(t) = R0 + v0t+
1

2
a0t

2 (5.2)

and defines a time dependent hot spot volume

V (t) =
4

3
πR(t)3. (5.3)

The energy and volume then give the pressure

P (t) =
E(t)

cV V (t)
, (5.4)



CHAPTER 5. THICK SHELLS 81

assuming an ideal gas equation of state with a specific heat at constant volume,

cV .

A two-temperature fluid is assumed, with the electron temperature, Te, and

ion temperature Ti both having the same self-similar temperature profiles given

by

Te,i(r, t) = T 0
e,iTr(r/RHS) (5.5)

where T 0
e,i is the (electron,ion) temperature at r = 0 and RHS is the boundary of

the hot spot. Following from conservation of mass and an ideal gas equation of

state we get the relationship
Ṁ

M
=
Ė

E
− Ṫ 0

T 0
, (5.6)

where T 0 = Z̄T 0
e + T 0

i and Z̄ is the average ionization state, Z = 1 in this case

considering fully ionized hydrogen. Since the hot spot is defined by the fuel it is

fixed mass so Ṁ = 0 and
Ė

E
=
Ṫ 0

T 0
. (5.7)

Integrating Eq. (5.7), with the initial condition T 0(t = t0) = T 00 gives T 0(t) =

Z̄T 0
e (t) + T 0

i (t) but the individual central temperatures for electrons and ions are

still unknown. The ideal equation of state allows the radial density distribution

to be constructed from the radial temperature distributions,

ρ(r) =
ĀP

NA

1

Z̄Te(r) + Ti(r)
(5.8)

where Ā is the average atomic mass and NA is Avogadro’s number. The radial tem-

perature profiles Te,i(r) follow from solving the two temperature heat conduction

equation,

cPP

Z̄Te + Ti

(
Z̄
∂Te
∂t

+
∂Ti
∂t

)
=

1

r2

∂

∂r
κer

2∂Te
∂r

+
1

r2

∂

∂r
κir

2∂Ti
∂r

(5.9)
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where κe,i is the (electron,ion) thermal conductivity which combine to give the

total conductivity,κ0 as

κ = Z̄κe + κi (5.10)

and the total conductivity is assumed to be of the form

κ = κ0

(
ρ

ρ0

)a(
T

T0

)b
(5.11)

where a and b are the conductivity exponents as established in Spitzer[11]. Com-

bining Eqs. (5.8) - (5.10) and separating the temporal and spatial components

leads to a coupled equation for the radial temperature profile, Tr, and the central

temperatures, T 0
e and T 0

i ,

∂

∂t

(
Z̄T 0

e + T 0
i

)
=

λ

1 + Z̄

κ0

ρa0T
b
0γ

(
Ā

NAcV

)a(
E

V

)a−1
Z̄(T 0

e )1+b + (T 0
i )1+b

(Z̄T 0
e + T 0

i )a−1
(5.12)

with

λ =
1

r2

∂

∂r
r2T b−ar

∂Tr
∂r

. (5.13)

Using the boundary conditions Tr(r = 0) = 1 and Tr(r = RHS) = η (η < 1) the

radial profile can be found as

Tr =

[
1−

(
r

RHS

)2

(1− η1+b−a)

] 1
1+b−a

. (5.14)

Now since T 0(t) is known along with the radial terms for Te,i(r, t) all that remains

is a relationship between T 0
i and T 0

e to close the system. This relationship can

take any form, including the simplest case where T 0
e = T 0

i , here the relationship

T 0
e = T 0

i −De−t/τ (5.15)
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is used, whereD and τ are parameters of the model relating to the initial difference

in the electron and ion temperatures and the rate at which they equilibrate, related

to but not equal to the electron-ion coupling time scale [11, 80, 123].

At this point all of the thermodynamic variables can be constructed in space

and time giving P (t), V (t), Te(r, t), Ti(r, t), and ρ(r, t). The quantities required to

close the model are E(t), RHS(t), T 00, η(t), a, b, cV , D, and τ . It should be noted

that the boundary temperature η(t) can be independent for both the electrons

and ions, but in this work will be taken as the same value for the electrons and

ions.

An obvious extension of this model is the inclusion of parameters that de-

scribe the shell, which would have kinetic energy related to the internal energy

of the hot spot changing the parameterization of the trajectory of the hot spot

size and which would contribute to the hotpot mass through conductive ablation,

an important mechanism in ignition-scale implosions [72, 120]. In this case the

situation is simplified by considering the hot spot as an independent system that

is not necessarily closed, i.e. energy need not be conserved within the system.

