Time allowed : 3 hours

General Instructions :

(i) All questions are compulsory.
(ii) This question paper consists of 30 questions divided into four sections- A, B, C and D.
(iii) Section A contains $\mathbf{6}$ questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of $\mathbf{3}$ marks each and Section D contains 8 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternative in all such questions.
(v) Use of calculators is not permitted.

SECTION - A

1. If $\operatorname{HCF}(336,54)=6$, find $\operatorname{LCM}(336,54)$.
[1]
Solution : Given, $\operatorname{HCF}(336,54)=6$
We know,
$\mathrm{HCF} \times \mathrm{LCM}=$ one number \times other number
$\Rightarrow \quad 6 \times \mathrm{LCM}=336 \times 54$
$\Rightarrow \quad \mathrm{LCM}=\frac{336 \times 54}{6}$

$$
=336 \times 9
$$

$$
=3024
$$

Ans.
2. Find the nature of roots of the quadratic equation $2 x^{2}-4 x+3=0$.
[1]
Solution : Given, $2 x^{2}-4 x+3=0$
Comparing it with quadratic equation
$a x^{2}+b x+c=0$
Here, $a=2, b=-4$ and $c=3$

$$
\begin{aligned}
\therefore & =b^{2}-4 a c \\
& =(-4)^{2}-4 \times(2)(3) \\
& =16-24 \\
& =-8<0
\end{aligned}
$$

Hence, $D<0$ this shows that roots will be imaginary.

Ans.
3. Find the common difference of the Arithmetic Progression (A.P.)

$$
\frac{1}{a}, \frac{3-a}{3 a}, \frac{3-2 a}{3 a}, \ldots(a \neq 0)
$$

Maximum Marks : 80
Solution : Given, A.P. is $\frac{1}{a}, \frac{3-a}{3 a}, \frac{3-2 a}{3 a}, \ldots \ldots$.

$$
\begin{aligned}
d & =\frac{3-a}{3 a}-\frac{1}{a} \\
& =\frac{3-a-3}{3 a} \\
& =\frac{-a}{3 a}=\frac{-1}{3}
\end{aligned}
$$

Ans.
4. Evaluate : $\sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$

OR

If $\sin \mathrm{A}=\frac{3}{4}$, calculate $\sec \mathrm{A}$.
Solution : We know,

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{\sqrt{3}}{2}, \tan 45^{\circ}=1 \text { and } \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \therefore \sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ} \\
&=\left(\frac{\sqrt{3}}{2}\right)^{2}+2(1)-\left(\frac{\sqrt{3}}{2}\right)^{2} \\
&=\frac{3}{4}+2-\frac{3}{4} \\
&=2 \quad \text { Ans. }
\end{aligned}
$$

OR

$$
\text { Given, } \quad \sin \mathrm{A}=\frac{3}{4}
$$

We know,

$$
\begin{aligned}
\sin \mathrm{A} & =\frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{4} \\
\therefore \quad \mathrm{P} & =3 k \text { and } \mathrm{H}=4 k \\
\mathrm{P}^{2}+\mathrm{B}^{2} & =\mathrm{H}^{2}
\end{aligned}
$$

[Applying Pythagoras theorem]

$$
\begin{array}{rlr}
\Rightarrow & 9 k^{2}+\mathrm{B}^{2}=16 k^{2} \\
\Rightarrow & \mathrm{~B}^{2}=7 k^{2} \\
\Rightarrow & \mathrm{~B}=\sqrt{7} k
\end{array}
$$

$$
\therefore \quad \sec \mathrm{A}=\frac{\mathrm{H}}{\mathrm{~B}}=\frac{4 k}{\sqrt{7 k}}=\frac{4}{\sqrt{7}}
$$

Ans.
5. Write the coordinates of a point P on x-axis which is equidistant from the point $\mathrm{A}(-2,0)$ and $\mathrm{B}(6,0)$.
Solution : Let coordinates of P on x-axis is $(x, 0)$
Given, $\mathrm{A}(-2,0)$ and $\mathrm{B}(6,0)$
Here,
$\mathrm{PA}=\mathrm{PB}$
$\therefore \sqrt{(x+2)^{2}+(0-0)^{2}}=\sqrt{(x-6)^{2}+(0-0)^{2}}$

$$
\Rightarrow \quad \sqrt{(x+2)^{2}}=\sqrt{(x-6)^{2}}
$$

On squaring both sides, we get

$$
\begin{array}{rlrl}
& & (x+2)^{2} & =(x-6)^{2} \\
& & x^{2}+4+4 x & =x^{2}+36-12 x \\
\Rightarrow & & 4+4 x & =36-12 x \\
\Rightarrow & 16 x & =32 \\
\Rightarrow & x & =\frac{32}{16} \\
\Rightarrow & x & =2
\end{array}
$$

Co-ordinates of P are $(2,0)$
Ans.
6. In Figure 1, ABC is an isosceles triangle right angled at C with $A C=4 \mathrm{~cm}$. Find the length of $A B$.

Figure 1
OR
In Figure 2, $D E \| B C$. Find the length of side $A D$, given that $\mathrm{AE}=1.8 \mathrm{~cm}, \mathrm{BD}=7.2 \mathrm{~cm}$ and $\mathrm{CE}=5.4 \mathrm{~cm}$.

Figure 2
Solution : Given, $\angle \mathrm{C}=90^{\circ}$ and $\mathrm{AC}=4 \mathrm{~cm}$ $A B=$?

$\because \triangle \mathrm{ABC}$ is an isosceles triangle so,

$$
\mathrm{BC}=\mathrm{AC}=4 \mathrm{~cm}
$$

On applying Phythagoras theorem, we have

$$
\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}
$$

$$
\begin{aligned}
\Rightarrow \quad & \mathrm{AB}^{2}
\end{aligned}=\mathrm{AC}^{2}+\mathrm{AC}^{2}(\because \mathrm{BC}=\mathrm{AC})
$$

OR

Given, DE I\| BC
On applying, Thales theorem, we have

$$
\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}
$$

$$
\frac{\mathrm{AD}}{\mathrm{AD}+7 \cdot 2}=\frac{1 \cdot 8}{1 \cdot 8+5 \cdot 4}
$$

$$
\frac{\mathrm{AD}}{\mathrm{AD}+7 \cdot 2}=\frac{1 \cdot 8}{7 \cdot 2}
$$

$$
\frac{\mathrm{AD}}{\mathrm{AD}+7 \cdot 2}=\frac{1}{4}
$$

$$
4 \mathrm{AD}=\mathrm{AD}+7 \cdot 2
$$

$$
3 \mathrm{AD}=7 \cdot 2
$$

$$
\mathrm{AD}=2.4 \mathrm{~cm}
$$

Ans.

SECTION-B

7. Write the smallest number which is divisible by both 306 and 657.

Solution : Smallest number which is divisible by 306 and 657 is,
$\operatorname{LCM}(657,306)$

$$
\begin{aligned}
657 & =3 \times 3 \times 73 \\
306 & =3 \times 3 \times 2 \times 17 \\
\mathrm{LCM} & =3 \times 3 \times 73 \times 2 \times 17 \\
& =22338
\end{aligned}
$$

Ans.
8. Find a relation between x and y if the points $\mathrm{A}(x, y), \mathrm{B}(-4,6)$ and $\mathrm{C}(-2,3)$ are collinear.

OR
Find the area of a triangle whose vertices are given as $(1,-1)(-4,6)$ and $(-3,-5)$.
Solution : Given, $\mathrm{A}(x, y), \mathrm{B}(-4,6), \mathrm{C}(-2,3)$

$$
x_{1}=x, y_{1}=y, x_{2}=-4, y_{2}=6, x_{3}=-2, y_{3}=3
$$

Mathematics 2019 (Outside Delhi)

If these points are collinear, then area of triangle made by these points is 0 .

$$
\left.\begin{array}{l}
\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
\frac{1}{2}[x(6-3)+(-4)(3-y)+(-2)(y-6)]=0 \\
3 x-12+4 y-2 y+12
\end{array}\right)=0 \quad \begin{aligned}
& 3 x+4 y-2 y=0 \\
& 3 x+2 y=0 \\
& 3 x=-2 y \quad \text { Ans. } \\
& \text { OR }
\end{aligned}
$$

$$
x_{1}=1, y_{1}=-1, x_{2}=-4, y_{2}=6, x_{3}=-3, y_{3}=-5 .
$$

Area of triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[1(6+5)+(-4)(-5+1)+(-3)(-1-6)]$
$=\frac{1}{2}[11+16+21]$
$=\frac{1}{2} \times 48$
$=24$ square unit.
Ans.
9. The probability of selecting a blue marble at random from a jar that contains only blue, black and green marbles is $\frac{1}{5}$. The probability of selecting a black marble at random from the same jar is $\frac{1}{4}$. If the jar contains 11 green marbles, find the total number of marbles in the jar.

Solution : Let probability of selecting a blue marble, black marble and green marble are $\mathrm{P}(x), \mathrm{P}(y), \mathrm{P}(z)$ respecitvely.

$$
\mathrm{P}(x)=\frac{1}{5}, \mathrm{P}(y)=\frac{1}{4}
$$

(Given)

We know,

$$
\begin{aligned}
\mathrm{P}(x)+\mathrm{P}(y)+\mathrm{P}(z) & =1 \\
\frac{1}{5}+\frac{1}{4}+\mathrm{P}(z) & =1 \\
\frac{4+5}{20}+\mathrm{P}(z) & =1 \\
\frac{9}{20}+\mathrm{P}(z) & =1
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad P(z) & =1-\frac{9}{20} \\
& =\frac{20-9}{20} \\
P(z) & =\frac{11}{20} \\
\frac{\text { No. of green marbles }}{\text { Total no. of marbles }} & =\frac{11}{20} \\
\frac{11}{\text { Total no. of marbles }} & =\frac{11}{20}
\end{aligned}
$$

$(\because$ No. of green marbles $=11)$
Total no. of marbles $=20$
\therefore There are 20 marbles in the jar.
Ans.
10. Find the value(s) of k so that the pair of equations $x+2 y=5$ and $3 x+k y+15=0$ has a unique solution.

Solution: Given, $\quad x+2 y=5$

$$
3 x+k y+15=0
$$

Comparing above equations with

$$
a_{1} x+b_{1} y+c_{1}=0 \text { and } a_{2} x+b_{2} y+c_{2}=0,
$$

We get,

$$
\begin{aligned}
& a_{1}=1, b_{1}=2, c_{1}=-5 \\
& a_{2}=3, b_{2}=k, c_{3}=15
\end{aligned}
$$

Condition for the pair of equations to have unique solution is

$$
\begin{gathered}
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \\
\frac{1}{3} \neq \frac{2}{k} \\
k \neq 6
\end{gathered}
$$

k can have any value except 6 .
Ans.
11. The larger of two supplementary angles exceeds the smaller by 18°. Find the angles.

OR

Sumit is 3 times as old as his son. Five years later, he shall be two and a half times as old as his son. How old is Sumit at present?
Solution: Let two angles A and B are supplementary.

$$
\begin{equation*}
\therefore \quad \mathrm{A}+\mathrm{B}=180^{\circ} \tag{i}
\end{equation*}
$$

Given,

$$
\mathrm{A}=\mathrm{B}+18^{\circ}
$$

On putting $\mathrm{A}=\mathrm{B}+18^{\circ}$ in equation (i), we get

$$
\begin{aligned}
\mathrm{B}+18^{\circ}+\mathrm{B} & =180^{\circ} \\
2 \mathrm{~B}+18^{\circ} & =180^{\circ} \\
2 \mathrm{~B} & =162^{\circ} \\
\mathrm{B} & =81^{\circ} \\
\mathrm{A} & =\mathrm{B}+18^{\circ} \\
\Rightarrow \quad \mathrm{A} & =99^{\circ}
\end{aligned}
$$

Ans.

Let age of Sumit be x years and age of his son be y years. Then, according to question we have,

$$
\begin{equation*}
x=3 y \tag{i}
\end{equation*}
$$

Five years later,

$$
\begin{equation*}
x+5=2 \frac{1}{2}(y+5) \tag{ii}
\end{equation*}
$$

On putting $x=3 y$ in equation (ii)

$$
\begin{aligned}
3 y+5 & =\frac{5}{2}(y+5) \\
3 y+5 & =\frac{5 y}{2}+\frac{25}{2} \\
3 y-\frac{5 y}{2} & =\frac{25}{2}-5 \\
\frac{6 y-5 y}{2} & =\frac{25-10}{2}=\frac{15}{2} \\
\frac{y}{2} & =\frac{15}{2} \\
y & =15 \text { years }
\end{aligned}
$$

Then, age of sumit is

$$
\begin{aligned}
3 \times y & =3 \times 15 \\
& =45 \text { years }
\end{aligned}
$$

Ans.
12. Find the mode of the following frequency distribution:

Class Interval :	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$
Frequency:	25	34	50	42	38	14

Solution :

Class Interval	Frequency
$25-30$	25
$30-35$	34
$35-40$	50
$40-45$	42
$45-50$	38
$50-55$	14

Here, maximum frequency is 50 .
So, $35-40$ will be the modal class.

$$
\begin{aligned}
l=35, f_{0}=34, f_{1}= & 50, f_{2}=42 \text { and } h=5 \\
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =35+\left(\frac{50-34}{2 \times 50-34-42}\right) \times 5 \\
& =35+\left(\frac{16}{100-76}\right) \times 5 \\
& =35+\frac{16}{24} \times 5 \\
& =35+\frac{80}{24}
\end{aligned}
$$

$$
\begin{aligned}
&=35+3.33 \\
&=38.33 \\
& \text { SECTION-C }
\end{aligned}
$$

13. Prove that $2+5 \sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.

OR
Using Euclid's Algorithm, find the HCF of 2048 and 960.

Solution: Let $2+5 \sqrt{3}=r$, where, r is rational.

$$
\therefore \quad \begin{aligned}
(2+5 \sqrt{3})^{2} & =r^{2} \\
4+75+20 \sqrt{3} & =r^{2} \\
79+20 \sqrt{3} & =r^{2} \\
20 \sqrt{3} & =r^{2}-79 \\
\sqrt{3} & =\frac{r^{2}-79}{20}
\end{aligned}
$$

Now, $\frac{r^{2}-79}{20}$ is a rational number. So, $\sqrt{3}$ must also be a rational number. But $\sqrt{3}$ is an irrational number (Given).

So, our assumption is worng.
$\therefore 2+5 \sqrt{3}$ is an irrational number.
Hence Proved.
OR
Step I : Here 2048 > 960 so, On applying Euclid's algorithm, we get

$$
2048=960 \times 2+128
$$

Mathematics 2019 (Outside Delhi)

Step II : Becuase remainder $128 \neq 0$, so, On applying Euclid's algorithm between 960 and 128, we get

$$
960=128 \times 7+64
$$

Step III : Again remainder $64 \neq 0$, so

$$
128=64 \times 2+0
$$

Here remainder is 0 . So, process ends here.
And dividend is 64 so, required HCF is 64 .
Ans.
14. Two right triangles ABC and DBC are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that $A P \times P C$ $=B P \times D P$.

OR

Diagonals of a trapezium PQRS intersect each other at the point $\mathrm{O}, \mathrm{PQ} \| \mathrm{RS}$ and $\mathrm{PQ}=3 \mathrm{RS}$. Find the ratio of the areas of traingles POQ and ROS.
Solution : Given, $\triangle \mathrm{ABC}, \triangle \mathrm{DBC}$ are right angle triangles, right angled at A and D , on same side of $B C$. $A C$ \& $B D$ intersect at P.

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{PDC}$,

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{D}=90^{\circ} \\
& \angle \mathrm{APB}=\angle \mathrm{DPC} \text { (Vertically opposite) } \\
& \therefore \quad \triangle \mathrm{APB} \sim \triangle \mathrm{PDC} \quad \text { (By AA Similarity) } \\
& \therefore \quad \frac{\mathrm{AP}}{\mathrm{BP}}=\frac{\mathrm{PD}}{\mathrm{PC}} \\
& \text { (by c.s.s.t.) } \\
& \Rightarrow \quad \mathrm{AP} \times \mathrm{PC}=\mathrm{BP} \times \mathrm{PD} . \\
& \text { OR }
\end{aligned}
$$

Given, PQRS is a trapezium where $\mathrm{PQ} \| \mathrm{IS}$ and diagonals intersect at O and $P Q=3 R S$

In $\triangle \mathrm{POQ}$ and $\triangle \mathrm{ROS}$, we have

$$
\angle \mathrm{ROS}=\angle \mathrm{POQ}
$$

(vertically opposite angles)

$$
\angle \mathrm{OQP}=\angle \mathrm{OSR} \quad \text { (alternate angles) }
$$

Hence, $\triangle \mathrm{POQ} \sim \Delta \mathrm{ROS}$ by AA similarity then, If two triangles are similar, then ratio of areas is equal to the ratio of square of its corresponding sides.
Then,

$$
\begin{aligned}
\frac{\text { area of } \triangle \mathrm{POQ}}{\text { area of } \triangle \mathrm{ROS}} & =\frac{(\mathrm{PQ})^{2}}{(\mathrm{RS})^{2}} \\
& =\frac{(3 \mathrm{RS})^{2}}{(\mathrm{RS})^{2}}=\frac{9}{1} \\
& =9: 1
\end{aligned}
$$

Ans.
15. In Figure 3, PQ and RS are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting PQ at A and $R S$ at B. Prove that $\angle A O B=90^{\circ}$.

Solution: Given, $\mathrm{PQ} \| \mathrm{RS}$
To prove : $\angle \mathrm{AOB}=90^{\circ}$

Construction : Join O and C, D and E
In $\triangle \mathrm{ODA}$ and $\triangle \mathrm{OCA}$

$$
\begin{array}{lr}
\mathrm{OD}=\mathrm{OC} & \text { (radii of circle) } \\
\mathrm{OA}=\mathrm{OA} & \text { (common) } \\
\mathrm{AD}=\mathrm{AC} &
\end{array}
$$

(tangent drawn from same point)
By SSS congruency

$$
\Delta \mathrm{ODA} \cong \triangle \mathrm{OCA}
$$

Then,

$$
\begin{equation*}
\angle \mathrm{DOA}=\angle \mathrm{AOC} \tag{i}
\end{equation*}
$$

Similiarly, in $\triangle E O B$ and $\triangle B O C$, we have

$$
\begin{align*}
& \triangle \mathrm{EOB} \cong \triangle \mathrm{BOC} \\
& \angle \mathrm{EOB}=\angle \mathrm{BOC} \tag{ii}
\end{align*}
$$

EOD is a diameter of circle, therefore it is a straight line.

Hence,

$$
\begin{aligned}
& \angle \mathrm{DOA}+\angle \mathrm{AOC}+\angle \mathrm{EOB}+\angle \mathrm{BOC}=180^{\circ} \\
& 2(\angle \mathrm{AOC})+2(\angle \mathrm{BOC})=180^{\circ} \\
& \angle \mathrm{AOC}+\angle \mathrm{BOC}=90^{\circ} \\
& \angle \mathrm{AOB}=90^{\circ} . \text { Hence Proved. }
\end{aligned}
$$

16. Find the ratio in which the line $x-3 y=0$ divides the line segment joining the points $(-2,-5)$ and $(6,3)$. Find the coordinates of the point of intersection.

Solution : Let required ratio be $k: 1$
By section formula, we have

$$
x=\frac{m x_{2}+n x_{1}}{m+n}, \quad y=\frac{m y_{2}+n y_{1}}{m+n}
$$

Here, $x_{1}=-2, x_{2}=6, y_{1}=-5, y_{2}=3$

$$
\begin{array}{ll}
& m=k, n=1 \\
\Rightarrow & x=\frac{k(6)+(-2)}{k+1}=\frac{6 k-2}{k-1} \\
\Rightarrow & y=\frac{k(3)+(-5)}{k+1}=\frac{3 k-5}{k+1}
\end{array}
$$

$$
\left(\frac{6 k-2}{k+1}, \frac{3 k-5}{k+1}\right) \text { points lie on the line } x-3 y=0
$$

$$
\begin{aligned}
\therefore \quad\left(\frac{6 k-2}{k+1}\right)-3\left(\frac{3 k-5}{k+1}\right) & =0 \\
\frac{6 k-2}{k+1}-\frac{(9 k-15)}{k+1} & =0
\end{aligned}
$$

$$
6 k-2-9 k+15=0
$$

$$
-3 k+13=0
$$

$$
k=\frac{13}{3}
$$

Hence required ratio is $\left(\frac{13}{3}, 1\right)$ i.e., $(13,3)$
Here, intersection point are,

$$
\begin{aligned}
x & =\frac{6 k-2}{k+1}=\frac{\frac{6 \times 13}{3}-2}{\frac{13}{3}+1} \\
& =\frac{(26-2) \times 3}{16}
\end{aligned}
$$

$$
=\frac{72}{16}=\frac{9}{2}
$$

$$
y=\frac{3 k-5}{k+1}=\frac{3 \times \frac{13}{3}-5}{\frac{13}{3}+1}
$$

$$
\begin{aligned}
& =\frac{(13-5) \times 3}{13+3}=\frac{24}{16} \\
& =\frac{3}{2}
\end{aligned}
$$

\therefore intersection point are $\left(\frac{9}{2}, \frac{3}{2}\right)$
Ans.
17. Evaluate :
[3]
$\left(\frac{3 \sin 43^{\circ}}{\cos 47^{\circ}}\right)^{2}-\frac{\cos 37^{\circ} \operatorname{cosec} 53^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}$

Solution :

$$
\begin{aligned}
& \left(\frac{3 \sin 43^{\circ}}{\cos 47^{\circ}}\right)^{2}-\frac{\cos 37^{\circ} \operatorname{cosec} 53^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}} \\
& \Rightarrow\left\{\frac{3 \cos \left(90^{\circ}-43^{\circ}\right)}{\cos 47^{\circ}}\right\}^{2}
\end{aligned}
$$

$$
-\frac{\sin \left(90^{\circ}-37^{\circ}\right) \operatorname{cosec} 53^{\circ}}{\cot \left(90^{\circ}-5^{\circ}\right) \cot \left(90^{\circ}-25^{\circ}\right) \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}
$$

$$
\Rightarrow\left\{\frac{3 \cos 47^{\circ}}{\cos 47^{\circ}}\right\}^{2}
$$

$$
\frac{\sin 53^{\circ} \operatorname{cosec} 53^{\circ}}{\cot 85^{\circ} \cot 65^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}
$$

$$
\left[\because \cos \left(90^{\circ}-\theta\right)=\sin \theta, \sin \left(90^{\circ}-\theta\right)=\cos \theta,\right.
$$

$$
\left.\cot \left(90^{\circ}-\theta\right)=\tan \theta\right]
$$

$$
\Rightarrow(3)^{2}-\frac{1}{\frac{\sin 53^{\circ} \times \frac{1}{\sin 53^{\circ}}}{\tan 85^{\circ}} \times \frac{1}{\tan 65^{\circ}} \times \tan 45^{\circ} \times \tan 65^{\circ} \times \tan 85^{\circ}}
$$

$$
\left(\because \sin \theta=\frac{1}{\operatorname{cosec} \theta}, \tan \theta=\frac{1}{\cot \theta}\right)
$$

$$
\Rightarrow \quad 9-\frac{1}{\tan 45^{\circ}}
$$

$$
\Rightarrow \quad 9-1
$$

$$
\left(\because \tan 45^{\circ}=1\right)
$$

$$
\Rightarrow \quad 8
$$

18. In Figure 4, a square $O A B C$ is inscribed in a quadrant OPBQ. If $O A=15 \mathrm{~cm}$, find the area of the shaded region. (Use $\pi=3 \cdot 14$)

