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Constraining physical models at gigabar pressures
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High-energy-density (HED) experiments in convergent geometry are able to test physical models at pressures
beyond hundreds of millions of atmospheres. The measurements from these experiments are generally highly
integrated and require unique analysis techniques to procure quantitative information. This work describes a
methodology to constrain the physics in convergent HED experiments by adapting the methods common to
many other fields of physics. As an example, a mechanical model of an imploding shell is constrained by
data from a thin-shelled direct-drive exploding-pusher experiment on the OMEGA laser system using Bayesian
inference, resulting in the reconstruction of the shell dynamics and energy transfer during the implosion. The
model is tested by analyzing synthetic data from a one-dimensional hydrodynamics code and is sampled using
a Markov chain Monte Carlo to generate the posterior distributions of the model parameters. The goal of this
work is to demonstrate a general methodology that can be used to draw conclusions from a wide variety of HED
experiments.
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I. INTRODUCTION

Large-scale, high-energy-density (HED) experimental fa-
cilities are able to generate states of matter that push beyond
the limits of where most physical models were developed.
This necessitates quantitative experiments to guide theories
and techniques at such conditions. Convergent geometries,
either spherical or cylindrical, amplify the pressure generated
from HED drivers, such as lasers or pulsed-power machines,
and create the most extreme thermodynamic states currently
achievable in the laboratory. These convergent experiments,
however, complicate measurements, making direct measure-
ment of state variables and transport properties difficult. Often
measurements are the result of an integrated system, where
many properties of the system are responsible for observa-
tions, rather than a small number of key physical quantities.
Such integrated system analysis requires a new way of ap-
proaching how experimental data are interpreted.

The study of inference methodology is an established field
[1] and modern techniques are regularly used in many areas
of physics [2]. Although various methods of inference have
successfully been used to understand HED experiments [3–7],
these methods are not widely implemented. Use of these tech-
niques has provided insight across many fields of physics [2,8]
and there is great opportunity for discovery in HED science by
adopting these methods.

This work proposes the use of a well-established [2,8]
methodology for deriving quantitative physical information
from integrated HED experiments. This process includes the
synthesis of a model, which contains the essential physics

from the experiment, and is used in a forward analysis,
generating synthetic experimental data to directly compare
to the measurements. Given the proper parametrization and
set of measurements the model can be constrained, giving a
quantitative assessment of the input parameters. An exam-
ple workflow is given, using a direct-drive exploding-pusher
experiment carried out on the 60-beam OMEGA laser sys-
tem, where the trajectory of an exploding shell is measured
via x-ray self-emission on an x-ray framing camera. The
process is applied to synthetic data generated using the one-
dimensional (1D) hydrodynamics code LILAC, confirming that
the parametrization accurately represents the physical quan-
tities of interest. The process is used to infer the temporal
pressure profile felt by an in-flight shell and the subsequent
trajectory from experimental measurements, demonstrating
how a large amount of physical insight can be gained by using
integrated measurements.

II. METHODOLOGY FOR MULTIVARIATE ANALYSIS
OF HED EXPERIMENTS

It is useful to picture the flow of information in a typical
HED experiment as shown in Fig. 1. Shannon presented the
first picture of information flow in [1] shown in Fig. 1(a) and
it is adapted to relate to a physical system in Fig. 1(b). The
information source in these experiments is the physical system
itself and the message can be thought of as the physical prop-
erties of the system. The message is transmitted through some
other physical processes, usually self-emission or interaction
with some kind of probe. The message is subject to noise,
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FIG. 1. (a) Flow of information in the transmission of a message as shown by Shannon in [1]. (b) Interpretation of the flow of information
in a physics experiment. The information source is the physical system and the message is the details of that system. The information is
transmitted either through some self-emission process or an interaction with some kind of probe. The signal is subject to noise during the
transmission such as background signals that are not relevant to the details of the system that are of interest. The receiver is the detector used
to measure the signal and the received message is in the form of the raw data output (e.g., an image). The destination of the signal is the
experimentalist making the measurement. (c) The proposed workflow of this article in the form of a standard Bayesian forward inference.
The workflow models the flow of information shown in (b) starting with a model of the physical system parametrized by the set of values
�θ producing the signal through the modeled emission and interaction process parametrized by the set of values �η. The signal is then passed
through a model of the detectors F (�θ ; �η), which outputs a message that is directly compared with the experimentally measured message. The
model parameters are then updated based on the likelihood of the measured signal, which takes into account the experimental noise through
the uncertainty �σ .