5.3 Results of Bayesian Inference

The parameters of the reduced model are inferred using the synthetic data accord-

ing to the same prescription in chapter 4, in particular using a gaussian likelihood

function and an SMC sampler. Figure 5.3 shows the predicted distributions for

a set of the simulated measurements based on a Monte Carlo sampling of the

reduced model. The model is able to reproduce all of the measurements shown

within the 68.7% credible intervals (shown by the blue dashed-dotted lines). The

profiles that result from the sampling shown in Fig. 5.3 are shown in Fig. 5.4 along

with the underlying simulation profiles. The predicted profiles from the reduced

model show excellent agreement with the "true" profiles that from the underlying
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Figure 5.3: A comparison of the predicted distributions (color map) for obser-
vations from Bayesian inference and the synthetic data generated (red solid) with
normally distributed errors (dashed shows 1-σ), for (a) radial x-ray profiles at 3
(out of 16) times, (b) x-ray temporal histories in 3 different spectral channels, and
(c) the neutron burn rate, spectrum, and yield (left to right). The inferred quan-
tities are shown with a highest posterior density on the color scale. The inferred
distributions from the model are able to reasonably reproduce the data across all
measurements. Originally published in reference [4].
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Figure 5.4: A comparison between the inferred profiles from the reduced model,
again showing highest posterior densities in the color map with green representing
the most likely (median) prediction, and underlying profiles from the simulation
(red) for (a) the radial dependence of electron temperature, ion temperature, and
density at 3 different times, (b) the temporal history of the hot spot radius, and
(c) the temporal profile of the hot spot pressure. The inferred quantities do an
excellent job recovering the underlying profiles with the exception of the hot spot
radius, which is under predicted throughout, leading to the truncation of the radial
profiles in (a). Originally published in reference [4].

simulation for the electron and ion temperatures, density, and pressure in space

and time. The exception is the hot-spot radius as a function of time, which is

under-predicted for all times. This leads the the truncation of the radial profiles

seen in Fig. 5.4(a). It is clear that, with respect to the third point above, the

set of synthetic measurements presented here is enough to constrain the reduced

model and reproduce the underlying profiles of interest.

An interesting next step is to investigate how the predictions vary with or with-

out different measurements. This is presented in Fig. 5.5, where the results for the

central electron and ion temperatures, central density, and hot-spot pressure are

compared to the underlying simulation (red points) for three different times. Each

box represents a different data set used, including the full data (green), excluding

the neutron spectrum (cyan), excluding the spatial x-rays (blue), excluding the

temporal x-rays (navy), and using a known hot spot radius for all times (pur-

ple). Leaving out the neutron spectrum has a minimal impact on the inferred

profiles, meaning that the information contained in the neutron spectrum (in this
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particular simulated implosion) is redundant with the other measurements. The

neutron spectrum is generally considered constraining on the ion-temperature of

the system [124, 125] but the information is likely redundant with the neutron

yield (which is very sensitive to ion temperature through the reactivity) and the

x-ray spectral information contained in the temporal x-ray history. Additionally

the neutron spectrum is integrated over space and time leaving only a single in-

tegrated measurement of the temperature that is not very constraining of the

temporal and spatial evolution of the temperatures. Conversely excluding either

x-ray measurement results in a significant increase in uncertainty for the profiles,

beyond the point of usefulness in most cases. The radial information contained

in synthetic framing camera data is critical to setting the states within the hot

spot and the temporal x-ray history helps break the degeneracy that exists within

the neutron dataset. Finally, a dataset with a known hot spot radius significantly

reduces the uncertainty on the inferred densities and pressures, with a much more

modest reduction in uncertainty on the temperatures, although it does rectify the

early truncation of the profiles seen in Fig. 5.4.

To demonstrate the degeneracy that arises in model parameters when a mea-

surement is excluded, Fig. 5.6 (b) and (c) shows the pairwise posterior distri-

butions for the time of peak energy, tE and the hot spot radius at tE, given by

the trajectory parameters R0, v0, and a0 along with histograms of the parameter

values in Fig. 5.6 (a) and (d). The red distribution in (b) includes all of the

measurements and the blue distribution in (c) excludes the framing camera mea-

surements. The distribution without the framing camera shows that the these two

parameters are strongly correlated, with a positive correlation coefficient, leading

to very broad posterior distributions for both parameters in (a) and (d). The

framing camera breaks this degeneracy resulting in a distributions with minimal

correlations and much more narrow posterior distributions.