Figure 4
OR
In Figure 5, ABCD is a square with side $2 \sqrt{2} \mathrm{~cm}$ and inscribed in a circle. Find the area of the shaded region. (Use $\pi=3 \cdot 14$)

Figure 5
Solution : Given, $O A B C$ is a square with $O A=$ 15 cm

Let side of square be a then,

$$
\begin{aligned}
a^{2}+a^{2} & =r^{2} \\
2 a^{2} & =r^{2} \\
r & =\sqrt{2} a \\
r & =15 \sqrt{2} \mathrm{~cm}(\because a=15 \mathrm{~cm})
\end{aligned}
$$

Area of square $=$ Side \times Side

$$
\begin{aligned}
& =15 \times 15 \\
& =225 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of quadrant $\mathrm{OPBQ}=\frac{1}{4} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times 3.14 \times 15 \sqrt{2} \times 15 \sqrt{2} \\
& =\frac{225 \times 2 \times 3.14}{4} \\
& =225 \times 1.57 \\
& =353.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region

$$
\begin{aligned}
& =\text { Area of quadrant OPBQ - Area of square } \\
& =353 \cdot 25-225 \\
& =128 \cdot 25 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

OR
Given, ABCD is a square with side $2 \sqrt{2} \mathrm{~cm}$

$$
\because \quad \mathrm{BD}=2 r
$$

In $\triangle B D C$

$$
\begin{aligned}
\mathrm{BD}^{2} & =\mathrm{DC}^{2}+\mathrm{BC}^{2} \\
4 r^{2} & =2(\mathrm{DC})^{2}
\end{aligned}
$$

$$
(\because \mathrm{DC}=\mathrm{CB}=\text { Side }=2 \sqrt{2})
$$

$$
4 r^{2}=2 \times 2 \sqrt{2} \times 2 \sqrt{2}
$$

$$
4 r^{2}=8 \times 2
$$

$$
4 r^{2}=16
$$

$$
\Rightarrow \quad r^{2}=4
$$

$$
r=2 \mathrm{~cm}
$$

Area of square $B C D A=$ Side \times Side

$$
\begin{aligned}
& =\mathrm{DC} \times \mathrm{BC} \\
& =2 \sqrt{2} \times 2 \sqrt{2} \\
& =8 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& =3.14 \times 2 \times 2 \\
& =12.56 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region

$$
\begin{aligned}
& =\text { Area of circle }- \text { Area of square. } \\
& =12 \cdot 56-8 \\
& =4.56 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

19. A solid is in the form of a cylinder with hemispherical ends. The total height of the solid is 20 cm and the diameter of the cylinder is 7 cm . Find the total volume of the solid. (Use $\pi=\frac{22}{7}$)

Solution : ABCD is a cylinder and BFC and AED are two hemisphere which has radius
$(r)=\frac{7}{2} \mathrm{~cm}$

Hence, $A B=20-2 \times \frac{7}{2}$

$$
h=13 \mathrm{~cm}, r=\frac{7}{2} \quad\left(r=\frac{d}{2}\right)
$$

Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 13 \\
& =\frac{11 \times 13 \times 7}{2} \\
& =\frac{1001}{2} \\
& =500.5 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of two hemisphere $=2 \times \frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =2 \times \frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} \\
& =\frac{49 \times 11}{3} \\
& =\frac{539}{3} \\
& =179.67 \mathrm{~cm}^{3}
\end{aligned}
$$

Total volume of solid
$=$ Volume of two hemisphere

+ Volume of cylinder

$$
\begin{aligned}
& =179 \cdot 67+500 \cdot 5 \\
& =680 \cdot 17 \mathrm{~cm}^{3}
\end{aligned}
$$

20. The marks obtained by 100 students in an examination are given below :

Marks	Number of Students
$30-35$	14
$35-40$	16
$40-45$	28
$45-50$	23
$50-55$	18
$55-60$	8
$60-65$	3

Find the mean marks of the students.
Solution :

Class Interval (Marks)	No. of Students $\left(f_{i}\right)$	x_{i}	$f_{i} x_{i}$
$30-35$	14	$32 \cdot 5$	455
$35-40$	16	$37 \cdot 5$	600
$40-45$	28	$42 \cdot 5$	1190
$45-50$	23	$47 \cdot 5$	$1092 \cdot 5$
$50-55$	18	$52 \cdot 5$	945
$55-60$	8	$57 \cdot 5$	460
$60-65$	3	$62 \cdot 5$	$187 \cdot 5$
	$\Sigma f_{i}=110$		$\Sigma f_{i} x_{i}=4930$

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
& =\frac{4930}{110} \\
& =44 \cdot 81
\end{aligned}
$$

Ans.
21. For what value of k, is the polynomial

$$
\begin{equation*}
f(x)=3 x^{4}-9 x^{3}+x^{2}+15 x+k \tag{3}
\end{equation*}
$$

completely divisible by $3 x^{2}-5$?
OR
Find the zeroes of the quadratic polynomial $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$ and verify the relationship between the zeroes and the coefficients.
Solution: Given,

$$
f(x)=3 x^{4}-9 x^{3}+x^{2}+15 x+k
$$

It is completely divisible by $3 x^{2}-5$

$$
\begin{aligned}
& \text { Let } g(x)=3 x^{2}-5 \\
& \left.\therefore 3 x^{2}-5\right) 3 x^{4}-9 x^{3}+x^{2}+15 x+k\left(x^{2}-3 x+2\right. \\
& \qquad \begin{array}{c}
3 x^{4}+0-5 x^{2} \\
-9 x^{3}+6 x^{2}+15 x \\
-9 x^{3}+15 x \\
+\quad- \\
6 x^{2}+k \\
6 x^{2}-10 \\
\\
\hline+
\end{array}
\end{aligned}
$$

$\because f(x)$ is completely divisible by $g(x)$ then

$$
\begin{aligned}
k+10 & =0 \\
k & =-10
\end{aligned}
$$

OR

The given polynomial is

$$
\begin{aligned}
& P(y)=7 y^{2}-\frac{11}{3} y-\frac{2}{3} \\
& \because \quad P(y)=0 \\
& \because \quad 7 y^{2}-\frac{11}{3} y-\frac{2}{3}=0 \\
& 21 y^{2}-11 y-2=0 \\
& 21 y^{2}-14 y+3 y-2=0 \\
& 7 y(3 y-2)+1(3 y-2)=0 \\
&(3 y-2)(7 y+1)=0 \\
& y=\frac{2}{3},-\frac{1}{7} \\
& \text { So zeroes of } \mathrm{P}(y) \text { are }-\frac{2}{3},-\frac{1}{7}
\end{aligned}
$$

Ans.
Verification: On comparing $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$ with $a x^{2}+b x+c$, we get

$$
\begin{array}{r}
\qquad \begin{array}{r}
a=7, b=\frac{11}{3}, c=\frac{2}{3} \\
\text { Sum of zeroes }= \\
\frac{-b}{a} \\
\frac{2}{3}+\left(-\frac{1}{7}\right)=
\end{array} \begin{array}{r}
-\left(\frac{-11}{3}\right) \\
7
\end{array}
\end{array}
$$

SECTION-D

23. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.

Solution : Given, $\mathrm{A} \triangle \mathrm{ABC}$ in which $D E \| B C$ and $D E$ intersect $A B$ and $A C$ at D and E respectively.

To prove: $\frac{A D}{D B}=\frac{A E}{E C}$
Construction : Join BE and CD
Draw EL \perp AB and DM \perp AC
Proof: we have

$$
\text { area }(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EL}
$$

and

$$
\text { area }(\triangle \mathrm{DBE})=\frac{1}{2} \times \mathrm{DB} \times \mathrm{EL}
$$

$$
\left(\because \Delta=\frac{1}{2} \times b \times h\right)
$$

$$
\begin{align*}
\therefore \quad \frac{\operatorname{area}(\triangle \mathrm{ADE})}{\operatorname{area}(\triangle \mathrm{DBE})} & =\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EL}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EL}} \\
& =\frac{\mathrm{AD}}{\mathrm{DB}} \tag{i}
\end{align*}
$$

Again, area $(\triangle \mathrm{ADE})=\operatorname{area}(\triangle \mathrm{AED})$

$$
=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}
$$

and \quad area $(\triangle E C D)=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}$

$$
\begin{equation*}
\therefore \frac{\operatorname{area}(\triangle \mathrm{ADE})}{\operatorname{area}(\triangle \mathrm{ECD})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}}=\frac{\mathrm{AE}}{\mathrm{EC}} \tag{ii}
\end{equation*}
$$

Now, $\triangle \mathrm{DBE}$ and $\triangle \mathrm{ECD}$, being on same base DE and between the same parallels DE and $B C$, We have

$$
\begin{equation*}
\text { area }(\triangle \mathrm{DBE})=\operatorname{area}(\triangle \mathrm{ECD}) \tag{iii}
\end{equation*}
$$

from equations (i), (ii) and (iii), we have

$$
\frac{A D}{D B}=\frac{A E}{E C} \quad \text { Hence Proved. }
$$

24. Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him at an elevation of 30°. Deepak standing on the roof of a 50 m high building, finds the angle of elevation of the same bird to be 45°. Amit and Deepak are on opposite sides of the bird. Find the distance of the bird from Deepak.

Solution : Let Amit be at C point and bird is at A point. Such that $\angle A C B=30^{\circ}$. $A B$ is the height of bird from point B on ground and deepak is at D point, DE is the building of height 50 m .

Now, In right triangle ABC , we have

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{P}{H}=\frac{A B}{A C} \\
\frac{1}{2} & =\frac{A B}{200} \\
A B & =100 \mathrm{~m}
\end{aligned}
$$

In right $\triangle \mathrm{AFD}$, we have

$$
\begin{aligned}
& \sin 45^{\circ}= \frac{P}{H}=\frac{A F}{A D} \\
&(\because A B=A F+B F \\
& 100=A F+50 \\
&A F=50)
\end{aligned} \quad \begin{aligned}
\frac{1}{\sqrt{2}}= & \frac{50}{A D} \\
A D= & 50 \sqrt{2} \mathrm{~m}
\end{aligned}
$$

Hence, the distance of bird from Deepak is $50 \sqrt{2} \mathrm{~m}$.

Ans.
25. A solid iron pole consists of a cylinder of height 220 cm and base diameter 24 cm , which is surmounted by another cylinder of height 60 cm and radius 8 cm . Find the mass of the pole, given that $1 \mathrm{~cm}^{3}$ of iron has approximately 8 gm mass. (Use $\pi=3 \cdot 14$)

Mathematics 2019 (Outside Delhi)

Solution : Let $A B$ be the iron pole of height 220 cm with base radius 12 cm and there is an other cylinder CD of height 60 cm whose base radius is 8 cm .

Volume of AB pole $=\pi r_{1}^{2} h_{1}$

$$
\begin{aligned}
& =3.14 \times 12 \times 12 \times 220 \\
& =99475.2 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of CD pole $=\pi r_{2}^{2} h_{2}$

$$
\begin{aligned}
& =3.14 \times 8 \times 8 \times 60 \\
& =12057.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Total volume of the poles

$$
\begin{aligned}
& =99475 \cdot 2+12057 \cdot 6 \\
& =111532 \cdot 8 \mathrm{~cm}^{3}
\end{aligned}
$$

It is given that,
Mass of $1 \mathrm{~cm}^{3}$ of iron $=8 \mathrm{gm}$
Then mass of $111532.8 \mathrm{~cm}^{3}$ of iron

$$
=111532 \cdot 8 \times 8 \mathrm{gm}
$$

Then total mass of the pole is $=111532.8 \times 8 \mathrm{gm}$

$$
\begin{aligned}
& =892262 \cdot 4 \mathrm{gm} \\
& =892 \cdot 2624 \mathrm{~kg}
\end{aligned}
$$

Ans.
26. Construct an equilateral $\triangle \mathrm{ABC}$ with each side 5 cm . Then construct another triangle whose sides are $\frac{2}{3}$ times the corresponding sid \backslash
Draw two concentric circles of radii 2 cm and 5 cm . Take a point P on the outer circle and construct a pair of tangents PA and PB to the smaller circle. Measure PA.
Solution : Steps for construction are as follows :
1: Draw a line sgement $B C=5 \mathrm{~cm}$
2: At B and C construct $\angle C B X=60^{\circ}$ and $\angle B C X=60^{\circ}$
3: With B as centre and radius 5 cm , draw an arc cutting ray $B X$ at A.

4: Join AC.
Thus an equilateral $\triangle \mathrm{ABC}$ is obtained.

5 : Below $B C$, make an acute angle $\angle C B Y$
6 : Along BY, mark off 3 points B_{1}, B_{2}, B_{3} Such that $\mathrm{BB}_{1}, \mathrm{~B}_{1} \mathrm{~B}_{2}, \mathrm{~B}_{2} \mathrm{~B}_{3}$ are equal.
7: Join $\mathrm{B}_{3} \mathrm{C}$
8: From B_{2} draw $\mathrm{B}_{2} \mathrm{D} \| \mathrm{B}_{3} \mathrm{C}$, meeting BC at D 9: From D, draw DEIICA, metting AB at E . Then $\triangle E B D$ is the required triangle, each of whose sides is $\frac{2}{3}$ of the corresponding side of $\triangle \mathrm{ABC}$.
27. Change the following data into 'less than type' distribution and draw its ogive :

Class Interval	Frequency
$30-40$	7
$40-50$	5
$50-60$	8
$60-70$	10
$70-80$	6
$80-90$	6
$90-100$	8

Solution :

Class Interval	Frequency
less than 40	7
less than 50	12
less than 60	20
less than 70	30
less than 80	36
less than 90	42
less than 100	50

On graph paper, we take the scale.

28. Prove that:

$$
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta
$$

[4]
OR

$$
\frac{1}{\sin \theta-\cos \theta}\left[\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\cos \theta \cdot \sin \theta}\right]
$$

Prove that:

$$
\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}
$$

Solution : $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \cdot \operatorname{cosec} \theta$

$$
\Rightarrow \frac{\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cdot \cos \theta}{(\cos \theta \times \sin \theta)}
$$

L.H.S.

$$
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}
$$

$$
=\frac{1}{\sin \theta-\cos \theta}\left[\frac{\sin ^{2} \theta}{\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta}\right]
$$

$$
=\frac{[\sin \theta-\cos \theta]\left[\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cdot \cos \theta\right]}{(\sin \theta-\cos \theta) \cdot(\cos \theta \times \sin \theta)}
$$

$$
\Rightarrow \frac{1+\sin \theta \cdot \cos \theta}{\cos \theta \times \sin \theta}=\frac{1}{\cos \theta \cdot \sin \theta}+\frac{\sin \theta \cdot \cos \theta}{\sin \theta \cdot \cos \theta}
$$

$$
=1+\sec \theta \cdot \operatorname{cosec} \theta
$$

$$
=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}
$$

$$
=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}
$$

OR
L.H.S.

$$
=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}
$$

$$
\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}}
$$

$$
\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)\right]
$$

$$
\left(\because \frac{1}{\cos \theta}=\sec \theta, \frac{1}{\sin \theta}=\operatorname{cosec} \theta\right)
$$

Hence Proved.

$$
\begin{align*}
& \Rightarrow \quad \frac{\sin \theta}{\cos \theta+1}=\frac{\sin ^{2} \theta}{\cos \theta+1} \quad \begin{aligned}
-80 & =-5 n \\
n & =16
\end{aligned} \\
& \frac{\cos \theta+1}{\sin \theta} \quad \cos \theta+1 \\
& \Rightarrow \frac{\sin ^{2} \theta}{1+\cos \theta} \times \frac{(1-\cos \theta)}{(1-\cos \theta)}=\frac{\sin ^{2} \theta(1-\cos \theta)}{1-\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta(1-\cos \theta)}{1-\cos ^{2} \theta}=\frac{\sin ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta} \\
& =1-\cos \theta \\
& \text { R.H.S. } \\
& 2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}} \\
& n=16 \\
& \text { Therefore, } 16^{\text {th }} \text { term will be }-82 \text {. } \\
& \text { Let } \\
& \mathrm{T}_{n}=-100 \\
& \text { Again, } \\
& \mathrm{T}_{n}=a+(n-1) d \\
& -100=-7+(n-1)(-5) \\
& -100=-7-5 n+5 \\
& -100=-2-5 n \tag{i}\\
& -100+2=-5 n \\
& -98=-5 n \\
& n=\frac{98}{5}
\end{align*}
$$

$$
\begin{align*}
& 2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}} \\
& =2+\frac{\sin ^{2} \theta}{\cos \theta-1} \\
& \Rightarrow 2-\frac{\sin ^{2} \theta}{(1-\cos \theta)}=2-\frac{\sin ^{2} \theta \times(1+\cos \theta)}{(1-\cos \theta) \times(1+\cos \theta)} \\
& \Rightarrow 2-\frac{\sin ^{2} \theta(1+\cos \theta)}{1-\cos ^{2} \theta}=2-\frac{\sin ^{2} \theta(1+\cos \theta)}{\sin ^{2} \theta} \\
& =2-(1+\cos \theta) \\
& =1-\cos \theta \tag{ii}
\end{align*}
$$

From equation (i) and (ii), we get
L.H.S. = R.H.S.

Hence Proved.
29. Which term of the Arithmetic Progression $-7,-12,-17,-22, \ldots .$. will be -82 ? Is -100 any term of the A.P. ? Give reason for your answer.

OR

How many terms of the Arithmetic Progression $45,39,33, \ldots$. must be taken so that their sum is 180 ? Explain the double answer.
Solution : $-7,-12,-17,-22, \ldots .$.
Here $a=-7, d=-12-(-7)$

$$
\begin{aligned}
& =-12+7 \\
& =-5
\end{aligned}
$$

Let $\quad \mathrm{T}_{n}=-82$
$\therefore \quad \mathrm{T}_{n}=a+(n-1) d$
$-82=-7+(n-1)(-5)$
$-82=-7-5 n+5$
$-82=-2-5 n$
$-82+2=-5 n$

But the number of terms can not be in fraction.
So, - 100 can not be the term of this A.P. Ans.

OR

45, 39, 33,
Here $a=45, d=39-45=-6$
Let

$$
\begin{aligned}
S_{n} & =180 \\
\frac{n}{2}[2 a+(n-1) d] & =180
\end{aligned}
$$

$$
\frac{n}{2}[2 \times 45+(n-1)(-6)]=180
$$

$$
\frac{n}{2}[90-6 n+6]=180
$$

$$
\frac{n}{2}[96-6 n]=180
$$

$$
n(96-6 n)=360
$$

$$
96 n-6 n^{2}=360
$$

$$
6 n^{2}-96 n+360=0
$$

On dividing the above equation by 6

$$
\begin{aligned}
n^{2}-16 n+60 & =0 \\
n^{2}-10 n-6 n+60 & =0 \\
n(n-10)-6(n-10) & =0 \\
(n-10)(n-6) & =0 \\
n & =10,6
\end{aligned}
$$

\therefore Sum of first 10 terms $=$ Sum of first 6 terms

$$
=180
$$

This means that the sum of all terms from $7^{\text {th }}$ to $10^{\text {th }}$ is zero.

Ans.
30. In a class test, the sum of Arun's marks in Hindi and English is 30 . Had he got 2 marks more in Hindi and 3 marks less in English, the product of the marks would have been 210. Find his marks in the two subjects.
Solution : Let Arun marks in hindi be x and marks in english be y.
Then, according to question, we have

$$
\begin{align*}
x+y & =30 \tag{i}\\
(x+2)(y-3) & =210 \tag{ii}
\end{align*}
$$

from equation (i) put $x=30-y$ in equation (ii)

$$
\begin{aligned}
32 y-96-y^{2}+3 y & =210 \\
y^{2}-35 y+306 & =0 \\
y^{2}-18 y-17 y+306 & =0 \\
y(y-18)-17(y-18) & =0 \\
(y-18)(y-17) & =0 \\
y & =18,17
\end{aligned}
$$

Put $y=18$ and 17 in equation (i), we get

$$
x=12,13
$$

Hence his marks in hindi can be 12 and 13 and in english his marks can be 18 and 17.

Ans.

$$
\begin{array}{r}
(30-y+2)(y-3)=210 \\
(32-y)(y-3)=210
\end{array}
$$

Mathematics 2019 (Outside Delhi)

SET II

Note : Except for the following questions, all the remaining questions have been asked in previous set.

SECTION-A

6. Find the $21^{\text {st }}$ term of the A.P. $-4 \frac{1}{2},-3,-1 \frac{1}{2}, \ldots$ [1]

$$
\text { Solution : Given, }-4 \frac{1}{2},-3,-1 \frac{1}{2}, \ldots .
$$

$$
\Rightarrow \quad-\frac{9}{2},-3,-\frac{3}{2}, \ldots . .
$$

$$
\text { Here } a=-\frac{9}{2}, \quad d=-3-\left(-\frac{9}{2}\right)=-3+\frac{9}{2}
$$

$$
=\frac{-6+9}{2}=\frac{3}{2}
$$

$$
\because \quad \mathrm{T}_{n}=a+(n-1) d
$$

$$
\mathrm{T}_{21}=-\frac{9}{2}+(21-1) \frac{3}{2}
$$

$$
\mathrm{T}_{21}=-\frac{9}{2}+20 \times \frac{3}{2}
$$

$$
\mathrm{T}_{21}=-\frac{9}{2}+30
$$

$$
\mathrm{T}_{21}=\frac{-9+60}{2}=\frac{51}{2}=25 \frac{1}{2}
$$

Ans.

SECTION-B

7. For what value of k, will the following pair of equations have infinitely many solutions:

$$
\begin{equation*}
2 x+3 y=7 \text { and }(k+2) x-3(1-k) y=5 k+1 \tag{2}
\end{equation*}
$$

Solution : Given, The system of equations is

$$
2 x+3 y=7 \text { and }(k+2) x-3(1-k) y=5 k+1
$$

These equations are of the form $a_{1} x+b_{1} y+c_{1}=0$
and

$$
a_{2} x+b_{2} y+c_{2}=0
$$

where, $a_{1}=2, b_{1}=3, c_{1}=-7$

$$
a_{2}=(k+2), b_{2}=-3(1-k), c_{2}=-(5 k+1)
$$

Since, the given system of equations have infinitely many solutions.

$$
\begin{aligned}
\therefore \quad \frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{2}{k+2} & =\frac{3}{-3(1-k)}=\frac{-7}{-(5 k+1)} \\
\frac{2}{k+2}= & \frac{3}{-3(1-k)} \text { and } \frac{3}{-3(1-k)}
\end{aligned}=\frac{7}{(5 k+1)}, ~ \begin{aligned}
-6(1-k) & =3 k+6 \text { and } 3(5 k+1)
\end{aligned}=-21(1-k) .
$$

Hence, the given system of equations has infinitely many solutions when $k=4$.