such as unwanted background processes, and is received by
detectors. Finally, the destination is the experimentalist and
the received message comes in the form of raw data, such as
images or oscilloscope traces. Similar to how Shannon sought
to take a noise-encoded signal and reconstruct the original
message, the experimentalist has the same problem. The raw
data can be thought of as an encoded message that is subject
to noise through transmission.

In this article, a method to reconstruct the original message
is presented based on Bayesian inference. A general forward-
modeling procedure is shown in Fig. 1(c), where a physical
model of the system, parametrized by the set of quantities
�θ , is used to generate a message by modeling the process of
self-emission and/or probe interaction, which is parametrized
by the set of quantities �η. The signal is subject to some noise,
which is represented by �σ , the uncertainty on the measure sig-
nal. Finally, detectors are modeled by some function F (�θ ; �η)
that creates a synthetic signal that can be directly compared to
measured signal.

At this point, the comparison between the synthetic sig-
nal and measured signal can happen with any choice of

metric, such as the sum-squared pointwise deviation (as in
least squares analysis), and the analysis does not have to take
the form of Bayesian inference. This process can be done by
minimizing the chosen metric [4], for example, to get the “best
fit” values for �θ .

Although a Bayesian method of inference is not necessary
in general, there are some cases where it is necessary, and
in all cases it has significant benefits over other methods of
model fitting. These advantages include a better understand-
ing of uncertainties and constraint, an intuitive and robust
methodology for model comparisons, and a straightforward
method for including additional information in the model
fitting. A list of common terms of Bayesian inference with
definitions that will be used throughout this work is given in
Table I.

In the highly integrated systems that are commonly found
in HED science, Bayesian inference addresses many difficul-
ties found in analysis. Perhaps the most important advantage
comes from the full construction of the posterior probabil-
ity distributions, usually through Markov chain Monte Carlo
techniques, which not only give insight into the uncertainties
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TABLE I. Common terms and definitions found in Bayesian inference. p(X |Y ) represents the probability distribution of X given that Y is
true.

Term Mathematical formulation Description

Model M M1 or M2

Data D or �Y Observed data
Model parameter �θ Parameters in the model

p(�θ |D, M ) = p(D|�θ,M )p(�θ |M )
p(D|M ) Probability distribution of

Parameter posterior distribution
p(θi|D, M ) = ∫

dθ j �=i p(�θ |D, M ) parameters given data

Probability of observed data
Likelihood p(D|θi, M )

given a model and set of parameters

Represents initial information
Parameter prior distribution p(θi|M ) about the parameter

Model posterior p(M1|D) = p(D|M1 )p(M1 )
p(D) Probability of model given observed data

Probability of observed data given a model
Marginal likelihood p(D|Mk ) = ∫

d�θ p(D|�θ, Mk ) p(�θ |Mk ) integrating over parameter distributions

Model comparison metric
Bayes factor B = p(D|M1 )

p(D|M2 ) assumes p(M1) = p(M2)

on any given parameter, but also capture multiple explana-
tions for the observed phenomena. This is critically important
because in these systems there is no guarantee that the ob-
servations are sufficient to uniquely infer the parameters,
and this knowledge would be lost when using a point esti-
mate technique. The construction of the full posteriors also
gives a natural way to compare different models using the
marginal likelihood or other information criteria as discussed
in Sec. V D. Finally, Bayesian inference includes the use of
prior distributions for the values in �θ and �η, allowing previous
measurements, physical constraints, and any other relevant
information to be used to constrain a model that would oth-
erwise be underdescribed by a single measurement.