This result may be somewhat surprising because even without the framing
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Figure 5.5: A boxplot comparing the inferred thermodynamic parameters from
the reduced model and the underlying values from the simulation (red) for (a) the
central electron temperature, (b) central ion temperature, (c) central density, and
(d) pressure at 3 different times. The different color boxes represent the results
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the bars show the full extent of the distributions. Originally published in reference
[4].
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Figure 5.6: Pairwise distribution for the time of peak energy, tE, and hot spot
radius at time of peak energy, RHS(tE), showing (c) their strong correlation with-
out the framing camera data and (b) how the degeneracy is broken when all of
the measurements are used. The projected histograms for (a) the radius and (d)
the time both show the effect of the using all the data (red) in narrowing the
distributions from the case without the framing camera (blue). Note the axes in
(b) are transposed from those in (c). Originally published in reference [4].
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camera measurements there is still neutron and x-ray temporal measurements that

may be expected to constrain the temporal history of the fuel internal energy, but

seemingly do not. The degeneracy exists because both the x-ray and neutron

yields depend on the energy of the hot spot and the volume of the hot spot (the

energy density) meaning that the peak in emission does correspond to the peak in

internal energy, but rather the peak in energy density which depends on the radius

and energy and the degeneracy is broken with the time-gated radial measurements

of emission from the framing camera.

Finally the ability to extract information about the thermal conductivity is

presented in Fig. 5.7 which shows a boxplot, similar to Fig. 5.5, but for the

conductivity exponent which depends on a combination of the temperature and

density dependencies, b and a, respectively, following from Eq. 5.14. Since the

temperature profile depends on this combination of parameters, and the emission

profiles depend on the temperature profile, it is this quantity that is constrained.

The underlying simulation made use of Spitzer conductivities [11], which have

a = 0 and b = 2.5 so the quantity (1 + b− a)−1 = 0.286, shown with the red point

in the figure. The conductivity exponent has a modest effect on the temperature

profile, and this can be seen here where, despite the temperature profiles being well

constrain by the measurements as shown in Fig. 5.4, the conductivity exponent

has a fairly broad distribution in the best case resulting in 0.25±0.08
0.1 (median

±68.7% highest posterior density interval). The conductivity exponent under

these conditions can be constrained at the few tens of percent level, future work is

needed to investigate the necessary precision to distinguish between conductivity

models and what, if any, additional measurements can produce a tighter constraint

on the conductivity.
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Chapter 6

Conclusions

Laser-driven implosion experiments can reach a wide variety of interesting high-

energy-density conditions and there is great opportunity for discovery in these

systems. Basic target design with a simple laser pulse shape is able to transition

between interesting energy regimes — shock dominated and compression domi-

nated — and within those regimes different types of transport physics as able to

be emphasized depending on the initial conditions. There are a standard set of

measurements able to be made in laser driven implosions and the understand-

ing how the measurements are sensitive to different physical mechanisms is key

to understanding the physics and measurements. Reduced models coupled with

Bayesian inference give a straightforward way to explicitly state the assumptions

of a particular analysis, and understand how the measurements are able to con-

strain the model of the system. Two examples of this process have been presented

here, one in the shock dominated regime and one in the compression dominated

regime.

In the shock dominated regime shows how a seemingly isolated measurement, a

trajectory of a decompressing shell, can be used to characterize the energy balance

of the implosion through out its entire history. This is a powerful result showing

how integrated these implosion experiments are and how every stage of an implo-

sion can potentially be leveraged to constrain relevant physics. Beyond the general

premise, the mechanical measurement of a 2.2 Gbar shock wave in the absence of
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assumptions about thermodynamic path or equation of state is an exciting step

towards an absolute and path independent equation of state measurement at Gbar

pressures.

The example using a thick shell implosion driven with a square pulse, shows

that the thermodynamic profiles (temperature, density, pressure) of the assembled

hot spot can be reconstructed in space and time using standard self-emission

measurements of x-rays and neutrons. In addition it is shown that the neutron

spectrum does not have much leverage on the spatial and temporal profiles of

temperature, but time-gated spatial resolved x-rays measurements in combination

with time-resolved and spectrally gated x-ray measurements are very constraining

when used with neutron burn rate and yield measurements. This demonstrates

the information contained in currently performed measurements and will hopefully

inform the analysis and interpretation of future implosion experiments to include

a self-consistent picture of all measurements.

This process presents a new modality for experimental design that allows an

analysis pipeline to be built and tested prior to an experiment informing both

experimental design and diagnostic decisions for the experiment. This process can

be expanded to any number of systems and used both in the pursuit of inertial

fusion ignition and understanding of fundamental HED physics.
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