Ans.

SECTION-C

13. Point A lies on the line segment $X Y$ joining $X(6,-6)$ and $Y(-4,-1)$ in such a way that $\frac{X A}{X Y}=\frac{2}{5}$. If point

Mathematics 2019 (Outside Delhi)

A also lies on the line $3 x+k(y+1)=0$, find the value of k.
Solution : Given,

$$
\frac{X A}{X Y}=\frac{2}{5}
$$

$$
\frac{\mathrm{XA}}{\mathrm{XA}+\mathrm{AY}}=\frac{2}{5}
$$

$$
5 \mathrm{XA}=2 \mathrm{XA}+2 \mathrm{AY}
$$

$$
3 X A=2 A Y
$$

$$
\frac{\mathrm{XA}}{\mathrm{AY}}=\frac{2}{3}
$$

$$
\mathrm{XA}: \mathrm{AY}=2: 3
$$

So A divides XY in ratio $2: 3$
Here, $m=2, n=3, x_{1}=6, y_{1}=-6, x_{2}=-4$ and $y_{2}=-1$
Coordinates of Point A are $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{2 \times(-4)+3(6)}{2+3}, \frac{2(-1)+3(-6)}{2+3}\right) \\
& \Rightarrow \quad\left(\frac{-8+18}{5}, \frac{-2-18}{5}\right)=(2,-4)
\end{aligned}
$$

Since, point $\mathrm{A}(2,-4)$ lies on line $3 x+k(y+1)=0$.
Therefore it will satisfy the equation.
On putting $x=2$ and $y=-4$ in the equation, we get

$$
\begin{aligned}
3 \times 2+k(-4+1) & =0 \\
6-3 k & =0 \\
3 k & =6 \\
k & =2
\end{aligned}
$$

Ans.
14. Solve for x :

$$
\begin{equation*}
x^{2}+5 x-\left(a^{2}+a-6\right)=0 \tag{3}
\end{equation*}
$$

Solution: Taking $\left(a^{2}+a-6\right)$

$$
\begin{aligned}
&=a^{2}+3 a-2 a-6 \\
&= a(a+3)-2(a+3) \\
&=(a+3)(a-2) \\
& x^{2}+5 x-(a+3)(a-2)=0 \\
& x^{2}+(a+3) x-(a-2) x-(a+3)(a-2)=0 \\
& x[x+(a+3)]-(a-2)[x+(a+3)]=0 \\
&(x-a+2)(x+a+3)=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
x-a+2 & =0 \text { and } x+a+3 \\
x & =a-2 \quad \text { and } x
\end{aligned}=-(a+3)
$$

Required values of x are $(a-2),-(a+3)$
Ans.
15. Find A and B if $\sin (A+2 B)=\frac{\sqrt{3}}{2}$ and $\cos (A+4 B)=0$, where A and B are acute angles. [3] Solution. Given,

$$
\begin{array}{rlrl}
\sin (A+2 B) & =\frac{\sqrt{3}}{2} \text { and } \cos (A+4 B)=0 \\
\sin (A+2 B) & =\sin 60^{\circ} & \left(\because \sin 60^{\circ}=\frac{\sqrt{3}}{2}\right) \\
A+2 B & =60 & \ldots(\mathrm{i}) \\
\cos (A+4 B) & =\cos 90^{\circ} & \left(\because \cos 90^{\circ}=0\right) \\
A+4 B & =90^{\circ} & \ldots(\text { ii) }
\end{array}
$$

and

On solving equation (i) and (ii), we get

$$
B=15^{\circ} \text { and } A=30^{\circ}
$$

Ans.

SECTION-D

23. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares on their corresponding sides.
Solution : Given, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
To prove: $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$

Construction: Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$.
Proof : Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ it follows that they are equiangular and their sides are proportional.
$\therefore \angle A=\angle D, \angle B=\angle E, \angle C=\angle F$ and

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}} \tag{i}
\end{equation*}
$$

Now, \quad area $(\triangle A B C)=\frac{1}{2} \times B C \times A L$

$$
\operatorname{area}(\triangle \mathrm{DEF})=\frac{1}{2} \times \mathrm{EF} \times \mathrm{DM}
$$

$$
\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AL}}{\frac{1}{2} \times \mathrm{EF} \times \mathrm{DM}}=\frac{\mathrm{BC}}{\mathrm{EF}} \times \frac{\mathrm{AL}}{\mathrm{DM}}
$$

Also, $\quad \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{BC}}{\mathrm{EF}}$
(\because In similar triangles, the ratio of the corresponding sides is the same as the ratio of corresponding altitudes)
Using equation (iii) and (ii), we get

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{BC}}{\mathrm{EF}} \times \frac{\mathrm{BC}}{\mathrm{EF}}\right)=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}
$$

Similarly, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}$
and $\quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}$
Hence, $\quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$
Hence Proved.
24. Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point P between them on the road, the angle of elevation of the top of a pole is 60° and the angle of depression from the top of the other pole of point P is 30°. Find the heights of the poles and the distance of the point P from the poles.
Solution : Let AC is road of 80 m width. P is the point on road $A C$ and height of poles $A B$ and $C D$ is $h \mathrm{~m}$.

From right $\triangle \mathrm{PAB}$, we have

$$
\begin{align*}
\frac{\mathrm{AB}}{\mathrm{AP}} & =\tan 60^{\circ}=\sqrt{3} \\
\frac{h}{x} & =\sqrt{3} \\
h & =\sqrt{3} x \tag{i}
\end{align*}
$$

From right $\triangle \mathrm{DCP}$, we have

$$
\begin{aligned}
\frac{C D}{P C} & =\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
\frac{h}{80-x} & =\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad h=\frac{80-x}{\sqrt{3}} \tag{ii}
\end{equation*}
$$

Equating the values of h from equation (i) and (ii) we get

$$
\begin{array}{ll}
\Rightarrow & x \sqrt{3}=\frac{80-x}{\sqrt{3}} \\
\Rightarrow & 3 x=80-x \\
\Rightarrow & 4 x=80 \\
\Rightarrow & x=20 \mathrm{~m}
\end{array}
$$

On putting $x=20$ in equation (i), we get

$$
\begin{aligned}
h & =\sqrt{3} \times 20 \\
& =20 \sqrt{3} \\
h & =20 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Thus, height of poles is $20 \sqrt{3} \mathrm{~m}$ and point P is at a distance of 20 m from left pole and $(80-20)$ i.e., 60 m from right pole.

Ans.
25. The total cost of a certain length of a piece of cloth is ₹ 200 . If the piece was 5 m longer and each metre of cloth costs ₹ 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre?
Solution : Let the original length of piece of cloth is $x \mathrm{~m}$ and rate of cloth is $₹ y$ per metre.
Then according to question, we have

$$
\begin{equation*}
x \times y=200 \tag{i}
\end{equation*}
$$

and if length be 5 m longer and each meter of cloth be ₹ 2 less then

$$
\begin{align*}
(x+5)(y-2) & =200 \\
(x+5)(y-2) & =200 \\
x y-2 x+5 y-10 & =200 \tag{ii}
\end{align*}
$$

On equating equation (i) and (ii), we have

$$
\begin{array}{cc}
& x y=x y-2 x+5 y-10 \\
\Rightarrow & 2 x-5 y=-10 \tag{iii}\\
\Rightarrow & \left(y=\frac{200}{x}\right) \text { from equation (i) } \\
\Rightarrow & 2 x-5 \times \frac{200}{x}=-10 \\
\Rightarrow & 2 x-\frac{1000}{x}=-10 \\
\Rightarrow & 2 x^{2}-1000=-10 x \\
\Rightarrow & 2 x^{2}+10 x-1000=0
\end{array}
$$

Mathematics 2019 (Outside Delhi)

$$
\begin{array}{rrrr}
\Rightarrow & x^{2}+5 x-500=0 & \therefore & x \times y=200 \\
\Rightarrow & x^{2}+25 x-20 x-500=0 & & 20 \times y=200 \\
\Rightarrow & x(x+25)-20(x+25)=0 & y & =10
\end{array}
$$

$$
(x+25)(x-20)=0
$$

Thus, length of the piece of cloth is 20 m and original

$$
x=20
$$ price per metre is ₹ 10 .

Ans.
$(x \neq-25$ length of cloth can never be negative)
Mathematics 2019 (Outside Delhi)

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION-B

7. A die is thrown twice. Find the probability that
(i) 5 will come up at least once.
[2]
(ii) 5 will not come up either time.

Solution : When two dice are thrown simultaneously, all possible outcomes are

$$
\begin{aligned}
& (1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{aligned}
$$

Total number of outcomes $=36$
Total outcomes where 5 comes up at least once $=11$
(i) Probability that 5 will come up at least once

$$
\begin{aligned}
& =\frac{\text { Total outcomes where } 5 \text { will come up }}{\text { Total number of outcomes }} \\
& =\frac{11}{36}
\end{aligned}
$$

Total outcomes where 5 will not come up

$$
=36-11=25
$$

(ii) Probability that 5 will not come up either time
$=\frac{\text { Total outcomes where } 5 \text { will not come up }}{\text { Total number of outcomes }}$

$$
=\frac{25}{36}
$$

Ans.

SECTION-C

13. Find the ratio in which the y-axis divides the line segment joining the points $(-1,-4)$ and $(5,-6)$. Also find the coordinates of the point of intersection. [3]

Solution : Let the y-axis cut the line joining point $A(-1,-4)$ and point $B(5,-6)$ in the ratio $k: 1$ at the point $P(0, y)$

Then, by section fromula, we have

$$
\begin{aligned}
x & =\frac{m x_{2}+n x_{1}}{m+n} \\
0 & =\frac{k(5)+(-1)}{k+1} \\
0 & =\frac{5 k-1}{k+1} \\
5 k-1 & =0 \\
k & =\frac{1}{5}
\end{aligned}
$$

Then the required ratio is $\left(\frac{1}{5}: 1\right)$ i.e., $(1: 5)$
Again, by section formula, we have

$$
\begin{aligned}
y & =\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{1(-6)+5(-4)}{1+5} \\
& =\frac{-6-20}{6} \\
& =\frac{-26}{6}=\frac{-13}{3}
\end{aligned}
$$

Hence, the intersection co-ordinates is $\left(0,-\frac{13}{3}\right)$
Ans.
14. Find the value of :
[3]
$\left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \sec 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}\right)^{2}$

Solution.

$$
\left.\left.\begin{array}{l}
\left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \cdot \sec 55^{\circ}}{\tan 10^{\circ} \cdot \tan 20^{\circ} \cdot \tan 60^{\circ} \cdot \tan 70^{\circ} \cdot \tan 80^{\circ}}\right) \\
\left(\frac{3 \cot \left(90^{\circ}-41^{\circ}\right)}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \cdot \operatorname{cosec}\left(90^{\circ}-55^{\circ}\right)}{\cot \left(90^{\circ}-10^{\circ}\right) \cdot \cot \left(90^{\circ}-20^{\circ}\right)}\right. \\
\cdot \tan 60^{\circ} \tan 10^{\circ} \cdot \tan 80^{\circ}
\end{array}\right), \begin{array}{c}
\because \cot \left(90^{\circ}-\theta\right)=\tan \theta \\
\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta
\end{array}\right), ~ \$
$$

$$
\left(\frac{3 \cot 49^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \cdot \operatorname{cosec} 35^{\circ}}{\cot 80^{\circ} \cdot \cot 70^{\circ} \cdot \tan 60^{\circ} \cdot \tan 70^{\circ} \cdot \tan 80^{\circ}}\right)^{2}
$$

$$
9-\left(\frac{\sin 35^{\circ} \cdot \tan 80^{\circ}-\tan 70^{\circ}}{\sin 35^{\circ} \cdot \tan 60^{\circ} \cdot \tan 70^{\circ} \cdot \tan 80^{\circ}}\right)^{2}
$$

$$
\left[\begin{array}{rl}
\because \sin \theta & =\frac{1}{\cos \theta} \\
\tan \theta & =\frac{1}{\cot \theta}
\end{array}\right]
$$

$$
=9-\left(\frac{1}{\tan 60^{\circ}}\right)^{2} \quad\left(\because \tan 60^{\circ}=\frac{\sqrt{3}}{2}\right)
$$

$$
=9-\left(\frac{2}{\sqrt{3}}\right)^{2}
$$

$$
=9-\frac{4}{3}
$$

$$
=\frac{23}{3}
$$

Ans.
15. Two spheres of same metal weigh 1 kg and 7 kg . The radius of the smaller sphere is 3 cm . The two spheres are melted to form a single big sphere. Find the diameter of the new sphere.
Solution : Given, radius of small sphere be

$$
r=3 \mathrm{~cm}
$$

Then,
Volume of small sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi(3)^{3} \\
& =36 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Density of small sphere $=\frac{\text { Mass of sphere }}{\text { Volume of sphere }}$

$$
=\frac{1}{36 \pi} \mathrm{~kg} / \mathrm{cm}^{3}
$$

\because Both spheres are made by same metal, then their densities will be same.
Let radius of bigger sphere $=r^{\prime}$ then,
Density of bigger sphere

$$
\begin{aligned}
& =\frac{\text { Mass of bigger sphere }}{\text { Volume of bigger sphere }} \\
\frac{1}{36 \pi} & =\frac{7}{4 / 3 \pi r^{\prime}} \\
\left(r^{\prime}\right)^{3} & =189
\end{aligned}
$$

Then according to question, we have,
Volume of bigger sphere + Volume of smaller shpere $=$ Volume of new sphere.

$$
\frac{4}{3} \pi\left(r^{\prime}\right)^{3}+\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \mathrm{R}^{3}
$$

$$
r^{\prime}+r^{3}=\mathrm{R}^{3}
$$

$$
189+27=R^{3}
$$

$$
216=R^{3}
$$

$$
R=6
$$

D $=6 \times 2=12$
Radius of new sphere is 6 cm .
So, diameter is 12 cm .
Ans.

SECTION-D

23. In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then prove that the angle opposite the first side is a right angle. [4] Solution : Given, $\triangle \mathrm{ABC}$ in which

To prove : $\angle \mathrm{B}=90^{\circ}$
Consturction : Draw a $\triangle \mathrm{DEF}$ such that

$$
\mathrm{DE}=\mathrm{AB}, \mathrm{EF}=\mathrm{BC} \text { and } \angle \mathrm{E}=90^{\circ} .
$$

Proof: In $\triangle D E F$ we have $\angle E=90^{\circ}$
So, by Pythagoras theorem, we have

$$
\begin{array}{ll}
& \mathrm{DF}^{2}=\mathrm{DE}^{2}+\mathrm{EF}^{2} \\
\Rightarrow \quad & \mathrm{DF}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \tag{i}
\end{array}
$$

But

$$
\begin{array}{r}
(\because \mathrm{DE}=\mathrm{AB} \text { and } \mathrm{EF}=\mathrm{BC}) \\
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \ldots(\text { (ii })(\text { Given })
\end{array}
$$

Mathematics 2019 (Outside Delhi)

From equation (i) and (ii), we get

$$
\mathrm{AC}^{2}=\mathrm{DF}^{2} \Rightarrow \mathrm{AC}=\mathrm{DF}
$$

Now, in $\triangle A B C$ and $\triangle D E F$, we have
$\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}$ and $\mathrm{AC}=\mathrm{DF}$.

$$
\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}
$$

Hence, $\angle B=\angle E=90^{\circ}$. Hence Proved.
24. From a point P on the ground, the angle of elevation of the top of a tower is 30° and that of the top of the flag-staff fixed on the top of the tower is 45°. If the length of the flag-staff is 5 m , find the height of the tower. (Use $\sqrt{3}=1.732$) [4] Solution : Let $A B$ be the tower and $B C$ be the flag-staff.

Let P be a point on the ground such that $\angle \mathrm{APB}=30^{\circ}$ and $\angle \mathrm{APC}=45^{\circ}, \mathrm{BC}=5 \mathrm{~m}$
Let $\mathrm{AB}=h \mathrm{~m}$ and $\mathrm{PA}=x$ metres
From right $\triangle \mathrm{PAB}$, we have

$$
\begin{align*}
\cot 30^{\circ} & =\frac{x}{h}=\frac{\mathrm{PA}}{\mathrm{AB}} \\
\sqrt{3} & =\frac{x}{h} \\
\Rightarrow \quad x & =\sqrt{3} h \tag{i}
\end{align*}
$$

From right $\triangle P A C$, we have

$$
\begin{align*}
\cot 45^{\circ} & =\frac{\mathrm{PA}}{\mathrm{AC}}=\frac{x}{h+5} \\
x & =h+5 \tag{ii}
\end{align*}
$$

Equating the values of x from equations (i) and (ii), we get

$$
\begin{aligned}
\sqrt{3} h & =h+5 \\
\sqrt{3} h-h & =5 \\
h(\sqrt{3}-1) & =5 \\
h & =\frac{5}{\sqrt{3}-1}=\frac{5}{1 \cdot 732-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5}{0.732} \\
& =\frac{5000}{732} \\
& =6.83 \mathrm{~m}
\end{aligned}
$$

Hence, the height of tower is 6.83 m Ans.
25. A right cylindrical container of radius 6 cm and height 15 cm is full of ice-cream, which has to be distributed to 10 children in equal cones having hemispherical shape on the top. If the height of the conical portion is four times its base radius, find the radius of the ice-cream cone.
Solution : Let R and H be the radius and height of cylinder.
Given, $\mathrm{R}=6 \mathrm{~cm}, \mathrm{H}=15 \mathrm{~cm}$.
Volume of ice-cream in the cylinder $=\pi R^{2} H$

$$
\begin{aligned}
& =\pi \times 36 \times 15 \\
& =540 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Let the radius of cone be $r \mathrm{~cm}$
Height of the cone $(h)=4 r$
Radius of hemispherical portion $=r \mathrm{~cm}$.
\therefore Volume of ice-cream in cone
$=$ Volume of cone + Volume of hemisphere $=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\frac{1}{3} \pi r^{2}(h+2 r)$
$=\frac{1}{3} \pi r^{2}(4 r+2 r)(\because h=4 r)$
$=\frac{1}{3} \times \pi r^{2} \times 6 r$

$=2 \pi r^{3}$
Number of ice cream cones distributed to the children $=10$
$\Rightarrow 10 \times$ Volume of ice-cream in each cone $=$
Volume of ice-cream in cylindrical container

$$
\begin{array}{rlrl}
\Rightarrow & 10 \times 2 \pi r^{3} & =540 \pi \\
\Rightarrow & 20 r^{3} & =540 \\
\Rightarrow & r^{3} & =27 \\
& & r & =3
\end{array}
$$

Thus, the radius of the ice-cream cone is 3 cm .
Ans.

SECTION - A

1. Find the coordinates of a point A, where $A B$ is diameter of a circle whose centre is $(2,-3)$ and B is the point $(1,4)$.
Solution. Let the co-ordinates of point A be (x, y) and point $O(2,-3)$ be point the centre, then

By mid-point formula.

$$
\frac{x+1}{2}=2 \quad \text { and } \quad \frac{y+4}{2}=-3
$$

or

$$
\begin{array}{ll}
x=4-1 \text { and } & y=-6-4 \\
x=3 & y=-10
\end{array}
$$

\therefore The co-ordinates of point A are $(3,-10)$ Ans.
2. For what values of k, the roots of the equation $x^{2}+4 x+k=0$ are real?
[1]

OR

Find the value of k for which the roots of the equation $3 x^{2}-10 x+k=0$ are reciprocal of each other.

Solution. The given equation is $x^{2}+4 x+k=0$
On comparing the given equation with $a x^{2}+b x$
$+c=0$, we get
$a=1, b=4$ and $c=k$
For real roots, $\quad D \geq 0$
or

$$
\begin{aligned}
b^{2}-4 a c & \geq 0 \\
16-4 k & \geq 0
\end{aligned}
$$

or

$$
k \leq 4
$$

\therefore For $k \leq 4$, equation $x^{2}+4 x+k$ will have real roots.

Ans.
OR
The given equation is $3 x^{2}-10 x+k=0$
On comparing it with $a x^{2}+b x+c=0$, we get

$$
a=3, b=-10, c=k
$$

Let the roots of the equation are α and $\frac{1}{\alpha}$
\because Product of the roots $=\frac{c}{a}$

$$
\begin{array}{lrl}
\therefore & \alpha \cdot \frac{1}{\alpha} & =\frac{k}{3} \\
\text { or } & k & =3
\end{array}
$$

Ans.
3. Find A if $\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-24^{\circ}\right)$

OR

Find the value of $\left(\sin ^{2} 33^{\circ}+\sin ^{2} 57^{\circ}\right)$
Solution. Given,
$\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-24^{\circ}\right)$
or $\cot \left(90^{\circ}-2 \mathrm{~A}\right)=\cot \left(\mathrm{A}-24^{\circ}\right)$

$$
\begin{aligned}
\text { or } & 90^{\circ}-2 \mathrm{~A} & =\mathrm{A}-24^{\circ} \\
\text { or } & 3 \mathrm{~A} & =90^{\circ}+24^{\circ} \\
\text { or } & 3 \mathrm{~A} & =114^{\circ}
\end{aligned}
$$

$$
\mathrm{A}=38^{\circ}
$$

Ans.
OR

$$
\begin{aligned}
\sin ^{2} 33^{\circ}+\sin ^{2} 57^{\circ} & =\sin ^{2} 33^{\circ}+\cos ^{2}\left(90^{\circ}-57^{\circ}\right) \\
& =\sin ^{2} 33^{\circ}+\cos ^{2} 33^{\circ} \\
& =1 \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
\end{aligned}
$$

Ans.
4. How many two digits numbers are divisible by 3 ?

Solution. The two-digit numbers divisible by 3 are

$$
12,15,18, \ldots99
$$

This is an A.P. in which $a=12, d=3, a_{n}=99$

$$
\begin{array}{rlrl}
\because & a_{n} & =a+(n-1) d \\
\therefore & 99 & =12+(n-1) \times 3 \\
87 & =(n-1) \times 3
\end{array}
$$

or $\quad n-1=\frac{87}{3}=29$
or

$$
n=30
$$

So, there are 30 two-digit numbers divisible by 3 .

Ans.
5. In Fig., $D E \| B C, A D=1 \mathrm{~cm}$ and $B D=$ 2 cm . what is the ratio of the ar $(\triangle A B C)$ to the ar ($\triangle A D E$) ?