It should be stressed again that the ideas presented here are
not, in themselves, novel and have been well developed over
a long period of time and successfully used in many fields
[2,8]. The contribution of this work is to adopt the methods
used elsewhere and adapt them for use in HED systems.
This has been suggested before [5] in the context of inertial
confinement fusion measurements but has yet to be widely
used in HED analysis. These methods will provide an avenue
for using integrated measurements, which previously were
very challenging or impossible to analyze, to gain quantitative
insight into physics in extreme conditions.

III. EXPERIMENTAL MEASUREMENTS

The experiment that will be used as an example for the
application of this method was performed on the 60-beam
OMEGA laser system [9] at the Laboratory for Laser Ener-
getics. A sketch of the experimental setup is shown in Fig. 2.
The target is an 879-μm SiO2 glass sphere with 3-μm-thick
walls. The sphere was filled with 18.9 atm of deuterium
gas. The target was illuminated with 60 spherically config-
ured uv laser beams containing 230 J per beam in a 600-ps

super-Gaussian square pulse. The beams were configured
with SG-5 distributed phase plates [10], resulting in a super-
Gaussian spatial profile with diameter of about 720 μm.

The lasers drive a strong spherically converging shock
wave into the glass shell via mass ablation [11]. This shock
transits the glass shell and breaks out into the deuterium gas,
eventually reaching the center of the target. Once at the center,
the shock is strong enough to generate deuterium-deuterium
fusion reactions and a nuclear particle yield is measured. The
shock then moves back outward through the deuterium gas
and eventually interacts with the glass shell that was set on a
converging trajectory by the first shock interaction. Once the
rebound shock hits the shell, the material becomes hot enough
to have significant ionization and produces bremsstrahlung
x-ray emission. This emission is measured using a pinhole
array that projects two-dimensional (2D) images onto an x-
ray framing camera that uses a voltage sweep to temporally
gate the images [12]. This gives a series of snapshots of the
emitting shell projected onto the 2D camera. The center of
each snapshot is found, and a radially averaged measurement
of the x-ray emission is taken, shown in Fig. 3(b). Since the
shell emission is localized in space, this measurement gives
the trajectory of the shell, which will be used to constrain
the model presented in this work. The trajectory is shown in
Fig. 3(c) with the corresponding errors determined from the
experimental uncertainty in magnification and from the varia-
tion in the radially averaged location of the peak emission.

IV. MODEL SYNTHESIS

Analysis of physical data brings some model of the un-
derlying system to bear, whether it be implicitly or explicitly.
Implicit assertion of a model sometimes occurs when a direct
correspondence is drawn between some measured quantity
and some physical quantity of interest. Often, it is preferable
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FIG. 2. A cartoon of the experimental configuration. UV laser beams uniformly irradiate an SiO2 shell, ablate some portion of the shell
mass, and drive a strong spherical shock wave. The shell is set in motion while the shock converges in the center of the target, producing
nuclear fusion products. The shock then diverges from the center eventually reaching the shell, now at about 1

4 the initial radius. When the
shell is hit by the rebounding shock wave, the temperature is sufficiently high to produce x-ray emission via bremsstrahlung radiation, which
is measured using an x-ray framing camera (example shown at bottom right).

to explicitly impose the underlying model assumptions and,
when possible, forward model the corresponding measure-
ments so as to keep the data as close to original as possible.
Each measurement and system is unique and the point that
the model should be compared to the data must be carefully
considered; inevitably, some level of processing will occur
to both the observed and modeled data. An example of this
decision is whether to define error bars for the experimental
data, as is done in this work, or apply noise with an appro-
priate distribution to the simulated data, which could be used,
for example, in the processing of spectral measurements or
image comparison where a pointwise error estimation may be
cumbersome. Ultimately, this decision is made on a case-by-
case basis and depends on the nature of both the data and the
model.