Solution. Given,

$$
\begin{aligned}
& & A D & =1 \mathrm{~cm}, B D=2 \mathrm{~cm} \\
& \therefore & A B & =1+2=3 \mathrm{~cm}
\end{aligned}
$$

Also, $D E \| B C$
(Given)

$$
\begin{equation*}
\therefore \quad \angle A D E=\angle A B C \tag{i}
\end{equation*}
$$

(corresponding angles)
In $\triangle A B C$ and $\triangle A D E$

$$
\begin{array}{rlrl}
\angle A & =\angle A \quad \text { (common) } \\
& & \angle A B C & =\angle A D E[\text { by equation (i)] } \\
\therefore & & \triangle A B C & \sim \triangle A D E \quad \text { (by AA rule) }
\end{array}
$$

Now,

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\left(\frac{\mathrm{AB}}{\mathrm{AD}}\right)^{2}
$$

$$
[\because \triangle A B C \sim \triangle A D E]
$$

$$
\begin{aligned}
& \text { or } \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\left(\frac{3}{1}\right)^{2}=\frac{9}{1} \\
& \therefore \quad \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=9: 1
\end{aligned}
$$

Ans.
6. Find a rational number between $\sqrt{2}$ and $\sqrt{3}$.

Solution. As $\sqrt{2}=1.414 \ldots$.

$$
\sqrt{3}=1.732 \ldots . .
$$

So, a rational number between $\sqrt{2}$ and $\sqrt{3}$ is 1.5 or we can take any number between 1.414 and 1.732

SECTION - B

7. Find the HCF of 1260 and 7344 using Euclid's algorithm.

OR

Show that every positive odd integer is of the form $(4 q+1)$ or $(4 q+3)$, where q is some integer.
Solution. Two numbers are 1260 and 7344
Since $7344>1260$, we apply the Euclid division lemma to 7344 and 1260 , we get

$$
\begin{aligned}
7344 & =1260 \times 5+1044 \\
1260 & =1044 \times 1+216 \\
1044 & =216 \times 4+180 \\
216 & =180 \times 1+36 \\
180 & =36 \times 5+0
\end{aligned}
$$

Also,

Now, remainder is 0 , hence our procedure stops here.
\therefore H.C.F. of 7344 and 1260 is 36 .
Ans.

OR

Let ' a ' be any positive odd integer.
We apply the division algorithm with a and b $=4$
or

$$
\begin{aligned}
& a=b q+r, \text { where } 0 \leq r<b \\
& a=4 q+r,
\end{aligned}
$$

the possible remainders are $0,1,2,3$
Then when $r=0, \Rightarrow a=4 q$

$$
\begin{aligned}
r=1, & \Rightarrow \\
r=2, & a=4 q+1 \\
& a=4 q+2
\end{aligned}
$$

and when $r=3, \Rightarrow \quad a=4 q+3$
Since a is odd, a cannot be $4 q$ or $4 q+2$
(Since both are divisible by 2)
Therefore, any odd integer is of the form $4 q+1$ or $4 q+3$.

Hence Proved.
8. Which term of the A.P. $3,15,27,39$, will be $\mathbf{1 2 0}$ more than its 21 st term?

OR

If $S_{n^{\prime}}$ the sum of first n terms of an A.P. is given by $S_{n}=3 n^{2}-4 n$, find the nth term.
Solution. The given A.P. is $3,15,27,39, \ldots$.
Here $a=3, d=12$

$$
\begin{array}{rlrl}
\therefore & & a_{21} & =a+20 d \\
& & =3+20 \times 12 \\
& & =3+240=243 \\
\text { Now, } \quad & & a_{n} & =a_{21}+120 \\
& & =243+120=363 \\
& a_{n} & =a+(n-1) d \\
& & 363 & =3+(n-1) 12 \\
\text { or } & 360 & =(n-1) 12 \\
\text { or } & n-1 & =30 \\
& n & =31
\end{array}
$$

Hence, the term which is 120 more than its $21^{\text {st }}$ term will be its $31^{\text {st }}$ term.

Ans.

OR

Given,

$$
S_{n}=3 n^{2}-4 n
$$

We know that

$$
\begin{aligned}
& a_{n}=S_{n}-S_{n-1} \\
= & 3 n^{2}-4 n-\left[3(n-1)^{2}-4(n-1)\right] \\
= & 3 n^{2}-4 n-\left[3\left(n^{2}-2 n+1\right)-4 n+4\right] \\
= & 3 n^{2}-4 n-\left(3 n^{2}-6 n+3-4 n+4\right) \\
= & 3 n^{2}-4 n-3 n^{2}+10 n-7 \\
= & 6 n-7
\end{aligned}
$$

So, nth term will be $6 n-7$
Ans.
9. Find the ratio in which the segment joining the points $(1,-3)$ and $(4,5)$ is divided by x-axis? Also find the coordinates of this point on x-axis.

Solution. Let the given points be $\mathrm{A}(1,-3)$ and $B(4,-5)$ and the line-segment joining by these points is divided by x-axis, so the co-ordinate of the point of intersection will be $\mathrm{P}(x, 0)$

Let the ratio be $m_{1}: m_{2}$
So, By section formula

$$
0=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
$$

$$
0=\frac{5 m_{1}-3 m_{2}}{m_{1}+m_{2}}
$$

or

$$
\begin{aligned}
5 m_{1}-3 m_{2} & =0 \\
\frac{m_{1}}{m_{2}} & =\frac{3}{5}
\end{aligned}
$$

\therefore Required ratio is $3: 5$
Ans.
Now to find the co-ordinates of this point on x-axis
$\therefore \quad x=\frac{3 \times 4+5 \times 1}{3+5}$

$$
x=\frac{12+5}{8}
$$

$$
x=\frac{17}{8}
$$

\therefore The required point is $\left(\frac{17}{8}, 0\right)$
Ans.
10. A game consists of tossing a coin 3 times and noting the outcome each time. If getting the same result in all the tosses is a success, find the probability of losing the game.

Solution. When a coin is tossed three times, the set of all possible outcomes is given by,
$S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{TTT}, \mathrm{TTH}, \mathrm{THT}$, THH

Same result on all tosses $=\mathrm{HHH}$, TTT
$P($ losing game $)=\frac{\text { No. of favourable outcomes }}{\text { Total possible outcomes }}$

$$
=\frac{6}{8}=\frac{3}{4}
$$

Ans.
11. A die is thrown once. Find the probability of getting a number which (\mathbf{i}) is a prime number (ii) lies between 2 and 6 .

Solution. In throwing a die
Total possible outcomes $=6$
i.e., $\quad S=\{1,2,3,4,5,6\}$

Prime numbers 2, 3, 5
$\therefore \mathrm{P}($ Prime No. $)=\frac{\text { favourable outcomes }}{\text { Total possible outcomes }}$

$$
=\frac{3}{6}=\frac{1}{2}
$$

Mathematics 2019 (Delhi)

Numbers between 2 and 6 are 3, 4, 5
$P($ Numbers between 2 and 6$)=\frac{3}{6}=\frac{1}{2}$ Ans.
12. Find c if the system of equations $c x+3 y+$ $(3-c)=0,12 x+c y-c=0$ has infinitely many solutions?

Solution. The given equations are

$$
c x+3 y+(3-c)=0
$$

and $\quad 12 x+c y-c=0$
On comparing with equation $a_{1} x+b_{1} y+c_{1}=0$ and equation $a_{2} x+b_{2} y+c_{2}=0$, we get

$$
a_{1}=c, b_{1}=3, c_{1}=3-c
$$

and

$$
a_{2}=12, b_{2}=c, c_{2}=-c
$$

For infinitely many solutions

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

or $\quad \frac{c}{12}=\frac{3}{c}=\frac{3-c}{-c}$

$$
\begin{array}{cc|cc}
& \frac{c}{12}=\frac{3}{c} & \text { or } & \frac{3}{c}=\frac{3-c}{-c} \\
\Rightarrow & c^{2}=36 & \Rightarrow & -3 c=3 c-c^{2} \\
\Rightarrow & c= \pm 6 & \Rightarrow & -6 c=-c^{2} \\
& \Rightarrow & c^{2}-6 c=0 \\
& \Rightarrow & c(c-6)=0 \\
& \Rightarrow & c=0 \text { or } c=6
\end{array}
$$

So, from both the above cases

$$
c=6
$$

Ans.

SECTION - C

13. Prove that $\sqrt{2}$ is an irrational number.
[3]
Solution. Let $\sqrt{2}$ is a rational number.
So, $\sqrt{2}=\frac{a}{b}$ where a and b are co-prime integers and $b \neq 0$
or

$$
\sqrt{2} b=a
$$

Squaring on both sides, we get

$$
\begin{equation*}
2 b^{2}=a^{2} \tag{i}
\end{equation*}
$$

Therefore, 2 divdies a^{2}
or
2 divides a (from theorem)
Let $\quad a=2 c, \quad$ for some integer c
From equation (i)
or
or

$$
\begin{aligned}
2 b^{2} & =(2 c)^{2} \\
2 b^{2} & =4 c^{2} \\
b^{2} & =2 c^{2}
\end{aligned}
$$

It means that 2 divides b^{2} and so 2 divides b
Therefore a and b have at least 2 as a common factor. But this contradicts the fact that a and b are co-prime.

This contradiction is due to our wrong assumption that $\sqrt{2}$ is rational.

So, we conclude that $\sqrt{2}$ is irrational.

Hence Proved.

14. Find the value of k such that the polynomial $x^{2}-(k+6) x+2(2 k-1)$ has sum of its zeros equal to half to their product.

Solution. The given quadratic polynomial is

$$
x^{2}-(k+6) x+2(2 k-1)
$$

Comparing with $a x^{2}+b x+c$, we get
$a=1, b=-(k+6)$ and $c=2(2 k+1)$
Let the zeroes of the polynomial be α and β we know that

$$
\alpha+\beta=-\frac{b}{a}
$$

$$
=\frac{k+6}{1}
$$

or

$$
\begin{equation*}
\alpha+\beta=k+6 \tag{i}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \\
& =\frac{2(2 k-1)}{1}
\end{aligned}
$$

or

$$
\begin{equation*}
\alpha \beta=2(2 k-1) \tag{ii}
\end{equation*}
$$

According to question
Sum of zeroes $=\frac{1}{2}$ of their product
$\begin{array}{ll}\therefore & \alpha+\beta=\frac{1}{2} \alpha \beta \\ \text { or } & k+6=\frac{1}{2} \times 2(2 k-1)\end{array}$
[using equations (i) \& (ii)]
or

$$
\begin{aligned}
k+6 & =2 k-1 \\
k & =7
\end{aligned}
$$

Ans.
15. A father's age is three times the sum of the ages of his two children. After 5 years his age will be two times the sum of their ages. Find the present age of the father.

OR

A fraction becomes $\frac{1}{3}$ when 2 is subtracted from the numerator and it becomes $\frac{1}{2}$ when 1 is subtracted from the denominator. Find the fraction.
Solution. Let the present age of father be x years and sum of ages of his two children be y years
According to question

$$
\begin{equation*}
x=3 y \tag{i}
\end{equation*}
$$

After 5 years

$$
\text { Father's age }=(x+5) \text { years }
$$

Sum of ages of two children $=(y+5+5)$ years

$$
=(y+10) \text { years }
$$

In 2nd case
According to question

$$
\begin{array}{rlrl}
& & x+5 & =2(y+10) \\
\text { or } & x+5 & =2 y+20 \\
\text { or } & x-2 y & =15 \\
\text { or } & 3 y-2 y & =15 \text { \{Using equations (i) }\} \\
& y & =15
\end{array}
$$

Now from equation (i)
or

$$
\begin{align*}
& x=3 y \tag{y=15}\\
& x=3 \times 15 \\
& x=45
\end{align*}
$$

So, Present age of father $=45$ years.
Ans.

> OR

Let the fraction be $\frac{x}{y}$
According to question

$$
\frac{x-2}{y}=\frac{1}{3}
$$

$$
\begin{array}{lr}
\text { or } & 3(x-2)=y \\
\text { or } & 3 x-y=6 \tag{i}
\end{array}
$$

again, According to question

$$
\frac{x}{y-1}=\frac{1}{2}
$$

or

$$
\begin{align*}
2 x & =y-1 \\
2 x-y & =-1 \tag{ii}
\end{align*}
$$

On solving equation (i) and (ii), we get

$$
x=7, y=15
$$

\therefore The required fraction is $\frac{7}{15}$
Ans.
16. Find the point on y-axis which is equidistant from the points $(5,-2)$ and $(-3,2)$.
OR

The line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by $2 x-y+k=0$, find the value of k.
Solution. We know that a point on the y-axis is of the from $(0, y)$. So, let the point $\mathrm{P}(0, y)$ be equidistant from $A(5,-2)$ and $B(-3,2)$
Then
$\mathrm{AP}=\mathrm{BP}$
or

$$
\mathrm{AP}^{2}=\mathrm{BP}^{2}
$$

or $(5-0)^{2}+(-2-y)^{2}=(-3-0)^{2}+(2-y)^{2}$
or $25+4+y^{2}+4 y=9+4+y^{2}-4 y$

$$
\begin{aligned}
8 y & =-16 \\
y & =-2
\end{aligned}
$$

So, the required point is $(0,-2)$
Ans.

OR

The line segment $A B$ is trisected at the points P and Q and P is nearest to A

So, P divides AB in the ratio $1: 2$

Then co-ordinates of P , by section formula

$$
=\mathrm{P}\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right]
$$

$$
=\mathrm{P}\left[\frac{1(5)+2(2)}{1+2}, \frac{1(-8)+2(1)}{1+2}\right]
$$

$$
=\mathrm{P}\left[\frac{5+4}{2}, \frac{-8+2}{3}\right]=\mathrm{P}(3,-2)
$$

\because P lies on the line $2 x-y+k=0$
\therefore It will satisfy the equation.

On putting $x=3$ and $y=-2$ in the given equation, we get

$$
\begin{aligned}
2(3)-(-2)+k & =0 \\
6+2+k & =0 \\
\Rightarrow \quad k & =-8 \\
\text { Hence, } \quad k & =-8
\end{aligned}
$$

Ans.
17. Prove that $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$ $=7+\tan ^{2} \theta+\cot ^{2} \theta$.

OR

Prove that $(1+\cot A-\operatorname{cosec} A)(1+\tan A+$ $\sec A)=2$.

Solution. L.H.S.

$$
\begin{aligned}
& =(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2} \\
& =\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \cdot \sin \theta \cdot \operatorname{cosec} \theta+\cos ^{2} \theta \\
& \quad+\sec ^{2} \theta+2 \cos \theta \sec \theta .
\end{aligned}
$$

$$
\begin{array}{r}
\left(\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right) \\
=\sin ^{2} \theta+\cos ^{2} \theta+\operatorname{cosec}^{2} \theta+\sec ^{2} \theta \\
+2 \sin \theta \cdot \frac{1}{\sin \theta}+2 \cdot \cos \theta \cdot \frac{1}{\cos \theta}
\end{array}
$$

$$
\left[\because \operatorname{cosec} \theta=\frac{1}{\sin \theta}\right.
$$

$$
\left.\sec \theta=\frac{1}{\cos \theta}\right]
$$

$$
=1+1+\cot ^{2} \theta+1+\tan ^{2} \theta+4
$$

$$
\left[\because \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\right.
$$

$$
\left.\sec ^{2} \theta=1+\tan ^{2} \theta\right]
$$

$$
=7+\tan ^{2} \theta+\cot ^{2} \theta \text { (R.H.S.) Hence Proved. }
$$

OR
L.H.S. $=(1+\cot \mathrm{A}-\operatorname{cosec} \mathrm{A})(1+\tan \mathrm{A}+\sec \mathrm{A})$

$$
\begin{aligned}
& =\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right) \\
& =\left(\frac{\sin A+\cos A-1}{\sin A}\right)\left(\frac{\cos A+\sin A+1}{\cos A}\right)
\end{aligned}
$$

$$
\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]
$$

$$
=\frac{(\sin \mathrm{A}+\cos \mathrm{A})^{2}-1}{\sin \mathrm{~A} \cdot \cos \mathrm{~A}}
$$

$$
=\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+2 \cdot \sin \mathrm{~A} \cdot \cos \mathrm{~A}-1}{\sin \mathrm{~A} \cdot \cos \mathrm{~A}}
$$

$$
=\frac{1+2 \sin \mathrm{~A} \cdot \cos \mathrm{~A}-1}{\sin \mathrm{~A} \cdot \cos \mathrm{~A}}=\frac{2 \sin \mathrm{~A} \cdot \cos \mathrm{~A}}{\sin \mathrm{~A} \cdot \cos \mathrm{~A}}
$$

Hence Proved.
18. In Fig. PQ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at point T. Find the length of TP.

Solution. Join OT, let it intersect PQ at the point R
Now, $\triangle T P Q$ is an isosceles triangle and $T O$ is the angle bisector of $\angle \mathrm{PTQ}$. So, $\mathrm{OT} \perp \mathrm{PQ}$ and therefore, OT bisects PQ

$$
\begin{array}{ll}
\therefore & \quad \mathrm{PR}=\mathrm{RQ}=4 \mathrm{~cm} \\
\text { Also, } \mathrm{OR} & =\sqrt{\mathrm{OP}^{2}-\mathrm{PR}^{2}}=\sqrt{5^{2}-4^{2}} \\
& =\sqrt{25-16} \\
& =\sqrt{9}=3 \mathrm{~cm}
\end{array}
$$

Now, $\angle \mathrm{TPR}+\angle \mathrm{RPO}=90^{\circ}=\angle \mathrm{TPR}+\angle \mathrm{PTR}$

$$
\left[\because \text { In } \triangle \mathrm{TRP}, \angle \mathrm{TRP}=90^{\circ}\right]
$$

$\Rightarrow \quad \angle \mathrm{RPO}=\angle \mathrm{PTR}$
So, $\quad \Delta \mathrm{TRP} \sim \Delta \mathrm{PRO} \quad$ (By AA rule)
$\therefore \quad \frac{\mathrm{TP}}{\mathrm{PO}}=\frac{\mathrm{RP}}{\mathrm{RO}}$
or $\quad \frac{\mathrm{TP}}{5}=\frac{4}{3}$, or $\mathrm{TP}=\frac{20}{3} \mathrm{~cm}$
Hence, the length of $\mathrm{TP}=\frac{20}{3} \mathrm{~cm}$
Ans.
19. In Fig. $\angle \mathrm{ACB}=90^{\circ}$ and $\mathrm{CD} \perp \mathrm{AB}$, prove that $\mathrm{CD}^{2}=\mathrm{BD} \times \mathrm{AD}$.

Page 25 of 164

OR
If P and Q are the points on side CA and $C B$ respectively of $\triangle A B C$, right angled at C, prove that $\left(A Q^{2}+B P^{2}\right)=\left(A B^{2}+P Q^{2}\right)$.
Solution. Given, $\mathrm{A} \triangle \mathrm{ACB}$ in which $\angle \mathrm{ACB}=$ 90° and $\mathrm{CD} \perp \mathrm{AB}$
To prove : $\mathrm{CD}^{2}=\mathrm{BD} \times \mathrm{AD}$
Proof: In $\triangle A D C$ and $\triangle A C B$

$$
\begin{array}{lrr}
\angle A & =\angle \mathrm{A} & \text { (common) } \\
& \angle \mathrm{ADC}=\angle \mathrm{ACB} & \left(90^{\circ} \text { each }\right) \\
\therefore & \triangle \mathrm{ADC} & \sim \triangle \mathrm{ACB} \\
\hline \text { (By AA rule) } \ldots(\text { i })
\end{array}
$$

$$
\Delta \mathrm{CDB} \sim \Delta \mathrm{ACB} \text { (By AArule) ...(ii) }
$$

From equation (i) and (ii)

$$
\begin{array}{rlrl}
& & \Delta \mathrm{ADC} & \sim \Delta \mathrm{CDB} \\
\therefore & \frac{\mathrm{AD}}{\mathrm{CD}} & =\frac{\mathrm{CD}}{\mathrm{DB}}
\end{array}
$$

(by the definition of similarity of triangles) or

$$
\mathrm{CD}^{2}=\mathrm{AD} \cdot \mathrm{BD}
$$

or

$$
\mathrm{CD}^{2}=\mathrm{BD} \times \mathrm{AD}
$$

Hence Proved.

OR

Given, ABC is a right angled triangle in which $\angle \mathrm{C}=90^{\circ}$

To prove : $\mathrm{AQ}^{2}+\mathrm{BP}^{2}=\mathrm{AB}^{2}+\mathrm{PQ}^{2}$
construction : Join AQ, PB and PQ
Proof: In $\triangle \mathrm{AQC}, \angle \mathrm{C}=90^{\circ}$

$$
\begin{equation*}
\mathrm{AQ}^{2}=\mathrm{AC}^{2}+\mathrm{CQ}^{2} \tag{i}
\end{equation*}
$$

(Using Pythagoras theorem)
In $\triangle P B C$,

$$
\angle C=90^{\circ}
$$

$$
\begin{equation*}
\therefore \quad \mathrm{BP}^{2}=\mathrm{BC}^{2}+\mathrm{CP}^{2} \tag{ii}
\end{equation*}
$$

(Using Pythagoras theorem)
Adding equation (i) and (ii)

$$
\begin{aligned}
\mathrm{AQ}^{2}+\mathrm{BP}^{2} & =\mathrm{AC}^{2}+\mathrm{CQ}^{2}+\mathrm{BC}^{2}+\mathrm{CP}^{2} \\
& =\mathrm{AC}^{2}+\mathrm{BC}^{2}+\mathrm{CQ}^{2}+\mathrm{CP}^{2}
\end{aligned}
$$

$$
\mathrm{AQ}^{2}+\mathrm{BP}^{2}=\mathrm{AB}^{2}+\mathrm{PQ}^{2}
$$

Hence Proved.
20. Find the area of the shaded region in Fig. if $A B C D$ is a rectangle with sides 8 cm and 6 cm and D is the centre of circle.
[Take $\pi=3.14]$

Solution. Given, ABCD is a rectangle with sides $A B=8 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$
In $\triangle A B C$

$$
A C^{2}=8^{2}+6^{2}
$$

(By Pythagoras Theorem)

$$
=64+36
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AC}^{2}
\end{array}=100 \mathrm{~cm} \text { (} \begin{aligned}
& \mathrm{AC}=10 \mathrm{~cm}
\end{aligned}
$$

The diagonal of the rectangle will be the diameter of the circle
\therefore radius of the circle $=\frac{10}{2}=5 \mathrm{~cm}$
Area of shaded portion

$$
\begin{aligned}
& =\text { Area of circle }- \text { Area of Rectangle } \\
& =\pi r^{2}-l \times b \\
& =3.14 \times 5 \times 5-8 \times 6 \\
& =78.50-48 \\
& =30.50 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, Area of shaded portion $=30.5 \mathrm{~cm}^{2}$
Ans.
21. Water in a canal, 6 m wide and 1.5 m deep, is flowing with a speed of $10 \mathrm{~km} / \mathrm{hour}$. How much area will it irrigate in 30 minutes, if 8 cm standing water is needed?

Solution. Let b be the width and h be the depth of the canal
$\therefore b=6 \mathrm{~m}$ and $h=1.5 \mathrm{~m}$
Water is flowing with a speed $=10 \mathrm{~km} / \mathrm{h}$

$$
=10,000 \mathrm{~m} / \mathrm{h}
$$

Mathematics 2019 (Delhi)

\Rightarrow Length of water flowing in $1 \mathrm{hr}=10,000 \mathrm{~m}$
Length (l) of water flowing in $\frac{1}{2} \mathrm{hr}=5,000 \mathrm{~m}$
Volume of water flowing in $30 \mathrm{~min} .=l \times b \times h$

$$
=5000 \times 6 \times 1.5 \mathrm{~m}^{3}
$$

Let the area irrigated in $30 \min \left(\frac{1}{2} \mathrm{hr}\right)$ be $x \mathrm{~m}^{2}$
Volume of water required for irrigation
$=$ Volume of water flowing in 30 min .
$\therefore \quad x \times \frac{8}{100}=5000 \times 6 \times 1.5$
or

$$
\begin{aligned}
& x=\frac{5000 \times 6 \times 1 \cdot 5 \times 100}{8} \mathrm{~m}^{2} \\
& x=562500 \mathrm{~m}^{2}=56 \cdot 25 \text { hectares } . \\
& \quad\left(\because 1 \text { hactare }=10^{4} \mathrm{~m}^{2}\right)
\end{aligned}
$$

Hence, the canal will irrigate $56 \cdot 25$ hectares in 30 min .

Ans.
22. Find the mode of the following frequency distribution.

Class	Frequency
$0-10$	8
$10-20$	10
$20-30$	10
$30-40$	16
$40-50$	12
$50-60$	6
$60-70$	7

Solution. The given frequency distribution table is

Class	Frequency
$0-10$	8
$10-20$	10
$20-30$	10
$30-40$	16
$40-50$	12
$50-60$	6
$60-70$	7

Here, the maximum class frequency is 16
$\therefore \quad$ Modal class $=30-40$
\therefore lower limit (l) of modal class $=30$

$$
\text { Class size }(h)=10
$$

Frequency $\left(f_{1}\right)$ of the modal class $=16$

Frequency $\left(f_{0}\right)$ of preceding class $=10$
Frequency $\left(f_{2}\right)$ of succeeding class $=12$

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =30+\left(\frac{16-10}{32-10-12}\right) \times 10 \\
& =30+\frac{6}{32-22} \times 10 \\
& =30+\frac{6}{10} \times 10 \\
& =30+6=36
\end{aligned}
$$

Hence, Mode $=36$.
Ans.

SECTION - D

23. Two water taps together can fill a tank in $1 \frac{7}{8}$ hours. The tap with longer diameter takes 2 hours less than the tap with smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately.

OR

A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water.

Solution. Let the tap A with longer diameter take x hours and the tap B with smaller diameter take $(x+2)$ hours to fill the tank.
\therefore Portion of tank filled by the tap A in 1 hr .

$$
=\frac{1}{x}
$$

and Portion of tank filled by the tap B in 1 hr .

$$
=\frac{1}{x+2}
$$

Portion of the tank filled by both taps in 1 hr .

$$
\begin{aligned}
& =\frac{1}{x}+\frac{1}{x+2} \\
& =\frac{x+2+x}{x(x+2)}
\end{aligned}
$$

Time taken by both taps to fill the tank

$$
=1 \frac{7}{8} \mathrm{hrs}=\frac{15}{8} \mathrm{hrs}
$$

Page 27 of 164
\therefore Portion of the tank filled by both in 1 hr .

$$
=\frac{8}{15}
$$

According to question,

$$
\begin{aligned}
& \frac{2 x+2}{x(x+2)}=\frac{8}{15} \\
& \frac{2(x+1)}{x(x+2)}=\frac{8}{15} \\
& 15 x+15=4 x^{2}+8 x \\
& 4 x^{2}-7 x-15=0 \\
& \text { or } \quad \\
& 4 x^{2}-12 x+5 x-15=0 \\
& 4 x(x-3)+5(x-3)=0 \\
&(4 x+5)(x-3)=0 \\
& \Rightarrow \quad 4 x+5=0 \text { or } x-3=0 \\
& \Rightarrow \quad x=\frac{-5}{4} \text { Since, time can not be negative hence, }
\end{aligned}
$$

neglegted this value is ; $x=3$
Hence, the time taken with longer diameter tap $=3$ hours
and the time taken with smaller diameter tap

$$
\text { = } 5 \text { hours. }
$$

Ans.

OR

Let the speed of the boat in still water be $x \mathrm{~km} / \mathrm{h}$ and the speed of the stream be $y \mathrm{~km} / \mathrm{h}$ Then the speed of the boat downstream

$$
=(x+y) \mathrm{km} / \mathrm{h}
$$

and the speed of the boat upstream
We know that,

$$
=(x-y) \mathrm{km} / \mathrm{h}
$$

$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}
$$

In $1^{\text {st }}$ case, let the time taken be t_{1}

$$
t_{1}=\frac{30}{x-y}
$$

and $\quad t_{2}=\frac{44}{x+y}$
According to question

$$
\begin{equation*}
\frac{30}{x-y}+\frac{44}{x+y}=10 \tag{i}
\end{equation*}
$$

In $2^{\text {nd }}$ case, $\frac{40}{x-y}+\frac{55}{x+y}=13$

Let $\frac{1}{x-y}=u$ and $\frac{1}{x+y}=v$
\therefore From equation (i) and (ii), we get

$$
\begin{aligned}
& 30 u+44 v=10 \\
& 40 u+55 v=13
\end{aligned}
$$

On solving, we get

$$
u=\frac{1}{5} \quad \text { and } \quad v=\frac{1}{11}
$$

From equation (iii), we get

$$
\begin{aligned}
\frac{1}{x-y}=\frac{1}{5} & \text { and } \quad \frac{1}{x+y}=\frac{1}{11} \\
\text { i.e., } x-y=5 & \text { and } \quad x+y=11
\end{aligned}
$$

On solving, we get

$$
x=8 \quad \text { and } \quad y=3
$$

Hence, the speed of the boat in still water

$$
=8 \mathrm{~km} / \mathrm{h}
$$

and the speed of the stream $=3 \mathrm{~km} / \mathrm{h} \quad$ Ans.
24. If the sum of first four terms of an A.P. is 40 and that of first 14 terms is 280 . Find the sum of its first n terms.

Solution. Given, $S_{4}=40$ and $S_{14}=280$
If a be the first term and d be the common difference of an A.P.

Then, Sum of n term $\left(S_{n}\right)=\frac{n}{2}[2 a+(n-1) d]$
or

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

or
or
or

$$
\begin{align*}
40 & =2(2 a+3 d) \\
2 a+3 d & =20 \tag{i}
\end{align*}
$$

Also, Sum of first 14 terms $=280$

$$
\begin{align*}
S_{14} & =\frac{14}{2}[2 a+(13) d] \\
280 & =7(2 a+13 d) \\
\text { or } \quad 2 a+13 d & =40
\end{align*}
$$

On solving equation (i) and (ii), we get
$a=7, d=2$
Now, sum of n terms

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

On putting $a=7, d=2$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[14+(n-1) 2] \\
& =n[7+n-1] \\
& =n(n+6) \\
& =n^{2}+6 n
\end{aligned}
$$

Hence, the sum of first n terms is $n^{2}+6 n$ Ans.
25. Prove that $\frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}$
[4]
Solution.

$$
\text { L.H.S. }=\frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}
$$

Dividing the numerator and denominator by $\cos \mathrm{A}$

$$
\begin{aligned}
& =\frac{\tan A-1+\sec A}{\tan A+1-\sec A} \\
& =\frac{(\tan A+\sec A)-1}{(\tan A-\sec A)+1} \\
& =\frac{(\tan A+\sec A)-\left(\sec ^{2} A-\tan ^{2} A\right)}{\tan A-\sec A+1}
\end{aligned}
$$

$$
\left[\because \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1\right]
$$

$=\frac{(\tan \mathrm{A}+\sec \mathrm{A})[1-\sec \mathrm{A}+\tan \mathrm{A}]}{(\tan \mathrm{A}-\sec \mathrm{A}+1)}$

$$
\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]
$$

$$
=\frac{(\tan \mathrm{A}+\sec \mathrm{A}) \times(\sec \mathrm{A}-\tan \mathrm{A})}{(\sec \mathrm{A}-\tan \mathrm{A})}
$$

$$
=\frac{\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}}{\sec \mathrm{~A}-\tan \mathrm{A}}=\frac{1}{\sec \mathrm{~A}-\tan \mathrm{A}} \text { (R.H.S.) }
$$

$\Rightarrow \quad$ L.H.S $=$ R.H.S Hence Proved.
26. A man in a boat rowing away from a light house 100 m high takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30°. Find the speed of the boat in metres per minute. [Use $\sqrt{3}=1 \cdot 732$]

Solution. Let AB be the light house C and D be the two positions of the boat, such that,

$$
\mathrm{CD}=x \mathrm{~m} \text { and } \mathrm{BC}=y \mathrm{~m}
$$

Now, In $\triangle A B C$

$$
\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}
$$

$$
\sqrt{3}=\frac{100}{y}
$$

$$
\begin{equation*}
y=\frac{100}{\sqrt{3}} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABD}$

$$
\begin{array}{rlrl}
\tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BD}} \\
\frac{1}{\sqrt{3}} & =\frac{100}{x+y} \\
\Rightarrow & x+y & =100 \sqrt{3} \\
& \text { or } & y & =100 \sqrt{3}-x \tag{ii}
\end{array}
$$

From equation (i) and (ii)

$$
\begin{aligned}
\frac{100}{\sqrt{3}} & =100 \sqrt{3}-x \\
\Rightarrow \quad x & =100 \sqrt{3}-\frac{100}{\sqrt{3}} \\
& =100\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) \\
& =100 \times \frac{2}{\sqrt{3}}=\frac{200}{\sqrt{3}} \\
& =115 \cdot 48 \text { metres }
\end{aligned}
$$

\because Time taken to cover $115 \cdot 48 \mathrm{~m}=2 \mathrm{~min}$
\therefore Speed of boat $=\frac{115.48}{2}=57.74 \mathrm{~m} / \mathrm{min}$
Hence, speed of boat $=57.74 \mathrm{~m} / \mathrm{min}$
27. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{CA}=6 \mathrm{~cm}, \mathrm{AB}=$ 5 cm and $\angle B A C=45^{\circ}$. Then construct a triangle whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle \mathrm{ABC}$.

Solution. Steps of Construction are as follows :

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$
2. At the point A draw $\angle B A X=45^{\circ}$
3. From $A X$ cut off $A C=6 \mathrm{~cm}$
4. Join $\mathrm{BC}, \triangle \mathrm{ABC}$ is formed with given data.
5. Draw $\overrightarrow{A Y}$ making any acute angle with $A B$ as shown in the figure.

6. Draw $5 \operatorname{arcs} \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$, and P_{5} with equal intervals.
7. Join $B P_{5}$.
8. Draw $\mathrm{P}_{3} \mathrm{~B}^{\prime}| | \mathrm{P}_{5} \mathrm{~B}$ meeting AB at B^{\prime}.
9. From B^{\prime}, draw $B^{\prime} C^{\prime} \| B C$ meeting $A C$ at C^{\prime}.

$$
\therefore \quad \triangle \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \triangle \mathrm{ABC}
$$

Hence $\Delta A B^{\prime} C^{\prime}$ is the required triangle. Ans.
28. A bucket open at the top is in the form of a frustum of a cone with a capacity of $12308 \cdot 8$ cm^{3}. The radii of the top and bottom of circular ends of the bucket are 20 cm and 12 cm respectively. Find the height of the bucket and also the area of the metal sheet used in making it. (Use $\pi=3 \cdot 14$)

Solution. Let r and R be the radii of the top and the bottom circular ends of the bucket respectively. Let h be the height of the bucket.
$\therefore \mathrm{R}=20 \mathrm{~cm}$ and $r=12 \mathrm{~cm}$

Capacity of the bucket $=12308 \cdot 8 \mathrm{~cm}^{3}$
Volume of bucket (frustum)

$$
=\frac{1}{3} \pi\left(R^{2}+r^{2}+R r\right) h
$$

or $\frac{1}{3} \times 3 \cdot 14\left(20^{2}+12^{2}+20 \times 12\right) h=12308 \cdot 8$

$$
\begin{aligned}
& \frac{1}{3} \times 3 \cdot 14(400+144+240) h=12308 \cdot 8 \\
& \frac{784 \times 3 \cdot 14}{3} \times h=12308 \cdot 8
\end{aligned}
$$

or

$$
\begin{aligned}
& h=\frac{12308 \cdot 8 \times 3}{784 \times 3 \cdot 14} \\
& h=15 \mathrm{~cm}
\end{aligned}
$$

Thus, the height of the bucket is 15 cm . Ans. The area of the metal sheet used in making the bucket $=$ CSA of bucket + area of circular bottom
where,

$$
\begin{aligned}
& =\pi(\mathrm{R}+r) l+\pi r^{2} \\
l & =\sqrt{h^{2}+(R-r)^{2}} \\
& l \rightarrow \text { slant height } \\
l & =\sqrt{15^{2}+(20-12)^{2}} \\
& =\sqrt{225+64}=\sqrt{289}=17 \mathrm{~cm}
\end{aligned}
$$

\therefore Area of metal sheet used $=\pi\left[(\mathrm{R}+r) l+r^{2}\right]$

$$
\begin{aligned}
& =3 \cdot 14\left[(20+12) \times 17+12^{2}\right] \\
& =3 \cdot 14[32 \times 17+144] \\
& =3 \cdot 14[544+144] \\
& =3 \cdot 14 \times 688 \\
& =2160 \cdot 32 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

29. Prove that in a right angle triangle, the square of the hypotenuse is equal the sum of squares of the other two sides.

Solution. Given, $\mathrm{A} \triangle \mathrm{ABC}$ right angled at B .
To prove : $A C^{2}=A B^{2}+B C^{2}$

Page 30 of 164

Construction : Draw BD \perp AC
Proof : In $\triangle A D B$ and $\triangle A B C$

		$\angle \mathrm{A}$	$=\angle \mathrm{A}$
		(common)	
\therefore	$\angle \mathrm{ADB}$	$=\angle \mathrm{ABC}$	$\left(90^{\circ}\right.$ each $)$
So,	$\triangle \mathrm{ADB}$	$\sim \triangle \mathrm{ABC}$	(By AA rule)
		$\frac{\mathrm{AD}}{\mathrm{AB}}$	$=\frac{\mathrm{AB}}{\mathrm{AC}}$

(sides are proportional)
or

$$
\begin{equation*}
\mathrm{AB}^{2}=\mathrm{AD} \cdot \mathrm{AC} \tag{i}
\end{equation*}
$$

Also, In $\triangle B D C$ and $\triangle A B C$

Adding equation (i) and (ii), we get

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AD} \cdot \mathrm{AC}+\mathrm{CD} \cdot \mathrm{AC} \\
& =\mathrm{AC}(\mathrm{AD}+\mathrm{CD}) \\
& =\mathrm{AC} \times \mathrm{AC} \\
& =\mathrm{AC}
\end{aligned}
$$

or

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

Hence Proved.
30. If the median of the following frequency distribution is $32 \cdot 5$. Find the values of f_{1} and f_{2}.

Class	Frequency
$0-10$	f_{1}
$10-20$	5
$20-30$	9
$30-40$	12
$40-50$	f_{2}
$50-60$	3
$60-70$	2
Total	40

OR
The marks obtained by 100 students of a class in an examination are given below.

Marks	No. of Students
$0-5$	2
$5-10$	5
$10-15$	6
$15-20$	8
$20-25$	10
$25-30$	25
$30-35$	20
$35-40$	18
$40-45$	4
$45-50$	2

Draw 'a less than' type cumulative frequency curves (ogive). Hence find median.
Solution. Median $=32 \cdot 5$

Class	Frequency	Cumulative Frequency
$0-10$	f_{1}	f_{1}
$10-20$	5	$f_{1}+5$
$20-30$	9	$f_{1}+14$ c.f.
$30-40$	12	$f_{1}+26$
$40-50$	f_{2}	$f_{1}+f_{2}+26$
$50-60$	3	$f_{1}+f_{2}+29$
$60-70$	2	$f_{1}+f_{2}+31$

Total frequency $=40$

$$
\begin{align*}
\therefore & f_{1}+f_{2}+31 & =40 \\
\text { or } & f_{1}+f_{2} & =9 \tag{i}
\end{align*}
$$

Also $\quad \frac{n}{2}=\frac{40}{2}=20$

$$
\text { Median }=32 \cdot 5
$$

which lies in the class interval ($30-40$)
$\therefore \quad$ Median class $=30-40$

$$
\begin{aligned}
& l=30 \\
& f=12, \quad C . f .=f_{1}+14 \\
& h=10
\end{aligned}
$$

So, Median $=l+\left[\frac{\frac{n}{2}-\text { C.f. }}{f}\right] \times h$

$$
32 \cdot 5=30+\left[\frac{20-\left(f_{1}+14\right)}{12}\right] \times 10
$$

$$
\begin{align*}
& \angle \mathrm{C}=\angle \mathrm{C} \quad \text { (common) } \\
& \angle \mathrm{BDC}=\angle \mathrm{ABC} \\
& \therefore \quad \triangle \mathrm{BDC} \sim \triangle \mathrm{ABC} \\
& \text { So } \\
& \frac{C D}{B C}=\frac{B C}{A C} \\
& \text { or } \quad \mathrm{BC}^{2}=\mathrm{CD} \cdot \mathrm{AC} \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
& 32 \cdot 5=30+\left(\frac{6-f_{1}}{6}\right) \times 5 \\
& 2 \cdot 5=\frac{5}{6}\left(6-f_{1}\right) \\
& \text { or } \quad \frac{2.5 \times 6}{5}=6-f_{1} \\
& \text { or } \quad 6-f_{1}=3, f_{1}=3 \\
& \text { From equation (i), we get } \\
& \begin{array}{l}
f_{2}=6 \\
f_{1}=3, \quad f_{2}=6
\end{array}
\end{aligned}
$$

OR

Marks	Cumulative Frequency
less than 5	2
less than 10	7
less than 15	13
less than 20	21
less than 25	31

Ans.

less than 30	56
less than 35	76
less than 40	94
less than 45	98
less than 50	100

To draw a less than ogive, we mark the upper class limits of the class intervals on the x-axis and their c.f. on the y-axis by taking a convenient scale.

Here,

$$
\begin{aligned}
& n=100 \\
& \frac{n}{2}=50
\end{aligned}
$$

To get median from graph
From 50, we draw a perpendicular to the curve then from that point draw again a perpendicular to x-axis.
The point where this perpendicular meet on x-axis will be the median.
$\therefore \quad$ Median $=29 \quad$ Ans.

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - A

1. Find the coordinates of a point A, where $A B$ is a diameter of the circle with centre $(-2,2)$ and B is the point with coordinates $(3,4)$. [1]

Solution. By mid-point formula

$$
\frac{x+3}{2}=-2
$$

$$
x=-4-3
$$

$$
x=-7
$$

and $\quad \frac{y+4}{2}=2$

$$
y=0
$$

\therefore Co-ordinates of point A are $(-7,0)$.
Ans.

SECTION - B

7. Find the value of k for which the following pair of linear equations have infinitely many solutions.

$$
\begin{equation*}
2 x+3 y=7,(k+1) x+(2 k-1) y=4 k+1 \tag{2}
\end{equation*}
$$

Solution. Given,

$$
2 x+3 y=7 \text { and }(k+1) x+(2 k-1) y=4 k+1
$$

On comparing above equations with $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get

$$
\begin{array}{lll}
a_{1}=2, & b_{1}=3 & c_{1}=-7 \\
a_{2}=k+1 & b_{2}=2 k-1 & c_{2}=-(4 k+1)
\end{array}
$$

For infinitely many solutions

$$
\begin{array}{rlrl}
& \frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \therefore \quad \frac{2}{k+1}=\frac{3}{2 k-1} & =\frac{-7}{-(4 k+1)} \\
\Rightarrow \quad 2(2 k-1) & =3(k+1) \\
4 k-2 & =3 k+3 \\
k & =5 \\
& \text { or } \quad 3(4 k+1) & =7(2 k-1) \\
\Rightarrow \quad & k & =5 \\
& \text { Hence, } \quad k & =5 .
\end{array}
$$

Ans.
SECTION - C
13. The arithmetic mean of the following frequency distribution is 53 . Find the value of k.