A. Desired model properties

This work intends to quantitatively determine meaningful
measurements from experimental data. This end requires that

FIG. 3. (a) An example frame of the emitting shell, (b) the
radially averaged line out, and (c) the measured trajectory of the
diverging shell.

whatever model used is parametrized by physically meaning-
ful quantities, so when a fit of these parameters is made to
experimental data the results are able to be abstracted be-
yond the model. There is no guarantee of uniqueness when
constructing a model. When faced with multiple models that
adequately explain the observations’ preference is given based
on Ockham’s razor [8,13], that is the simpler of the models
is preferred. This can be evaluated quantitatively in multiple
ways [2,8], for example, by making use of Bayes factors
[13,14] or other information criteria [15]. Additionally, it is
desirable for the model to be computationally efficient enough
to be sampled for Bayesian inversion, especially if there are
multiple candidate models that need to be compared. This is
not always possible, and depends on the specific requirements
and complexities of the system; even when not possible di-
rectly there is potential for a surrogate model [16,17] to be
used in order to regain the computational efficiency needed to
invert the model with a Markov chain Monte Carlo (MCMC).
The model presented in Sec. IV B, which required on the
order of 1 × 107 evaluations per sampling, does not require
a surrogate. The sampling of the inversion is discussed in
Sec. V C.

B. Model for exploding pusher targets on OMEGA

The model used to describe the experiment discussed in
Sec. III uses 10 total parameters. There are three parameters
that describe the shell, Mf, Rf, and vf, which are the mass of the
shell, radius of the shell, and velocity of the shell, respectively.
The second-order ordinary differential equation (ODE)

d2R

dt2 = a, (1)

where R is the radial location of the shell and a is the acceler-
ation of the shell. The acceleration takes the form

a(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t < ta
4πR2P

M − Ṁve
M , ta � t < tl

4πR2P
M , t � tl

(2)

053210-4



CONSTRAINING PHYSICAL MODELS AT GIGABAR … PHYSICAL REVIEW E 102, 053210 (2020)

where P is the pressure pushing outward on the shell due to
the fuel inside and M is the mass of the shell both of which
(along with the radius R) are time-dependent quantities, while
the ablation rate Ṁ and exhaust velocity ve are both time
independent. The acceleration starts when t � ta, interpreted
as the time ablation starts. At this point, there is an outward
force from the fuel inside the shell and an inward force from
the rocket effect of the ablated mass. Once the laser turns off
at tl the force from mass ablation stops and only the outward
force from the fuel remains. The pressure profile from the fuel
is given by

P(t) =
{

(Prs )e−γg(ts−t), t � ts
(Prs )e−γd(t−ts ), t � ts

(3)

with exponentially growing term with growth rate γg, for
times before ts and an independent exponentially decaying
profile with decay rate γd for times after ts. The peak pressure
reached is given by Prs, which is interpreted at the pressure of
the rebounding shock wave.

The mass of the shell is given by

M(t) =
{

M0 − Ṁ(t − ta), t � min[ts, tM]

Mmin + Ṁ(t − min[ts, tM]), t > min[ts, tM]
(4)

where tM is the time it takes to lose all of the mass of the shell
and Mmin is the minimum mass the shell achieves. The shell
continually loses mass to ablation at a constant rate while the
laser is on and to material release after the laser stops until
the shell trajectory reaches its minimum. At this point, the
shell starts moving outward and regains the released mass as
it moves out.

V. MODEL INFERENCE

The data discussed in Sec. III are used to constrain the
model. This data set consists of N = 26 data points in the
form of radius and time pairs that correspond to the peak of the
radially averaged emission measured on the framing camera.
These data points, along with some additional knowledge such
as target metrology, measurements of the laser pulse, and
physical limits, were used to constrain the model.