Class	Frequency
$0-20$	12
$20-40$	15
$40-60$	32
$60-80$	k
$80-100$	13

Solution. Given, Median = 53

Class	Frequency f_{i}	Mid-value x_{i}	$f_{i} x_{i}$
$0-20$	12	10	120
$20-40$	15	30	450
$40-60$	32	50	1600
$60-80$	k	70	$70 k$
$80-100$	13	90	1170
	$72+k$		$3340+70 k$

$$
\left.\begin{array}{rl}
\text { Mean } & =\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
53 & =\frac{3340+70 k}{72+k} \\
53(72+k) & =3340+70 k \\
3816+53 k & =3340+70 k \\
\Rightarrow & k
\end{array}\right)=28 .
$$

Ans.
14. Find the area of the segment shown in Fig. if radius of the circle is 21 cm and $\angle A O B=120^{\circ}$ (Use $\pi=\frac{22}{7}$)

Solution. Given, Radius of the circle $=21 \mathrm{~cm}$ and $\angle \mathrm{AOB}=120^{\circ}$

Area of the segment AYB

$$
=\text { Area of sector } A O B-\text { Area of } \triangle \mathrm{AOB}
$$

$$
\begin{aligned}
\text { Area of sector } \mathrm{AOB} & =\frac{120^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \\
& =462 \mathrm{~cm}^{2}
\end{aligned}
$$

To find the area of $\triangle \mathrm{OAB}$, draw $\mathrm{OM} \perp \mathrm{AB}$

$$
\Delta \mathrm{AMO} \cong \Delta \mathrm{BMO} \text { (by R.H.S.) }
$$

$$
\angle \mathrm{AOM}=\angle \mathrm{BOM}=\frac{1}{2} \times 120^{\circ}=60^{\circ}
$$

From $\triangle \mathrm{OMA}, \frac{\mathrm{OM}}{\mathrm{OA}}=\cos 60^{\circ}$

$$
\frac{\mathrm{OM}}{21}=\frac{1}{2}
$$

$$
\mathrm{OM}=\frac{21}{2} \mathrm{~cm}
$$

Also, $\quad \frac{\mathrm{AM}}{\mathrm{OA}}=\sin 60^{\circ}$
or

$$
\mathrm{AM}=21 \times \frac{\sqrt{3}}{2}
$$

$$
\mathrm{AB}=2 \times \mathrm{AM}=21 \sqrt{3} \mathrm{~cm}
$$

So, area of $\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OM}$

$$
\begin{aligned}
& =\frac{1}{2} \times 21 \sqrt{3} \times \frac{21}{2} \\
& =\frac{441}{4} \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of segment $=\left(462-\frac{441}{4} \sqrt{3}\right) \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\frac{21}{4}(88-21 \sqrt{3}) \mathrm{cm}^{2} \\
& =271.04 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
16. In Fig. a circle is inscribed in a $\triangle A B C$ having sides $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$. Find the lengths BL, CM and AN.
Solution. A circle is inscribed in a $\triangle A B C$
$\mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$
Let

$$
\begin{aligned}
\mathrm{AN} & =\mathrm{AM}=z \\
\mathrm{BN} & =\mathrm{BL}=x \\
\mathrm{CL} & =\mathrm{CM}=y
\end{aligned}
$$

(Tangents drawn from an exterior points are equal in length.)
Perimeter of Δ

$$
=A B+B C+C A=10+8+12
$$

or

$$
\begin{array}{r}
x+z+x+y+y+z=30 \\
2(x+y+z)=30 \\
x+y+z=15 \tag{i}
\end{array}
$$

Also,

$$
\mathrm{AB}=10 \mathrm{~cm}
$$

or

$$
\begin{equation*}
x+z=10 \tag{ii}
\end{equation*}
$$

and

$$
\mathrm{AC}=12
$$

or

$$
y+z=12
$$

and

$$
\mathrm{BC}=8 \mathrm{~cm}
$$

$$
\begin{equation*}
x+y=8 \tag{iv}
\end{equation*}
$$

From equation (i) and (ii),

$$
y=5 \mathrm{~cm}
$$

From equation (i) and (iii)

$$
x=3 \mathrm{~cm}
$$

From equation (i) and (iv)

$$
z=7 \mathrm{~cm}
$$

So, $\mathrm{BL}=3 \mathrm{~cm}, \mathrm{CM}=5 \mathrm{~cm}, \mathrm{AN}=7 \mathrm{~cm}$. Ans.
SECTION - D
23. Prove that

$$
\frac{\tan ^{2} \mathrm{~A}}{\tan ^{2} \mathrm{~A}-1}+\frac{\operatorname{cosec}^{2} \mathrm{~A}}{\sec ^{2} \mathrm{~A}-\operatorname{cosec}^{2} \mathrm{~A}}=\frac{1}{1-2 \cos ^{2} \mathrm{~A}}
$$

Solution.

$$
\begin{aligned}
& \text { L.H.S. }=\frac{\tan ^{2} \mathrm{~A}}{\tan ^{2} \mathrm{~A}-1}+\frac{\operatorname{cosec}^{2} \mathrm{~A}}{\sec ^{2} \mathrm{~A}-\operatorname{cosec}^{2} \mathrm{~A}} \\
& =\frac{\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{\frac{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}+\frac{1}{\frac{1}{\sin ^{2} \mathrm{~A}}} \\
& =\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}-\frac{1}{\sin ^{2} \mathrm{~A}} \\
& \sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}
\end{aligned} \frac{\frac{1}{\sin ^{2} \mathrm{~A}}}{\frac{\sin ^{2}-\cos ^{2} \mathrm{~A}}{\sin ^{2} \cdot \cos ^{2} \mathrm{~A}}} .
$$

$$
=\frac{\sin ^{2} A}{\sin ^{2} A-\cos ^{2} A}+\frac{1}{\sin ^{2} A} \times \frac{\sin ^{2} A \cdot \cos ^{2} A}{\sin ^{2} A-\cos ^{2} A}
$$

$$
=\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}}=\frac{1}{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}}
$$

$$
=\frac{1}{1-\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}}=\frac{1}{1-2 \cos ^{2} \mathrm{~A}}
$$

$$
=\text { R.H. S. } \quad\left[\because \sin ^{2} A=1-\cos ^{2} A\right]
$$

24. The first term of an A.P. is 3 , the last term is 83 and the sum of all its terms is 903 . Find the number of terms and the common difference of the A.P.
Solution. Given, $a=3, a_{n}=83=l$

$$
\begin{array}{rlrl}
& S_{n} & =903 \\
a_{n} & =a+(n-1) d \\
83 & =3+(n-1) d \\
(n-1) d & =80 \tag{i}
\end{array}
$$

Also,

$$
S_{n}=\frac{n}{2}(a+l)
$$

$$
903=\frac{n}{2}(3+83)
$$

Mathematics 2019 (Delhi)

$$
\begin{aligned}
1806 & =n \times 86 \\
n & =\frac{1806}{86} \\
n & =21
\end{aligned}
$$

From equation (i)

$$
\begin{aligned}
(21-1) d & =80 \\
d & =\frac{80}{20} \\
d & =4
\end{aligned}
$$

Hence, No. of terms are 21 and common difference is 4 of given A.P. Ans.
25. Construct a triangle $A B C$ with side $B C=$ $6 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ}$. Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the $\triangle \mathrm{ABC}$. [4]

Solution. Steps of construction

1. Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=6 \mathrm{~cm}$ $\angle B=45^{\circ}$ and $\angle C=30^{\circ}$

Mathematics 2019 (Delhi)

$\left[\because \angle A=105^{\circ}\right.$, (given)
and $\angle A+\angle B+\angle C=180^{\circ}$

$$
105^{\circ}+45^{\circ}+\angle C=180^{\circ}
$$

$$
\angle C=180^{\circ}-150^{\circ}
$$

$$
\left.\angle C=30^{\circ}\right]
$$

2. Draw a ray $B X$ and mark 4 arcs of equal radius on it.
3. Join $\mathrm{P}_{4} \mathrm{C}$, From P_{3}, draw $\mathrm{P}_{3} \mathrm{C}^{\prime} \| \mathrm{P}_{4} \mathrm{C}$ which meets $B C$ at C^{\prime}.
4. From C^{\prime} draw $C^{\prime} A \| C A$, which meets $A B$ at A^{\prime}
$\therefore \quad \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$
and $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - A

1. Two positive integers a and b can be written as $a=x^{3} y^{2}$ and $b=x y^{3} \cdot x, y$ are prime numbers. Find LCM (a, b).
Solution. Given, $a=x^{3} y^{2}$ and $b=x y^{3}$
\Rightarrow L.C.M $(a, b)=$ Product of the greatest
power of each prime factors

$$
=x^{3} y^{3}
$$

Ans.
SECTION - B
7. Find, how many two digit natural numbers are divisible by 7 .

OR
If the sum of first n terms of an A.P. is n^{2}, then find its 10th term.
Solution. Two digit numbers which are divisible by 7 are

$$
14,21,28, \ldots .98
$$

It is an A.P., such that

$$
a=14, a_{n}=98 ; d=21-14=7
$$

$$
\begin{array}{rlrl}
\because & a_{n} & =a+(n-1) d \\
\therefore & 98 & =14+(n-1) \times 7 \\
& & 84 & =(n-1) 7 \\
\text { or } & n-1 & =12 \\
& n & =13
\end{array}
$$

Hence, there are 13 two digit numbers, divisible by 7 .

Ans.

Given, $S_{n}=n^{2}, S_{n-1}=(n-1)^{2}$
$a_{n}=S_{n}-S_{n-1}$
$=n^{2}-(n-1)^{2}$
$=n^{2}-\left[n^{2}-2 n+1\right]$
$=n^{2}-n^{2}+2 n-1$
$a_{n}=2 n-1$
Put $n=10$,
$\therefore \quad a_{10}=2 \times 10-1=19$
Hence 10th term $=19$
Ans.
SECTION - C
13. Find all zeroes of the polynomial $3 x^{3}+10 x^{2}$ $-9 x-4$ if one of its zero is 1 . Solution. Given,

$$
P(x)=3 x^{3}+10 x^{2}-9 x-4
$$

$x=1$ is a zero of $P(x)$
$\therefore(x-1)$ is a factor of $P(x)$
To find other zeroes, we divide $P(x)$ by $(x-1)$

$$
\begin{aligned}
& x-1) 3 x^{3}+10 x^{2}-9 x-4\left(3 x^{2}+13 x+4\right. \\
& 3 x^{3}-3 x^{2} \\
& \frac{+}{13 x^{2}-9 x} \\
& \frac{13 x^{2}-13 x}{+} \\
& \frac{4 x-4}{4 x-4} \\
& \frac{-\quad+}{0} \\
& \begin{aligned}
P(x) & =(x-1)\left(3 x^{2}+13 x+4\right) \\
& =(x-1)\left(3 x^{2}+12 x+x+4\right) \\
& =(x-1)\{3 x(x+4)+1(x+4)\} \\
& =(x-1)(x+4)(3 x+1)
\end{aligned}
\end{aligned}
$$

other zeroes are $x+4=0$

$$
x=-4
$$

and

$$
\begin{aligned}
3 x+1 & =0 \\
x & =-\frac{1}{3}
\end{aligned}
$$

\therefore other zeroes are $x=-4$ and $x=-\frac{1}{3} \quad$ Ans.
15. Prove that $\frac{2+\sqrt{3}}{5}$ is an irrational number, given that $\sqrt{3}$ is an irrational number. [3] Solution. Let $\frac{2+\sqrt{3}}{5}$ is a rational number $\therefore \frac{2+\sqrt{3}}{5}=\frac{a}{b}$, where a and b are co-prime numbers.

$$
\text { or } \begin{aligned}
2+\sqrt{3} & =\frac{5 a}{b} \\
\sqrt{3} & =\frac{5 a}{b}-\frac{2}{1} \\
\sqrt{3} & =\frac{5 a-2 b}{b}
\end{aligned}
$$

In R.H.S., $a, b, 2$ and 5 are integers.
\therefore R.H.S. is a rational number but L.H.S. $=\sqrt{3}$, which is given that $\sqrt{3}$ is an irrational.
So, it is a contradiction.
Hence, $\frac{2+\sqrt{3}}{5}$ is an irrational number. Ans.

SECTION - D
23. If $\sec \theta=x+\frac{1}{4 x}, x \neq 0$, find $(\sec \theta+\tan \theta)$.

Solution. Given,

$$
\begin{equation*}
\sec \theta=x+\frac{1}{4 x} \tag{i}
\end{equation*}
$$

Squaring both sides, we get

$$
\begin{aligned}
\sec ^{2} \theta & =\left(x+\frac{1}{4 x}\right)^{2} \\
& =x^{2}+\frac{1}{16 x^{2}}+2 \times x \times \frac{1}{4 x} \\
& =x^{2}+\frac{1}{16 x^{2}}+\frac{1}{2}
\end{aligned}
$$

Also,

$$
\sec ^{2} \theta=1+\tan ^{2} \theta
$$

$$
\therefore \quad 1+\tan ^{2} \theta=x^{2}+\frac{1}{16 x^{2}}+\frac{1}{2}
$$

or

$$
\tan ^{2} \theta=x^{2}+\frac{1}{16 x^{2}}-\frac{1}{2}
$$

$$
=\left(x-\frac{1}{4 x}\right)^{2}
$$

$$
\begin{equation*}
\Rightarrow \quad \tan \theta=x-\frac{1}{4 x} \tag{ii}
\end{equation*}
$$

Now, From equation (i) and (ii)

$$
\sec \theta+\tan \theta=x+\frac{1}{4 x}+x-\frac{1}{4 x}
$$

Hence,

$$
\sec \theta+\tan \theta=2 x
$$

Ans.
24. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Solution. Given, Two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are similar to each other.

To prove :

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}
$$

Construction: Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}$

Proof :

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}} . \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$

$$
\begin{array}{rlrl}
\angle \mathrm{B} & =\angle \mathrm{Q} & (\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}) \\
\therefore & \angle \mathrm{M} & =\angle \mathrm{N} & \left(90^{\circ} \text { each }\right) \\
\therefore & \triangle \mathrm{ABM} & \sim \Delta \mathrm{PQN} & (\text { By AA rule })
\end{array}
$$

Therefore,

$$
\begin{equation*}
\frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{AB}}{\mathrm{PQ}} \tag{ii}
\end{equation*}
$$

Also,

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}
$$

(Given)
So,

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}} \tag{iii}
\end{equation*}
$$

Therefore, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AM}}{\mathrm{PN}}$
(From equation (i) and (iii))

$$
=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}}
$$

(From equation (ii))

$$
=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}
$$

Now using equation (iii), we get

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}
$$

Hence Proved.
25. The following distribution gives the daily income of 50 workers of a factory.

Daily Income (in ₹)	Number of Workers
$200-220$	12
$220-240$	14
$240-260$	8
$260-280$	6
$280-300$	10

Convert the distirbution above to a 'less than type ${ }^{\prime}$ cumulative frequency distribution and draw its ogive.

The table below shows the daily expenditure on food of 25 households in a locality. Find the mean daily expenditure of food.

Daily Expendi- ture	No. of Households $\left(f_{i}\right)$	Mid-value $\left(x_{i}\right)$	$f_{i} x_{i}$
$100-150$	4	125	500
$150-200$	5	175	875
$200-250$	12	225	2700
$250-300$	2	275	550
$300-350$	2	325	650
	$\Sigma f_{i}=25$		$\Sigma f_{i} x_{i}=5275$

$$
\operatorname{Mean}(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{5275}{25}=211
$$

Hence,
Mean $=211$
Ans.

SECTION - A

1. If $x=3$ is one root of the quadratic equation $x^{2}-2 k x-6=0$, then find the value of k. [1]
Solution : Given quadratic equation is,

$$
x^{2}-2 k x-6=0
$$

$x=3$ is a root of above equation, then

$$
\begin{aligned}
(3)^{2}-2 k(3)-6 & =0 \\
9-6 k-6 & =0 \\
3-6 k & =0 \\
3 & =6 k \\
\therefore \quad k & =\frac{3}{6}=\frac{1}{2} \\
k & =\frac{1}{2}
\end{aligned}
$$

Ans.
2. What is the HCF of smallest prime number and the smallest composite number?
Solution : Smallest prime number $=2$
Smallest composite number $=4$
Prime factorisation of 2 is 1×2
Prime factorisation of 4 is 1×2^{2}
$\therefore \quad \operatorname{HCF}(2,4)=2$
Ans.
3. Find the distance of a point $P(x, y)$ from the origin.
[1]
Solution : The given point is $P(x, y)$.
The origin is $O(0,0)$
Distance of point P from origin,

$$
\begin{aligned}
P O & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& =\sqrt{x^{2}+y^{2}} \text { unit Ans. }
\end{aligned}
$$

4. In an AP, if the common difference $(d)=-4$ and the seventh term $\left(a_{7}\right)$ is 4 , then find the first term.
Solution : Given,

$$
\begin{aligned}
d & =-4 \\
a_{7} & =4 \\
a+6 d & =4 \\
a+6(-4) & =4 \\
a-24 & =4
\end{aligned}
$$

$$
\begin{aligned}
& a=4+24 \\
& a=28
\end{aligned}
$$

Ans.
5. What is the value of $\left(\cos ^{2} 67^{\circ}-\sin ^{2} 23^{\circ}\right)$? [1]

Solution : We have, $\cos ^{2} 67^{\circ}-\sin ^{2} 23^{\circ}$

$$
\begin{aligned}
= & \cos ^{2} 67^{\circ}-\cos ^{2}\left(90^{\circ}-23^{\circ}\right) \\
& \left.\quad \because \because \sin \left(90^{\circ}-\theta\right)=\cos \theta\right] \\
= & \cos ^{2} 67^{\circ}-\cos ^{2} 67^{\circ} \\
= & \text { Ans. }
\end{aligned}
$$

6. Given $\triangle A B C \sim \triangle P Q R$, if $\frac{A B}{P Q}=\frac{1}{3}$, then find

$$
\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle P Q R} .
$$

Solution: Given, $\triangle A B C \sim \triangle P Q R$

$$
\text { and } \begin{aligned}
\frac{A B}{P Q} & =\frac{1}{3} \\
\text { Now, } \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)} & =\frac{A B^{2}}{P Q^{2}} \\
& =\left(\frac{1}{3}\right)^{2}=\frac{1}{9}
\end{aligned}
$$

Ans.

SECTION - B

7. Given that $\sqrt{2}$ is irrational, prove that $(5+3 \sqrt{2})$ is an irrational number.

Solution: Given, $\sqrt{2}$ is irrational number.
Let $\sqrt{2}=m$
Suppose, $5+3 \sqrt{2}$ is a rational number.

$$
\begin{aligned}
& \text { So, } \begin{array}{rlr}
5+3 \sqrt{2} & =\frac{a}{b} \quad(a \neq b, b \neq 0) \\
3 \sqrt{2} & =\frac{a}{b}-5 \\
3 \sqrt{2} & =\frac{a-5 b}{3 b} \\
\text { or } & \sqrt{2} & =\frac{a-5 b}{3 b} \\
\text { So, } \quad \frac{a-5 b}{3 b} & =m
\end{array}
\end{aligned}
$$

But $\frac{a-5 b}{3 b}$ is rational number, so m is rational number which contradicts the fact that $m=\sqrt{2}$ is irrational number.

So, our supposition is wrong.
Hence, $5+3 \sqrt{2}$ is also irrational.
Hence Proved.
8. In fig. 1, $A B C D$ is a rectangle. Find the values of x and y.
[2]

Figure 1
Solution : Given, $A B C D$ is a rectangle.
$\therefore \quad A B=C D$
$\Rightarrow \quad 30=x+y$
or $\quad x+y=30$
Similarly, $\quad A D=B C$
$\Rightarrow \quad 14=x-y$
or $\quad x-y=14$
On adding eq. (i) and (ii), we get

$$
\begin{aligned}
& & 2 x & =44 \\
\Rightarrow & & x & =22
\end{aligned}
$$

Putting the value of x in eq. (i), we get

$$
\begin{aligned}
& & 22+y & =30 \\
\Rightarrow & & y & =30-22 \\
\Rightarrow & & y & =8
\end{aligned}
$$

So, $x=22, y=8$.
Ans.
9. Find the sum of first 8 multiples of 3 .

Solution : First 8 multiples of 3 are
3, 6, 9 \qquad upto 8 terms

We can observe that the above series is an AP with $a=3, d=6-3=3, n=8$
Sum of n terms of an A.P. is given by,

$$
\begin{aligned}
& S_{n}
\end{aligned}=\frac{n}{2}[2 a+(n-1) d] \quad \begin{aligned}
& \therefore \quad S_{8}=\frac{8}{2}[2 \times 3+(8-1)(3)] \\
&=4[6+7 \times 3] \\
&=4[6+21] \\
&=4 \times 27 \\
& \Rightarrow \quad \text { Ans. }
\end{aligned}
$$

10. Find the ratio in which $P(4, m)$ divides the line segment joining the points $A(2,3)$ and $B(6,-3)$. Hence find m.

Solution : Let P divides line segment $A B$ in the ratio $k: 1$.
Coordinates of P

$$
\begin{aligned}
P & =\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
(4, m) & =\left(\frac{k \times 6+1 \times 2}{k+1}, \frac{k \times(-3)+1 \times 3}{k+1}\right) \\
(4, m) & =\left(\frac{6 k+2}{k+1}, \frac{-3 k+3}{k+1}\right)
\end{aligned}
$$

On comparing, we get

$$
\begin{array}{rlrl}
& & \left(\frac{6 k+2}{k+1}\right) & =4 \\
\Rightarrow & & 6 k+2 & =4+4 k \\
\Rightarrow & & 6 k-4 k & =4-2 \\
\Rightarrow & & 2 k & =2 \\
\Rightarrow & k & =1
\end{array}
$$

Hence, P divides $A B$ in the ratio 1:1. Ans.
From (i), $\frac{-3(1)+3}{1+1}=m$

$$
\begin{aligned}
\Rightarrow & \frac{-3+3}{2} & =m \\
\Rightarrow & m & =0
\end{aligned}
$$

Ans.
11. Two different dice are tossed together. Find the probability:
(i) of getting a doublet.
(ii) of getting a sum 10 , of the numbers on the two dice.
Solution : Total outcomes on tossing two different dice $=36$
(i) A : getting a doublet

$$
A=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}
$$

\therefore Number of favourable outcomes of $A=6$

$$
\begin{aligned}
\therefore \quad P(A) & =\frac{\text { Favourable outcomes }}{\text { Total outcomes }} \\
& =\frac{6}{36}=\frac{1}{6}
\end{aligned}
$$

Ans.
(ii) B : getting a sum 10 .

$$
B=\{(4,6),(5,5),(6,4)\}
$$

\therefore Number of favourable outcomes of $B=3$

$$
\begin{aligned}
\therefore \quad P(B) & =\frac{\text { Favourable outcomes }}{\text { Total outcomes }} \\
& =\frac{3}{36}=\frac{1}{12}
\end{aligned}
$$

Ans.
12. An integer is chosen at random between 1 and 100. Find the probability that it is :
(i) divisible by 8 .
(ii) not divisible by 8 .
[2]
Solution : Total number are 2, 3, 4 \qquad 99
(i) Let E be the event of getting a number divisible by 8 .

$$
\begin{aligned}
E & =\{8,16,24,32,40,48,56,64,72,80 \\
& =12 \\
P(E) & =\frac{\text { Favourable outcomes }}{\text { Total outcomes }} \\
& =\frac{12}{98}=0.1224
\end{aligned}
$$

(ii) Let E^{\prime} be the event of getting a number not divisible by 8 .
Then,

$$
\begin{aligned}
P\left(E^{\prime}\right) & =1-P(E) \\
& =1-0.1224 \\
& =0.8756
\end{aligned}
$$

Ans.

SECTION - C

13. Find HCF and LCM of 404 and 96 and verify that $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two given numbers.
Solution :

2	404
2	202
101	101
	1

$$
\begin{array}{c|c}
2 & 96 \\
\hline 2 & 48 \\
\hline 2 & 24 \\
\hline 2 & 112 \\
\hline 2 & 6 \\
\hline 3 & 3 \\
\hline & 1
\end{array}
$$

Prime factorization of $404=2 \times 2 \times 101$
Prime factorization of 96

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 2 \times 3 \\
\therefore \quad \mathrm{HCF} & =2 \times 2=4 \\
\text { And } \quad \mathrm{LCM}=2 \times 2 & \times 2 \times 2 \times 2 \times 3 \times 101 \\
& =9696
\end{aligned}
$$

$$
\therefore \quad \mathrm{HCF}=4, \mathrm{LCM}=9696 \quad \text { Ans. }
$$

Verification
$\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers

$$
4 \times 9696=404 \times 96
$$

$$
38784=38784 \text { Hence Verified. }
$$

14. Find all zeroes of the polynomial $\left(2 x^{4}-9 x^{3}+\right.$ $\left.5 x^{2}+3 x-1\right)$ if two of its zeroes are $(2+\sqrt{3})$ and $(2-\sqrt{3})$.
Solution: Here, $p(x)=2 x^{4}-9 x^{3}+5 x^{2}+3 x-1$ And two of its zeroes are $(2+\sqrt{3})$ and $(2-\sqrt{3})$. Quadratic polynomial with zeroes is given by,

$$
\begin{array}{cc}
& \{x-(2+\sqrt{3})\} \cdot\{x-(2-\sqrt{3})\} \\
\Rightarrow & (x-2-\sqrt{3})(x-2+\sqrt{3}) \\
\Rightarrow & (x-2)^{2}-(\sqrt{3})^{2} \\
\Rightarrow & x^{2}-4 x+4-3 \\
\Rightarrow & x^{2}-4 x+1=g(x) \text { (say) }
\end{array}
$$

Now, $g(x)$ will be a factor of $p(x)$ so $g(x)$ will be divisible by $p(x)$

$$
\begin{gathered}
\left.x^{2}-4 x+1\right) \frac{2 x^{2}-x-1}{2 x^{4}-9 x^{3}+5 x^{2}+3 x-1(} \\
-\frac{+\quad-}{2 x^{4}-8 x^{3}+2 x^{2}} \\
-\quad-x^{3}+3 x^{2}+3 x \\
-x^{3}+4 x^{2}-x
\end{gathered}
$$

$$
\frac{+\quad-\quad+}{-x^{2}+4 x-1}
$$

$$
-x^{2}+4 x-1
$$

$$
\frac{+\quad-\quad+}{\times}
$$

For other zeroes,

$$
\begin{aligned}
2 x^{2}-x-1 & =0 \\
2 x^{2}-2 x+x-1 & =0 \\
\text { or } 2 x(x-1)+1(x-1) & =0 \\
(x-1)(2 x+1) & =0 \\
x-1=0 \text { and } 2 x+1 & =0 \\
x & =1, x=\frac{-1}{2}
\end{aligned}
$$

Zeroes of $p(x)$ are

$$
1, \frac{-1}{2}, 2+\sqrt{3} \text { and } 2-\sqrt{3}
$$

Ans.
15. If $A(-2,1)$ and $B(a, 0), C(4, b)$ and $D(1,2)$ are the vertices of a parallelogram $A B C D$, find the values of a and b. Hence find the lengths of its sides.

OR
If $A(-5,7), B(-4,-5), C(-1,-6)$ and $D(4,5)$ are the vertices of a quadrilateral, find the area of the quadrilateral $A B C D$.
Solution : Given $A B C D$ is a parallelogram.

$$
\begin{aligned}
\text { Mid point of } A C & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-2+4}{2}, \frac{1+b}{2}\right) \\
& =\left(\frac{2}{2}, \frac{1+b}{2}\right)=\left(1, \frac{1+b}{2}\right)
\end{aligned}
$$

$$
\text { Midpoint of } B D=\left(\frac{x_{1}^{\prime}+x_{2}^{\prime}}{2}, \frac{y_{1}^{\prime}+y_{2}^{\prime}}{2}\right)
$$

$$
=\left(\frac{a+1}{2}, \frac{0+2}{2}\right)
$$

$$
=\left(\frac{a+1}{2}, \frac{2}{2}\right)=\left(\frac{a+1}{2}, 1\right)
$$

Since, diagonals of a parallelogram bisect each other,

$$
\left(1, \frac{1+b}{2}\right)=\left(\frac{a+1}{2}, 1\right)
$$

On comparing, we get

$$
\begin{aligned}
& & & \frac{a+1}{2} & =1 & \\
& \Rightarrow & a+1 & =2 & & \frac{1+b}{2}
\end{aligned}=1
$$

Therefore, the coordinates of vertices of parallelogram $A B C D$ are $A(-2,1), B(1,0), C(4,1)$ and $D(1,2)$

Length of side $A B=D C=\sqrt{(1+2)^{2}+(0-1)^{2}}$
$=\sqrt{9+1}=\sqrt{10}$ units
And,

$$
\begin{aligned}
A D & =B C=\sqrt{(1+2)^{2}+(2-1)^{2}} \\
& =\sqrt{9+1}=\sqrt{10} \text { units Ans. }
\end{aligned}
$$

OR
Given $A B C D$ is quadrilateral.

By joining points A and C, the quadrilateral is divided into two triangles.
Now, Area of quad. $A B C D=$ Area of $\triangle A B C$

+ Area of $\triangle A C D$
Area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| \\
& =\frac{1}{2}|[-5(-5+6)-4(-6-7)-1(7+5)]| \\
& =\frac{1}{2}|[-5(1)-4(-13)-1(12)]| \\
& =\frac{1}{2}|(-5+52-12)|
\end{aligned}
$$

$$
=\frac{1}{2}|(35)|=\frac{35}{2} \text { sq. units. }
$$

Area of $\triangle A D C$

$$
\begin{aligned}
& \left.=\frac{1}{2} \right\rvert\,\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right) \mid\right. \\
& =\frac{1}{2}|[-5(5+6)+4(-6-7)+(-1)(7-5)]| \\
& =\frac{1}{2}|[-5(11)+4(-13)-1(2)]|
\end{aligned}
$$

$$
=\frac{1}{2}|-55+52-12|
$$

$$
=\frac{1}{2}|-109|=\frac{109}{2} \text { sq. units. }
$$

Area of quadrilateral $A B C D$

$$
\begin{aligned}
& =\frac{35}{2}+\frac{109}{2}=\frac{144}{2} \\
& =72 \text { sq. units. }
\end{aligned}
$$

Ans.
16. A plane left 30 minutes late than its scheduled time and in order to reach the destination 1500 km away in time, it had to increase its speed by $100 \mathrm{~km} / \mathrm{h}$ from the usual speed. Find its usual speed.
Solution : Let the usual speed of plane be x km / h.

Increased speed $=(x+100) \mathrm{km} / \mathrm{h}$.
\therefore Distance to cover $=1500 \mathrm{~km}$.
Time taken by plane with usual speed

$$
=\frac{1500}{x} \mathrm{hr}
$$

Time taken by plane with increased speed

$$
=\frac{1500}{(100+x)} \mathrm{hr}
$$

According to the question,

$$
\begin{aligned}
\frac{1500}{x}-\frac{1500}{(100+x)} & =\frac{30}{60}=\frac{1}{2} \\
1500\left[\frac{1}{x}-\frac{1}{x+100}\right] & =\frac{1}{2} \\
1500\left[\frac{x+100-x}{(x)(x+100)}\right] & =\frac{1}{2} \\
\frac{1500 \times 100}{x^{2}+100 x} & =\frac{1}{2} \\
x^{2}+100 x & =300000 \\
x^{2}+100 x-300000 & =0 \\
x^{2}+600 x-500 x-300000 & =0 \\
x(x+600)-500(x+600) & =0 \\
(x+600)(x-500) & =0 \\
x+600 & =0 \\
x & =-600 \text { (Rejected) } \\
x-500 & =0 \\
x & =500
\end{aligned}
$$

\therefore Usual speed of plane $=500 \mathrm{~km} / \mathrm{hr} \quad$ Ans.
17. Prove that the area of an equilateral triangle described on one side of the square is equal to half the area of the equilateral triangle described on one of its diagonal.

OR

If the area of two similar triangles are equal, prove that they are congruent.

Solution : Let $A B C D$ be a square with side ' a '.

In $\triangle A B C$,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =a^{2}+a^{2}=2 a^{2} \\
A C & =\sqrt{2 a^{2}}=\sqrt{2} a
\end{aligned}
$$

Area of equilateral $\triangle B E C$ (formed on side $B C$ of square $A B C D)$

$$
\begin{align*}
& =\frac{\sqrt{3}}{4} \times(\text { side })^{2} \\
& =\frac{\sqrt{3}}{4} a^{2} \tag{i}
\end{align*}
$$

Area of equilateral $\triangle A C F$ (formed on diagonal $A C$ of square $A B C D)$

$$
\begin{align*}
& =\frac{\sqrt{3}}{4}(\sqrt{2} a)^{2}=\frac{\sqrt{3}}{4}(2 a)^{2} \\
& =2 \frac{\sqrt{3}}{4} a^{2} \tag{ii}
\end{align*}
$$

From eq. (i) and (ii),

$$
\begin{aligned}
\operatorname{ar} \triangle A C F & =2 \times \operatorname{ar} \triangle B C F \\
\operatorname{ar}(\triangle B C F) & =\frac{1}{2} \operatorname{ar}(\triangle A C F)
\end{aligned}
$$

i.e., area of triangle described on one side of square is half the area of triangle described on its diagonal.

Hence Proved.

OR

Given, $\quad \triangle A B C \sim \triangle P Q R$

And \quad ar $(\triangle A B C)=\operatorname{ar}(\triangle P Q R)$
To prove :

$$
\triangle A B C \cong \triangle P Q R
$$

Proof :
Given, $\quad \triangle A B C \sim \triangle P Q R$

$$
\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{A C^{2}}{P R^{2}}
$$

(Ratio of area of similar triangles is equal to the square of corresponding sides)
But $\quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=1$
(Given)

$$
\therefore \quad \frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{A C^{2}}{P R^{2}}=1
$$

So,

$$
\begin{aligned}
& A B^{2}=P Q^{2} \text { or } A B=P Q \\
& B C^{2}=Q R^{2} \text { or } B C=Q R \\
& A C^{2}=P R^{2} \text { or } A C=P R
\end{aligned}
$$

By SSS congruency axiom

$$
\triangle A B C \cong \triangle P Q R \text { Hence Proved. }
$$

18. Prove that the lengths of tangents drawn from an external point of a circle are equal.

Solution :

Given : A circle with centre O on which two tangents $P M$ and $P N$ are drawn from an external point P.

To prove :

$$
P M=P N
$$

Construction : Join $O M, O N$ and $O P$.
Proof : Since tangent and radius are perpendicular at point of contact,

$$
\therefore \quad \angle O M P=\angle O N P=90^{\circ}
$$

In $\triangle P O M$ and $\triangle P O N$,

$$
\begin{array}{rlrr}
& & O M & =O N \\
& & \text { (Radii) } \\
& \angle O M P & =\angle O N P & \\
P O & =O P & \text { (Common) } \\
\therefore & \Delta O M P & \cong \Delta O N P & \text { (RHS cong.) } \\
\therefore & & P M & =P N
\end{array}
$$

19. If $4 \tan \theta=3$, evaluate $\left(\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}\right)$ [3]

OR

If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, find the value of A.

Solution : Given, $4 \tan \theta=3$,
$\Rightarrow \quad \tan \theta=\frac{3}{4}\left(=\frac{P}{B}\right)$

$P=3 K, B=4 K$
Now,

$$
\begin{aligned}
H & =\sqrt{P^{2}+B^{2}} \\
& =\sqrt{(3 K)^{2}+(4 K)^{2}} \\
& =\sqrt{9 K^{2}+16 K^{2}} \\
& =\sqrt{25 K^{2}}
\end{aligned}
$$

$$
\begin{array}{lrrl}
\Rightarrow & H & =5 K \\
\therefore & \sin \theta & =\frac{P}{H}=\frac{3 K}{5 K}=\frac{3}{5} \\
& & \\
\text { and } & \cos \theta & =\frac{B}{H}=\frac{4 K}{5 K}=\frac{4}{5}
\end{array}
$$

$$
\text { Now, } \frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}=\frac{4 \times \frac{3}{5}-\frac{4}{5}+1}{4 \times \frac{3}{5}+\frac{4}{5}-1}
$$

$$
=\frac{\left(\frac{12}{5}-\frac{4}{5}+1\right)}{\left(\frac{12}{5}+\frac{4}{5}-1\right)}
$$

$$
=\frac{\left(\frac{12-4+5}{5}\right)}{\left(\frac{12+4-5}{5}\right)}
$$

$$
=\frac{13 / 5}{11 / 5}
$$

$$
=\frac{13}{11}
$$

Ans.

OR

Given,

$$
\tan 2 A=\cot \left(A-18^{\circ}\right)
$$

$$
\Rightarrow \quad \cot \left(90^{\circ}-2 A\right)=\cot \left(A-18^{\circ}\right)
$$

$$
\left[\because \tan \theta=\cot \left(90^{\circ}-\theta\right)\right]
$$

$$
\Rightarrow \quad 90^{\circ}-2 A=A-18^{\circ}
$$

$$
\Rightarrow \quad 90^{\circ}+18^{\circ}=A+2 A
$$

$$
\Rightarrow \quad 108^{\circ}=3 A
$$

$$
\begin{array}{ll}
\Rightarrow & A=\frac{108^{\circ}}{3} \\
\Rightarrow & A=36^{\circ}
\end{array}
$$

Ans.
20. Find the area of the shaded region in Fig. 2, where arcs drawn with centres A, B, C and D intersect in pairs at mid-points P, Q, R and S of the sidess $A B, B C, C D$ and $D A$ respectively of a square $A B C D$ of side 12 cm .
[Use $\pi=3.14]$

Fig. 2
Solution : Given, $A B C D$ is a square of side 12 cm.

P, Q, R and S are the mid points of sides $A B, B C$, $C D$ and $A D$ respectively.
Area of shaded region

$$
\begin{aligned}
& =\text { Area of square }-4 \times \text { Area of quadrant } \\
& =a^{2}-4 \times \frac{1}{4} \pi r^{2} \\
& =(12)^{2}-3.14 \times(6)^{2} \\
& =144-3.14 \times 36 \\
& =144-113.04 \\
& =30.96 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

21. A wooden article was made by scooping out a hemisphere form each end of a solid cylinder, as shown in Fig. 3. If the height of the cylinder is 10 cm and its base is of radius 3.5 cm . Find the total surface area of the article.

OR
A heap of rice is in the form of a cone of base diameter 24 m and height 3.5 m . Find the volume of the rice. How much canvas cloth is required to just cover the heap?
Solution :

Given, Radius (r) of cylinder
$=$ Radius of hemisphere
$=3.5 \mathrm{~cm}$.
$=$ CSA of cylinder
$+2 \times$ CSA of hemisphere

Total SA of article $=$ CSA of cylinder

Height of cylinder, $h=10 \mathrm{~cm}$

$$
\begin{aligned}
\text { TSA } & =2 \pi r h+2 \times 2 \pi r^{2} \\
& =2 \pi r h+4 \pi r^{2} \\
& =2 \pi r h(h+2 r) \\
& =2 \times \frac{22}{7} \times 3.5(10+2 \times 3.5) \\
& =2 \times 22 \times 0.5 \times(10+7) \\
& =2 \times 11 \times 17=374 \mathrm{~cm}^{2}
\end{aligned}
$$

OR

Base diameter of cone $=24 \mathrm{~m}$.
\therefore Radius $r=12 \mathrm{~m}$
Height of cone, $h=3.5 \mathrm{~m}$
Volume of rice in conical heap

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 3.5
\end{aligned}
$$

$$
=528 \mathrm{~cm}^{3}
$$

Now, slant height, $l=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{(3.5)^{2}+(12)^{2}} \\
& =\sqrt{12.25+144} \\
& =\sqrt{156.25}=12.5 \mathrm{~m}
\end{aligned}
$$

Canvas cloth required to just cover the heap $=$ CSA of conical heap $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 12 \times 12.5 \\
& =\frac{3300}{7} \mathrm{~m}^{2} \\
& =471.43 \mathrm{~m}^{2} .
\end{aligned}
$$

Ans.
22. The table below shows the salaries of 280 persons:

Salary (In thousand ₹)	No. of Person
$5-10$	49
$10-15$	133
$15-20$	63
$20-25$	15
$25-30$	6
$30-35$	7
$35-40$	4
$40-45$	2
$45-50$	1

Calculate the median salary of the data.
Solution :

Salary	No. of Person	Cumulative frequency (c.f.)
$5-10$	49	49
$10-15$	133	182
$15-20$	63	245
$20-25$	15	260
$25-30$	6	266
$30-35$	7	273
$35-40$	4	277
$40-45$	2	279
$45-50$	1	280
Total	280	

$$
\frac{N}{2}=\frac{280}{2}=140
$$

The cumulative frequency just greater than 140 is 182 .
\therefore Median class is $10-15$.

$$
\Rightarrow l=10, h=5, N=280, c . f .=49 \text { and } f=133
$$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-\text { c.f. }}{f}\right) \times h \\
& =10+\left(\frac{140-49}{133}\right) \times 5 \\
& =10+\frac{91 \times 5}{133} \\
& =10+\frac{455}{133} \quad \text { Ans. } \\
& =10+3.42 \quad \\
& =13.42 \quad 2
\end{aligned}
$$

SECTION - D

23. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{hr}$ in still water takes 1 hr more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

OR

A train travels at a certain average speed for a distance of 63 km and then travels at a distance of 72 km at an average speed of $6 \mathrm{~km} / \mathrm{hr}$ more than its original speed. If it takes 3 hours to complete total journey, what is the original average speed?
Solution : Given, speed of motor boat in still water $=18 \mathrm{~km} / \mathrm{hr}$.
Let speed of stream $=x \mathrm{~km} / \mathrm{hr}$.
\therefore Speed of boat downstream $=(18+x) \mathrm{km} / \mathrm{hr}$.
And speed of boat upstream $=(18-x) \mathrm{km} / \mathrm{hr}$.

$$
\text { Time of the upstream journey }=\frac{24}{(18-x)}
$$

Time of the downstream journey $=\frac{24}{(18+x)}$
According to the question,

$$
\begin{aligned}
\frac{24}{(18-x)}-\frac{24}{(18+x)} & =1 \\
\frac{24(18+x)-24(18-x)}{(18-x)(18+x)} & =1 \\
\frac{24 \times 18+24 x-24 \times 18+24 x}{324-x^{2}} & =1 \\
\frac{48 x}{324-x^{2}} & =1 \\
\Rightarrow \quad 48 x & =324-x^{2}
\end{aligned}
$$

$\Rightarrow \quad x^{2}+48 x-324=0$
$\Rightarrow \quad x^{2}+54 x-6 x-324=0$
$\Rightarrow \quad x(x+54)-6(x+54)=0$
$\Rightarrow \quad(x+54)(x-6)=0$
Either

$$
\begin{aligned}
x+54 & =0 \\
x & =-54
\end{aligned}
$$

Rejected, as speed cannot be negative
or

$$
\begin{aligned}
x-6 & =0 \\
x & =6
\end{aligned}
$$

Thus, the speed of the stream is $6 \mathrm{~km} / \mathrm{hr}$. Ans.

OR

Let original average speed of train be $x \mathrm{~km} / \mathrm{hr}$.
\therefore Increased speed of train $=(x+6) \mathrm{km} / \mathrm{hr}$.
Time taken to cover 63 km with average speed

$$
=\frac{63}{x} \mathrm{hr}
$$

Time taken to cover 72 km with increased speed

$$
=\frac{72}{(x+6)} \mathrm{hr}
$$

According to the question,

$$
\begin{aligned}
& \frac{63}{x}+\frac{72}{x+6}=3 \\
& \Rightarrow \quad \frac{63(x+6)+72(x)}{(x)(x+6)}=3 \\
& \Rightarrow \quad \frac{63 x+378+72 x}{x^{2}+6 x}=3 \\
& \Rightarrow \quad 135 x+378=3\left(x^{2}+6 x\right) \\
& \Rightarrow \quad 135 x+378=3 x^{2}+18 x \\
& \Rightarrow \quad 3 x^{2}+18 x-135 x-378=0 \\
& \Rightarrow \quad 3 x^{2}-117 x-378=0 \\
& \Rightarrow \quad 3\left(x^{2}-39 x-126\right)=0 \\
& \Rightarrow \quad x^{2}-39 x-126=0 \\
& \Rightarrow \quad x^{2}-42 x+3 x-126=0 \\
& \Rightarrow \quad x(x-42)+3(x-42)=0 \\
& \Rightarrow \quad(x-42)(x+3)=0 \\
& \text { Either } \\
& \text { or } \\
& x-42=0 \\
& x=42 \\
& x+3=0 \\
& x=-3
\end{aligned}
$$

Rejected (as speed cannot be negative)
Thus, average speed of train is $42 \mathrm{~km} / \mathrm{hr}$. Ans.
24. The sum of four consecutive numbers in an AP is 32 and the ratio of the product of the first and the last term to the product of two middle terms is $7: 15$. Find the numbers.
Solution: Let the first term of AP be a and d be the common difference.
Let your consecutive term of an AP be $a-3 d, a-d$, $a+d$ and $a+3 d$
According to the question,

$$
a-3 d+a-d+a+d+a+3 d=32
$$

$$
\begin{array}{lc}
\Rightarrow & 4 a=32 \\
\Rightarrow & a=8
\end{array}
$$

Also,

$$
\begin{gathered}
(a-3 d)(a+3 d):(a-d)(a+d)=7: 15 \\
\frac{a^{2}-9 d^{2}}{a^{2}-d^{2}}=\frac{7}{15}
\end{gathered}
$$

$$
\frac{64-9 d^{2}}{64-d^{2}}=\frac{7}{15}
$$

$$
\text { [From (i) put } a=8]
$$

$$
15\left(64-9 d^{2}\right)=7\left(64-d^{2}\right)
$$

$$
960-135 d^{2}=448-7 d^{2}
$$

$$
960-448=135 d^{2}-7 d^{2}
$$

$$
512=128 d^{2}
$$

$$
d^{2}=\frac{512}{128}
$$

$$
d^{2}=4
$$

$$
\Rightarrow \quad d= \pm 2
$$

For $d=2$, four terms of AP are,

$$
\begin{aligned}
a-3 d & =8-3(2)=2 \\
a-d & =8-2=6 \\
a+d & =8+2=10 \\
a+3 d & =8+3(2)=14
\end{aligned}
$$

For $d=-2$, four term are

$$
\begin{aligned}
a-3 d & =8-3(-2)=14 \\
a-d & =8-(-2)=10 \\
a+d & =8+(-2)=6 \\
a+d & =8+3(-2)=2
\end{aligned}
$$

Thus, the four terms of AP series are $2,6,10,14$ or $14,10,6,2$.

Ans.
25. In an equilateral $\triangle A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9(A D)^{2}=7(A B)^{2}$.

OR

Prove that, in a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Solution :

Given, $A B C$ is an equilateral triangle and D is a point on $B C$ such that $B D=\frac{1}{3} B C$.

To prove:

$$
9 A D^{2}=7 A B^{2}
$$

Construction: Draw $A E \perp B C$
Proof: $\quad B D=\frac{1}{3} B C \quad \ldots$ (i) (Given)

$$
A E \perp B C
$$

We know that perpendicular from a vertex of equilateral triangle to the base divides base in two equal parts.

$$
\begin{equation*}
\therefore \quad B E=E C=\frac{1}{2} B C \tag{ii}
\end{equation*}
$$

In $\triangle A E B$,

$$
A D^{2}=A E^{2}+D E^{2}
$$

(Pythagoras theorem)
or

$$
\begin{equation*}
A E^{2}=A D^{2}-D E^{2} \tag{iii}
\end{equation*}
$$

Similarly, In $\triangle A E B$,

$$
\begin{aligned}
& A B^{2}= A E^{2}+B E^{2} \\
&=A D^{2}-D E^{2}+\left(\frac{1}{2} B C\right)^{2} \\
& {[\text { from equation (ii) and (iii)] }} \\
&= A D^{2}-(B E-B D)^{2}+\frac{1}{4} B C^{2} \\
&= A D^{2}-B E^{2}-B D^{2}+2 \cdot B E \cdot B D+\frac{1}{4} B C^{2} \\
&=A D^{2}-\left(\frac{1}{2} B C\right)^{2}-\left(\frac{1}{3} B C\right)^{2}+2 \cdot \frac{1}{2} B C \cdot \frac{1}{2} B C \\
&+\frac{1}{4} B C^{2} \\
& \Rightarrow \quad A B^{2}=A D^{2}-\frac{1}{9} B C^{2}+\frac{1}{3} B C^{2} \\
& A B^{2}=A D^{2}+\frac{2}{9} B C^{2}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & A B^{2} & =A D^{2}+\frac{2}{9} A B^{2} \\
& & (\because B C=A B) \\
\Rightarrow & A B^{2}-\frac{2}{9} A B^{2} & =A D^{2} \\
\Rightarrow & & \\
\Rightarrow & & \frac{7}{9} A B^{2} & =A D^{2} \\
& & 7 A B^{2} & =9 A D^{2} \\
& \text { or } & 9(A D)^{2} & =7(A B)^{2} \text { Hence Proved. } \\
& & \text { OR }
\end{array}
$$

Given : $\triangle A B C$ is a right angle triangle, right angled at A.