A. Objective function

In order to perform parameter estimation, an objective
function must be used. In this work the log-likelihood function
ln(L ),

ln(L ) = −1

2

N∑
i=0

[
Yi − F (�θ )i

σi

]2

, (5)

is used where the Yi are the set of experimental measurements
with uncertainties given by σi, the F (�θ )i are the set of modeled
data values that follow from the input parameter values �θ
being used for the model

�θ = [M0, R0, Ṁ, ve, ta, tl, ts, Prs, γg, γd], (6)

so the function F (�θ ) takes in a set of values for each of the
parameters, constructs the pressure profile and mass profile
given by Eqs. (3) and (4), respectively, and solves the ODE

given by Eq. (1). The function then returns the radius of
the shell at the experimentally measured times to be directly
compared to the measured values.

This formulation assumes independent Gaussian dis-
tributed errors on the experimental measurements, but that is
not necessary and the distribution of the measurements can
take any form and a corresponding likelihood function can be
defined.

Parameter estimation can be done using the log-likelihood
in the form of a maximum likelihood estimate (MLE) or,
equivalently, a minimum χ2 analysis, but these methods are
point estimates and have no notion of uncertainty. This work
uses Bayesian inference, constructing the full posterior distri-
bution of the parameters using an MCMC sampling. Having
access to the posterior distributions of the parameters pro-
vides much greater insight into the behavior of the model
and the constraint new data has on the parameters along with
the uncertainty and correlations among these parameters that
point estimates, such as MLE, do not provide. Uncertainty
analysis using a minimum χ2 analysis usually consists of
finding a minimum (which has no guarantee of being the
global minimum in nontrivial cases) and then seeking out the
χ2

min + 1 contours and using those as confidence intervals on
parameters. This process implicitly makes assertions about the
shape of the likelihood surface and treats the likelihood as a
probability density in the parameters, which is mathematically
inconsistent [18].

In Bayesian inference the likelihood is multiplied by the
prior probability on the parameters and integrated, resulting
in a proper probability density that can be integrated to pro-
duce confidence intervals. This process is not subject to any
individual point on the likelihood surface and is therefore
capable of dealing with complicated and multimodal surfaces
that would hinder MLE techniques.

B. Model testing with synthetic data

Whether a model has a physically relevant parametriza-
tion and whether or not it is constrained given a particular
measurement must be addressed before using a model to gain
insight into the physics of a system. This is done by using a
simulation of an experiment, in this case provided by the 1D
Lagrangian hydrodynamics code LILAC [19], and producing
synthetic experimental data, which is then fit by the model.
The underlying physics in the simulation can then be scruti-
nized to see how well the model parametrization compares.
The ability to simulate both physical systems of interest and
detectors used to measure those systems is a critical aspect
of Bayesian inference and provides great insight into not only
analysis, but also the design of experiments.

The LILAC simulation was run using experimental
spatial and temporal laser beam profiles, a flux-limited
thermal-transport model with flux limiter =0.12, a
3 − μm SiO2 shell using SESAME equation of state 7380
[20] (for reference more recent tables include SESAME 7360
and 7361), and 436.5 μm of deuterium gas at initial density
= 10.4 mg/cm3 (pressure = 18.9 atm) using SESAME equation
of state 5262 [20]. The simulation outputs were postprocessed
to calculate the x-ray emission in each zone by calculating
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the bremsstrahlung emissivity [11,21,22] given by

Jν =
√

211π3

3

(
e2

4πε0

)3
Z̄2n2

e

m2
ec3Z̄

√
3kTe/me

e− hν
kTe [Js−1 m−3 Hz−1],

(7)
where Jν is the spectrally dependent emissivity; Z̄ is the
average ionization state (here Z̄ = 1 for deuterium and
Z̄ = 10 for SiO2); ne and Te are the electron density and
temperature, respectively; ν is the frequency of the emitted
photon; and all other symbols are the usual physical or
mathematical constants. The emissivity of each zone is then
multiplied by the zone volume, integrated over 30 ps, and
integrated for photon energies above 5 keV. The temporal and
spectral integrations both are meant to roughly represent the
temporal and spectral response of the framing camera used in
the experiment. The result of this is a series of radial line outs
of x-ray emission from the simulation, which are then Abel
transformed in order to replicate the signal of the projected
2D image measured in the experiment.

C. Posterior sampling of the model

The posterior distributions were sampled using a sequen-
tial Monte Carlo (SMC) [23], from the PYMC3 [24] library,
which samples a tempered distribution using, for example,
a Metropolis Hastings algorithm. As the “temperature” in-
creases, the tempered distribution converges to the posterior
distributions. SMC methods have the advantage of much more
efficient sampling of higher-dimensional spaces, in this case
a 10-dimensional space, and they are also better at sampling
from potentially multimodal distributions. An additional ben-
efit of SMC sampling is that the prior likelihood surface is
fully sampled as the first step in the SMC, providing a nec-
essary piece for calculating marginal likelihoods, a valuable
metric for model comparisons.

A sampling for the simulated data �Ysim was done using the
likelihood function in Eq. (5) using 3-μm error on each of
the points. Prior selection is an important aspect of Bayesian
inference for parameter estimation and especially for model
comparison (see Sec. V D). The choice of priors is one way
that additional information, outside of measured data, can be
used to constrain an otherwise underdescribed model. In this
case, there are 10 parameters in the model in total, but 5 of the
parameters have strong priors due to physical limitations or
measurement. These five parameters are R0, M0, ta, tl , and ts.
The first two are target parameters that are metrologized prior
to the experiment so they take the form of normal distributions
around the central values with uncertainty given metrology
limitations. The last three parameters all coincide with tempo-
ral events observed in the experiment, such as the laser turning
on and off, and the onset of shell emission corresponding
to shock heating. Additionally, physical considerations such
as the mass, radius, and pressure all being strictly positive
provide constraint. The other parameters, which are not as
well constrained a priori, receive broad normal priors that
are mostly uninformed with the exception of physical of
bounds such as for the ablation rate and exhaust velocity both
of which must be strictly positive quantities. The Bayesian
framework allows all of this information to be explicitly im-
posed and uses them to further constrain the system.

FIG. 4. The posterior predictive distributions for (a) the shell
trajectory and (b) the temporal pressure profile at the shell fuel
interface based on sampling the posterior distributions of the model
parameters estimated using the synthetic data generated by LILAC.
Also shown is the (a) trajectory of the innermost SiO2 zone in LILAC

and (b) the pressure in that zone, both shown in black, and the syn-
thetic data points in red (a). The color scale shows highest posterior
density intervals (HPD), which give the smallest region that contains
a given amount of probability (dotted-dashed blue lines represent the
68.3% probability HPD). Although the model is only constrained by
the initial radius and the data points starting at near 0.9 ns, it is able to
predict the position of the inner edge of the shell and pressure the fuel
exerts on the shell at all times in-between. The greatest divergence
happens in the late time directly before the observations where both
the trajectory and pressure profile fall outside the 68.3% prediction
band.

Once the posterior distributions of the model parameters
are constructed (through the SMC sampling) values can be
drawn from the distributions and passed through the model to
generate posterior predictive distributions (PPD) for the shell
trajectory and pressure profile. The PPD gives a prediction for
what additional measurements would provide, based on the
given model. In this case, for a given time there is a probability
distribution for the radius and the pressure and by sampling
the PDD at many times a probabilistic band of trajectories
and pressures profiles can be constructed (see Fig. 4). This
process is the same as described in Sec. V A but rather than
the parameters in �θ taking a single value, they each have a
distribution, and instead of F (�θ ) returning the trajectory at
the experimentally measured points the trajectory is returned
at an arbitrary time of interest.

Since the synthetic data were generated from a hydrody-
namics code, the trajectory of the shell and pressure profile is
known for all times. In this case, comparison is made to the
innermost zone of SiO2 in the code, which is the zone that
borders the fuel. The trajectory and pressure in this zone are
shown as solid black lines in Fig. 4. Intervals of increasing
probability for the PPD are shown by the color scale. The
model displays good predictive capability across all times,
with the “true” values from the code usually falling inside
the 68.3% confidence interval (dotted-dashed blue lines). This
demonstrates that the model has predictive capability outside
of the regions where data are directly measured.
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FIG. 5. PPD for the trajectory and pressure profiles for (a) M1, (b) M2, and (c) the averaged model based on weightings from the WAIC.
The weights for M1 and M2 are given above the images and are 55% and 45%, respectively. The averaged model is constructed by taking the
samples from each model based on the relative weightings. The combined model shows improved agreement with the simulation trajectory
falling within the 68.3% HPD interval at all times and better agreement in both the preshock pressure profile than M1 and around the time of
peak pressure than M2.

D. Comparison of different models

As discussed in Sec. IV A, there is not a unique model
to describe the system. It is important to consider a range of
models and quantify how they compare. Differences in model
can come in the form of different functional forms F (�θ ) or
simply a different choice of priors on models that otherwise
have the same expressions. Here, an example of a comparison
between two different models with different functional forms
is given. M1 is the model from Sec. IV B, and model M2 has
identical parameters except for the pressure profile, which has
a different amplitude before and after ts:

P(t) =
{

(P0)e−γg(ts−t), t � ts
(P1)e−γd(t−ts ), t � ts.

(8)

This profile is meant to represent the jump in pressure due
to the shock front hitting the shell. This model is interesting
because it may be able to account for the region where the
PPD of the pressure performs the worst, as seen in Fig. 4.
Although it may seem obvious that a model with a pressure
jump would be more appropriate, there is no guarantee that
the measurements, which happen in trajectory space and after
the shock hits the shell, have leverage on the pressure profile
earlier in time. This coupled with the additional parameter for
pressure means the M2, while physically motivated, may not
be preferred over M1.

Model comparison is standard practice in Bayesian
inference, and there are many methods that can be used. In
this case, three different methods were compared: widely
applicable information criteria (WAIC) [25,26], leave one
out cross validation (LOO) [25,26], and Bayes factor [15,27]
calculations.

Unlike model comparisons based on point estimates of pa-
rameters, such as likelihood ratios or F-test metrics, Bayesian
model comparisons account for the full posterior distribution
of parameters. This means that the uncertainty in parameter
estimates is also part of the calculation [26]. The Bayesian
information criteria (WAIC and LOO) attempt to quantify the
predictive capability of the model to unobserved data, while
comparing Bayes factors amounts to a more-generalized form

of a likelihood ratio test that includes marginalizing over the
posterior distributions of each parameter, therefore not relying
on a point estimate.

All three metrics agree when comparing M1 and M2,
showing a slight favor for M1. A benefit of Bayesian model
comparison is that it provides a weighting to average the
models together.

In this case, PPD samples of the trajectory and pressure
profiles are sampled based on the weights assigned by the
information criteria, resulting in PPD’s for the trajectory and
pressure profile based on both models. An example composite
model is shown in Fig. 5, where the trajectory and pressure
profile shown in Fig. 5(c) are composed of a weighted sam-
pling of the model, M1 and M2, shown in Figs. 5(a) and 5(b),
respectively. In this case, the weighting was established by
using the WAIC information criteria, but LOO and the Bayes
factors gave very similar weightings.

FIG. 6. (a) The shell trajectory and (b) pressure profile for the
model sampled using the experimental data. The model values are
shown as regions of confidence given by the HPD. The 68% HPD
contour is given by the blue dashed curve.
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FIG. 7. The posterior probability density distributions resulting from the MCMC sampling for the nine parameters that are common to
both model M1 (red) and M2 (blue). The mean values of each distribution are given by the points on the bottom axis. The only parameters with
a significant deviation are Ṁ and ve, due to how they are related to the pressure profile as discussed in Sec. VI and shown in Fig. 9.

VI. RESULTS

M1 and M2 were sampled as in Sec. V, but now using
the experimental data �yexpt. The models were then averaged
the same way, with relative weightings of 0.54 and 0.46,
respectively (given by WAIC), and the resulting trajectory and
pressure profile is shown Fig. 6.

The posterior distributions of the parameters give impor-
tant insight into how well constrained the models are by the
data. Figure 7 shows the posterior distributions for the nine
parameters that are common to both M1 and M2. Among
these, most have similar distributions except for Ṁ and ve. The
difference in these distributions, specifically the fact the they
are more peaked for the M2 case, is due to how the pressure
profile is treated early in time. The posteriors for the peak
pressures, which are not common between the two models,
are shown in Fig. 8.

Figure 9, displaying pairwise correlations between param-
eters, shows a strong correlation between Ṁ, ve, and γg, which
is physically intuitive because the trajectory of the shell is
set by a balance between the outward pressure from the gas
(determined by γg) and the ablation pressure (determined by
a combination of Ṁ and ve). It was shown in Fig. 4 that
M2 is better at constraining the early-time pressure profiles
and therefore would have less uncertainty in the correlated
parameters Ṁ and ve, leading to more peaked distributions.

Another benefit of constructing the full posteriors and
examining pairwise correlations is the opportunity to iden-
tify methods of constraining otherwise difficult to measure
variables [28]. Since Ṁ and ve are tightly correlated, the
measurement of either the mass ablation rate or the exhaust
velocity of the ablated material would tightly constrain the
other value. Likewise, a measurement of either of these would
also be very constraining of the pressure exerted on the
shell by the fuel or, conversely, a measurement of the pres-

sure exerted on the shell would be very constraining on the
mass ablation rate and exhaust velocity. Examining one self-
consistent model of the entire experimental system provides
insights that would otherwise be difficult to identify (although
in retrospect seem obvious).

The methods presented here for analyzing these types of
experiments provide an avenue for recovering as much infor-
mation as possible from the data that are measured. There is a
huge depth of knowledge waiting in the message (referencing
back to Sec. I) and this procedure provides an avenue to
reconstruct this message with as much fidelity as possible.

FIG. 8. The posterior probability density distributions resulting
from the MCMC sampling for the three different pressure parameters
Prs of M1 (red curve) and P0 and P1 of M2 (blue curve). Also shown
are the 68% HPD intervals which denote the shortest interval that
contains 68.3% of the probability in the distribution and the values
of the mode (peak) of the distributions. The values of Prs and P1 can
both be interpreted as the pressure of the shock wave when it interacts
with the shell material and P0 can be interpreted as the pressure just
before the shock reaches the shell in the two-pressure model (M2).
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FIG. 9. Kernel density estimate of the pairwise posterior distributions of parameters without strong prior information (as discussed in
Sec. V C). Only the pressure parameter from M1 is shown, Prs, as the information is redundant for the other pressure parameters. Pairwise
correlations give insight into physical connections between variables and show how one variable can be constrained through measurement of
another. An example is the negative correlation between Ṁ and ve (discussed in Sec. VI), meaning that a constraint of the exhaust velocity
would greatly constrain the mass ablation rate in a laser-driven shell experiment. These types of connections can offer insight into how to
constrain otherwise difficult to measure quantities.

Additional insight into the physical results of this process is
present in Paper I [29].

VII. CONCLUSION

The methods presented showed how a seemingly isolated,
integrated measurement of an evolving system can be used to
reconstruct a model of the entire system with enough fidelity
to gain quantifiable physical insight. This methodology has
a strong history of being used in other fields of physics and
has the potential to greatly impact HED physics by making
possible quantified measurements in conditions otherwise in-
accessible. The combination of new analysis techniques for
integrated measurements with high-quality, existing experi-
mental methods and facilities capable of creating conditions
otherwise impossible on Earth promise to provide new in-
sight into our understanding of physics at these extreme
conditions.
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