To prove:

$$
B C^{2}=A B^{2}+A C^{2}
$$

Construction: Draw $A D \perp B C$.
Proof: In $\triangle A D B$ and $\triangle B A C$,

$$
\begin{array}{rlrl}
\angle B & =\angle B & (\text { (Common) } \\
\angle A D B & =\angle B A C & \left(\text { Each } 90^{\circ}\right) \\
\therefore & & \triangle A D B & \sim \Delta B A C
\end{array}
$$

(By AA similarity axiom)

$$
\begin{align*}
\therefore \quad \frac{A B}{B C} & =\frac{B D}{A B} \tag{СРСТ}\\
& A B^{2} \tag{i}
\end{align*}=B C \times B D
$$

Similarly,

$$
\begin{align*}
\triangle A D C & \sim \triangle C A B \\
\frac{A C}{B C} & =\frac{D C}{A C} \\
A C^{2} & =B C \times D C \tag{ii}
\end{align*}
$$

On adding equation (i) and (ii)

$$
\begin{aligned}
A B^{2}+A C^{2} & =B C \times B D+B C \times C D \\
& =B C(B D+C D) \\
& =B C \times B C \\
A B^{2}+A C^{2} & =B C^{2} \\
\Rightarrow \quad B C^{2} & =A B^{2}+A C^{2}
\end{aligned}
$$

Hence Proved.
26. Draw a triangle $A B C$ with $B C=6 \mathrm{~cm}, A B=$ 5 cm and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the $\triangle A B C$.
Solution :

Steps of construction :
(i) Draw a line segment $B C=6 \mathrm{~cm}$.
(ii) Construct $\angle X B C=60^{\circ}$.
(iii) With B as centre and radius equal to 5 cm , draw an arc intersecting $X B$ at A.
(iv) Join $A C$. Thus, $\triangle A B C$ is obtained.
(v) Draw an acute angle $\angle C B Y$ below of B.
(vi) Mark 4-equal parts on $B Y$ as B_{1}, B_{2}, B_{3} and B_{4}.
(vii) Join B_{4} to C.
(viii) From B_{3}, draw a line parallel to $B_{4} C$ intersecting $B C$ at C^{\prime}.
(ix) Draw another line parallel to $C A$ from C^{\prime}, intersecting $A B$ at A^{\prime}.
(x) $\Delta A^{\prime} B C^{\prime}$ is required triangle which is similar to $\triangle A B C$ such that $B C^{\prime}=\frac{3}{4} B C$.
27. Prove that : $\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}=\tan A$.

Solution : L.H.S.

$$
=\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}
$$

$$
\begin{aligned}
& =\frac{\sin A\left(1-2 \sin ^{2} A\right)}{\cos A\left(2 \cos ^{2} A-1\right)} \\
& =\frac{\sin A}{\cos A} \frac{\left(1-2 \sin ^{2} A\right)}{\left[2\left(1-\sin ^{2} A-1\right)\right]}
\end{aligned}
$$

$$
\left[\because \cos ^{2} A=1-\sin ^{2} A\right]
$$

$$
\begin{aligned}
& =\frac{\sin A}{\cos A} \frac{\left(1-2 \sin ^{2} A\right)}{\left(2-2 \sin ^{2} A-1\right)} \\
& =\frac{\sin A}{\cos A} \quad \frac{\left(1-2 \sin ^{2} A\right)}{\left(1-2 \sin ^{2} A\right)} \\
& =\tan A=\text { R.H.S. HenceProved. }
\end{aligned}
$$

28. The diameters of the lower and upper ends of a bucket in the form of a frustum of a cone are 10 cm and 30 cm respectively. If its height is 24 cm , find :
(i) The area of the metal sheet used to make the bucket.
(ii) Why we should avoid the bucket made by ordinary plastic ? [Use $\pi=3.14$]

Solution : Given, Height of frustum, $h=24 \mathrm{~cm}$.

$$
\text { Diameter of lower end }=10 \mathrm{~cm}
$$

$\therefore \quad$ Radius of lower end, $r=5 \mathrm{~cm}$.
Diameter of upper end $=30 \mathrm{~cm}$.
$\therefore \quad$ Radius of upper end, $R=15 \mathrm{~cm}$.
Slant height, $l=\sqrt{h^{2}+(R-r)^{2}}$

$$
\begin{aligned}
& =\sqrt{(24)^{2}+(15-5)^{2}} \\
& =\sqrt{576+100} \\
& =\sqrt{676} \\
& =26 \mathrm{~cm}
\end{aligned}
$$

(i) Area of metal sheet used to make the bucket

$$
\begin{aligned}
& =\text { CSA of frustum }+ \text { Area of base } \\
& =\pi l(R+r)+\pi r^{2} \\
& =\pi\left[26(15+5)+(5)^{2}\right] \\
& =3.14(26 \times 20+25) \\
& =3.14(520+25) \\
& =3.14 \times 545 \\
& =1711.3 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

(ii) We should avoid the bucket made by ordinary plastic because plastic is harmful to the environment and to protect the environment its use should be avoided.
29. As observed from the top of a 100 m high light house from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships. [Use $\sqrt{3}=1.732$]

Solution : Let $A B$ be the light house and two ships be at C and D.

In $\triangle A B C$,

$$
\begin{align*}
& & \frac{B C}{A B} & =\cot 45^{\circ} \\
\Rightarrow & & \frac{x}{100} & =1 \\
\Rightarrow & & x & =100 \tag{i}
\end{align*}
$$

Similarly, in $\triangle A B D$,

$$
\begin{array}{rlrl}
& & \frac{B D}{A B} & =\cot 30^{\circ} \\
\Rightarrow \quad & \frac{y}{100} & =\sqrt{3} \\
\Rightarrow \quad & y & =100 \sqrt{3} \tag{ii}
\end{array}
$$

Distance between two ships $=y-x$

$$
\begin{aligned}
= & 100 \sqrt{3}-100 \\
& {[\text { from equation }} \\
= & 100(\sqrt{3}-1) \\
= & 100(1.732-1) \\
= & 100(0.732) \\
= & 73.2 \mathrm{~m}
\end{aligned}
$$

[from equation (i) and (ii)]

Ans.
30. The mean of the following distribution is 18 . Find the frequency f of the class 19-21.

Class	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-24$
Frequency	3	6	9	13	f	5	4

OR
The following distribution given the daily income of 50 workers of a factory :

Daily Income (in ₹)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of Workers	12	14	8	6	10

Convert the distribution above to a less than type cumulative frequency distribution and draw its ogive.
Solution :

C.I.	Mid value x_{i}	f_{i}	$f_{i} x_{i}$
11-13	12	3	36
13-15	14	6	84
15-17	16	9	144
17-19	18	13	234
19-21	20	f	$20 f$
21-23	22	5	- 110
23-25	24	4	-96
Total		$\Sigma f_{i}=40+f$	$\Sigma f_{i} x_{i}=704+20 f$
Now,		Mean $=18 \quad$ (Given)	
		$x_{i}=18$	
\Rightarrow		= 18	

$$
\therefore \quad \frac{704+20 f}{40+f}=18
$$

$$
\Rightarrow \quad 704+20 f=18(40+f)
$$

$$
\Rightarrow \quad 704+20 f=720+18 f
$$

$$
\Rightarrow \quad 20 f-18 f=720-704
$$

$$
\Rightarrow \quad 2 f=16
$$

$$
\Rightarrow \quad f=8
$$

OR
Less than type cumulative frequency distribution :

Daily Income	No. of Workers
Less than 120	12
Less than 140	36
Less than 160	34
Less than 180	40
Less than 200	50

Time allowed : 3 Hours

SECTION - A

1. What is the common difference of an A.P. in which $a_{21}-a_{7}=84$?
Solution: Given, $a_{21}-a_{7}=84$
$\Rightarrow \quad(a+20 d)-(a+6 d)=84$
$\Rightarrow \quad a+20 d-a-6 d=84$
$\Rightarrow \quad 20 d-6 d=84$
$\Rightarrow \quad 14 d=84$
$\Rightarrow \quad d=\frac{84}{14}=6$
Hence common difference $=6$
Ans.
2. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60°, then find the length of OP.

Solution : Given, $\angle A P B=60^{\circ}$

$$
\Rightarrow \quad \angle A P O=30^{\circ}
$$

In right angle $\triangle O A P$,

$$
\begin{aligned}
& \frac{O P}{O A}=\operatorname{cosec} 30^{\circ} \\
& \frac{O P}{a}=2 \Rightarrow O P=2 a
\end{aligned}
$$

Ans.
3. If a tower 30 m high, casts a shadow $10 \sqrt{3} \mathrm{~m}$ long on the ground, then what is the angle of elevation of the sun ?

Solution : In $\triangle A B C$,

$$
\tan \theta=\frac{A B}{B C}
$$

Maximum Marks : 90

$$
\begin{aligned}
\tan \theta & =\frac{30}{10 \sqrt{3}}=\sqrt{3} \\
\tan \theta & =\tan 60^{\circ} \Rightarrow \theta=60^{\circ}
\end{aligned}
$$

Hence angle of elevation is 60°.
Ans.
4. The probability of selecting a rotten apple randomly from a heap of 900 apples is $0 \cdot 18$. What is the number of rotten apples in the heap?

Solution : Total apples $=900$

$$
P(E)=0.18
$$

$\frac{\text { No. of rotten apples }}{\text { Total no. of apples }}=0.18$

$$
\frac{\text { No.of rotten apples }}{900}=0.18
$$

No. of rotten apples $=900 \times 0 \cdot 18$

$$
=162
$$

Ans.

SECTION - B

5. Find the value of p, for which one root of the quadratic equation $p x^{2}-14 x+8=0$ is 6 times the other.
Solution : Given equation is $p x^{2}-14 x+8=0$
Let one root $=\alpha$,
then

$$
\text { other root }=6 \alpha
$$

$$
\text { Sum of roots }=-\frac{b}{a} \text {; }
$$

$$
\alpha+6 \alpha=\frac{-(-14)}{p}
$$

$$
7 \alpha=\frac{14}{p}
$$

$$
\therefore \quad \alpha=\frac{14}{p \times 7}
$$

or

$$
\begin{equation*}
\alpha=\frac{14}{p} \tag{i}
\end{equation*}
$$

$$
\text { Product of roots }=\frac{c}{\alpha}
$$

$(\alpha)(6 \alpha)=\frac{8}{p}$

$$
\begin{equation*}
6 \alpha^{2}=\frac{8}{p} \tag{ii}
\end{equation*}
$$

Putting value of α from eq. (i),

$$
\begin{aligned}
& & 6\left(\frac{2}{p}\right)^{2} & =\frac{8}{p} \\
\Rightarrow & & 6 \times \frac{4}{p^{2}} & =\frac{8}{p} \\
\Rightarrow & & 24 p & =8 p^{2} \\
\Rightarrow & & 8 p^{2}-24 p & =0 \\
\Rightarrow & & 8 p(p-3) & =0 \\
\Rightarrow & & \text { Either } 8 p & =0 \Rightarrow p=0 \\
\text { or } & & p-3 & =0 \Rightarrow p=3
\end{aligned}
$$

For $p=0$, given condition is not satisfied

$$
\therefore \quad p=3
$$

Ans.
6. Which term of the progression $20,19 \frac{1}{4}$, $18 \frac{1}{2}, 17 \frac{3}{4}, \ldots$ is the first negative term ? [2] Solution : Given, A.P.is $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots$.

$$
=20, \frac{77}{4}, \frac{37}{2}, \frac{71}{4}, \ldots .
$$

Here, $a=20, d=\frac{77}{4}-20=\frac{77-80}{4}=\frac{-3}{4}$
Let a_{n} is first negative term
$\Rightarrow \quad a_{n}+(n-1) d<0$
$\Rightarrow 20+(n-1)\left(-\frac{3}{4}\right)<0$
$\Rightarrow \quad 20-\frac{3}{4} n+\frac{3}{4}<0$
$\Rightarrow \quad 20+\frac{3}{4}<\frac{3}{4} n$
$\Rightarrow \quad \frac{83}{4}>\frac{3}{4} n$
$\Rightarrow \quad n>\frac{83}{4} \times \frac{4}{3}$
$\Rightarrow \quad n>\frac{83}{3}=27.66$
$28^{\text {th }}$ term will be first negative term of given A.P.

Ans.
7. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.
Solution : Given, a circle of radius $O A$ and centred at O with chord $A B$ and tangents $P Q \& R S$ are drawn from point A and B respectively.

Draw $O M \perp A B$, and join $O A$ and $O B$.
In $\triangle O A M$ and $\triangle O M B$,

$$
\begin{array}{rlr}
O A & =O B \quad \text { (Radii) } \\
O M & =O M \quad(\text { Common }) \\
\angle O M A & =\angle O M B\left(\text { Each } 90^{\circ}\right) \\
\triangle O A M & \cong \triangle O M B
\end{array}
$$

(By R.H.S. Congurency)

$$
\angle O A M=\angle O B M \text { (С.P.С.T.) }
$$

Also, $\angle O A P=\angle O B R=90^{\circ}$ (Line joining point of contact of tangent to centre is perpendicular on it)
On addition,

$$
\begin{aligned}
& & \angle O A M+\angle O A P & =\angle O B M+\angle O B R \\
\Rightarrow & & \angle P A B & =\angle R B A \\
\Rightarrow & & \angle P A Q-\angle P A B & =\angle R B S-\angle R B A \\
\Rightarrow & & \angle Q A B & =\angle S B A
\end{aligned}
$$

Hence Proved

8. A circle touches all the four sides of a quadrilateral $A B C D$. Prove that

$$
\begin{equation*}
A B+C D=B C+D A \tag{2}
\end{equation*}
$$

Solution : Given, a quad. $A B C D$ and a circle touches its all four sides at P, Q, R, and S respectively.

To prove: $A B+C D=B C+D A$
Now,
L.H.S. $=A B+C D$

$$
\begin{aligned}
& =A P+P B+C R+R D \\
& =A S+B Q+C Q+D S \\
& \text { (Tangents from same external } \\
& \quad \quad \quad \text { point are always equal) } \\
& =(A S+S D)+(B Q+Q C) \\
& =A D+B C \\
& = \\
& =\text { R.H.S. } \quad \text { Hence Proved }
\end{aligned}
$$

9. A line intersects the y-axis and x-axis at the points P and Q respectively.
If $(2,-5)$ is the mid-point of $P Q$, then find the co-ordinates of P and Q.
Solution : Let co-ordinate of $P(0, y)$
Co-ordinate of $Q(x, 0)$

Mid-point is $(2,-5)$

$$
\begin{array}{rlrl}
& \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =(2,-5) \\
\Rightarrow & \quad\left(\frac{x+0}{2}, \frac{0+y}{2}\right) & =(2,-5) \\
\Rightarrow & & \frac{x}{2} & =2 ; \quad \frac{y}{2}=-5 \\
\Rightarrow & & x & =4 ; \quad y=-10
\end{array}
$$

Co-ordinate of $P(0,-10)$
Co-ordinate of $Q(4,0)$
Ans.
10. If the distances of $P(x, y)$, from $A(5,1)$ and $B(-1,5)$ are equal, then prove that $3 x=2 y$. [2]
Solution: Given, $P A=P B$

$$
\Rightarrow \quad \sqrt{(x-5)^{2}+(y-1)^{2}}=\sqrt{(x+1)^{2}+(y-5)^{2}}
$$

Squaring both sides,

$$
(x-5)^{2}+(y-1)^{2}=(x+1)^{2}+(y-5)^{2}
$$

$$
\begin{array}{lr}
\Rightarrow & x^{2}+25-10 x+y^{2}+1-2 y=x^{2}+1+2 x+ \\
& y^{2}+25-10 y \\
\Rightarrow & -10 x-2 y=2 x-10 y \\
\Rightarrow & -10 x-2 x=-10 y+2 y \\
\Rightarrow & 12 x=8 y \\
\Rightarrow & 3 x=2 y
\end{array}
$$

Hence Proved.

SECTION - C

11. If $a d \neq b c$, then prove that the equation
$\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ has no real roots.
Solution : Given, $a d \neq b c$

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0 \\
& D=b^{2}-4 a c \\
& \left.\quad=[2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\right] \\
& =4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right] \\
& \quad-4\left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right) \\
& =4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}\right. \\
& = \\
& =4\left[-a^{2} d^{2}-b^{2} c^{2}+2 a b c d\right] \\
& =-4\left[a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right] \\
& =-4[a d-b c]^{2}
\end{aligned}
$$

D is negative
Hence given equation has no real roots.
Hence Proved
12. The first term of an A.P. is 5 , the last term is 45 and the sum of all its terms is 400 . Find the number of terms and the common difference of the A.P.
Solution : Given, $a=5, a_{n}=45, S_{n}=400$
We have, $\quad S_{n}=\frac{n}{2}\left[a+a_{n}\right]$
$\Rightarrow \quad 400=\frac{n}{2}[5+45]$
$\Rightarrow \quad 400=\frac{n}{2}[50]$
$\Rightarrow \quad 25 n=400 \Rightarrow n=\frac{400}{25}$
$\Rightarrow \quad n=16$
Now, $\quad a_{n}=a+(n-1) d$
$\Rightarrow \quad 45=5+(16-1) d$
$\Rightarrow \quad 45-5=15 d$
$\Rightarrow \quad 15 d=40$

$$
\begin{array}{ll}
\Rightarrow & d=\frac{8}{3} \\
\text { So } & n=16 \text { and } d=\frac{8}{3} \text { Ans. }
\end{array}
$$

13. On a straight line passing through the foot of a tower, two points C and D are at distances of 4 m and 16 m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower.

Solution : Let height $A B$ of tower $=h \mathrm{~m}$.

In $\triangle A B C$,

$$
\begin{align*}
\frac{A B}{B C} & =\tan \left(90^{\circ}-\theta\right) \\
\frac{h}{4} & =\cot \theta \tag{i}
\end{align*}
$$

In $\triangle A B D$,

$$
\begin{align*}
\frac{A B}{B D} & =\tan \theta \\
\frac{h}{16} & =\tan \theta \tag{ii}
\end{align*}
$$

Multiply eq. (i) and (ii),

$$
\begin{gathered}
\frac{\frac{h}{4} \times \frac{h}{16}=\cot \theta \times \tan \theta}{\frac{h^{2}}{64}=1} \\
{\left[\because \cot \theta \times \tan \theta=\frac{1}{\tan \theta} \times \tan \theta=1\right]} \\
h^{2}=64 \Rightarrow h=8 \mathrm{~m}
\end{gathered}
$$

Height of tower $=8 \mathrm{~m}$.
Ans.
14. A bag contains 15 white and some black balls. If the probability of drawing a black ball from the bag is thrice that of drawing a white ball, find the number of black balls in the bag.
Solution : Given, no. of white balls $=15$

$$
\begin{equation*}
\text { Let no. of black balls }=x \tag{3}
\end{equation*}
$$

$\therefore \quad$ Total balls $=(15+x)$
According to the question,

$$
P(\text { Black ball })=3 \times P(\text { White ball })
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{x}{(15+x)}=3 \times \frac{15}{(15+x)} \\
\Rightarrow & x=45
\end{array}
$$

\therefore No. of black balls in bag $=45$
Ans.
15. In what ratio does the point $\left(\frac{24}{11}, y\right)$ divide the line segment joining the points $P(2,-2)$ and $Q(3,7)$? Also find the value of y.

Solution : Let point R divides $P Q$ in the ratio $k: 1$

$$
\begin{aligned}
& R=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right) \\
& \Rightarrow\left(\frac{24}{11}, y\right)=\left(\frac{k(3)+1(2)}{k+1}, \frac{k(7)+1(-2)}{k+1}\right) \\
& =\left(\frac{3 k+2}{k+1}, \frac{7 k-2}{k+1}\right) \\
& \Rightarrow \quad \frac{3 k+2}{k+1}=\frac{24}{11} \\
& \Rightarrow \quad 11(3 k+2)=24(k+1) \\
& \Rightarrow \quad 33 k+22=24 k+24 \\
& \Rightarrow \quad 33 k-24 k=24-22 \\
& \Rightarrow \quad 9 k=2 \Rightarrow k=2 / 9 \\
& \therefore \quad k: 1=2: 9 \\
& \text { Now, } \quad y=\frac{7 k-2}{k+1}=\frac{7\left(\frac{2}{9}\right)-2}{\frac{2}{9}+1} \\
& =\frac{\frac{14}{9}-2}{\frac{2}{9}+1}=\frac{\frac{14-18}{9}}{\frac{2+9}{2}}=\frac{-4}{11}
\end{aligned}
$$

Line $P Q$ divides in the ratio $2: 9$ and value of $y=\frac{-4}{11}$

Ans.
16. Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semi-circle of radius 4.5 cm are drawn in the given figure. Find the area of the shaded region.

Solution : Given, radius of large semi-circle $=$ 4.5 cm

$$
\begin{aligned}
\text { Area of large semi-circle } & =\frac{1}{2} \pi R^{2} \\
& =\frac{1}{2} \times \frac{22}{7} \times 4.5 \times 4.5
\end{aligned}
$$

Diameter of inner circle $=4.5 \mathrm{~cm}$

$$
\Rightarrow \quad r=\frac{4 \cdot 5}{2} \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Area of inner circle } & =\pi r^{2} \\
& =\frac{22}{7} \times \frac{4 \cdot 5}{2} \times \frac{4 \cdot 5}{2}
\end{aligned}
$$

Diameter of small semi-circle $=3 \mathrm{~cm}$

$$
r=\frac{3}{2} \mathrm{~cm}
$$

Area of small semi-circle $=\frac{1}{2} \pi r^{2}$

$$
=\frac{1}{2} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2}
$$

Area of shaded region

$=$ Area of large semi-circle + Area of 1 small semi-circle - Area of inner circle - Area of 2 small semi-circle

$$
\begin{aligned}
= & \frac{1}{2} \times \frac{22}{7} \times 4 \cdot 5 \times 4 \cdot 5+\frac{1}{2} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \\
= & \frac{22}{7} \times \frac{4 \cdot 5}{2} \times \frac{4 \cdot 5}{2}-2 \times \frac{1}{2} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \\
= & \frac{11}{7} \times \frac{90}{4}-\frac{22}{7} \times \frac{29 \cdot 25}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{900-643 \cdot 5}{28}=\frac{346 \cdot 5}{28} \\
& =12 \cdot 37 \mathrm{~cm}^{2} \text { (approx) }
\end{aligned}
$$

Ans.
17. In the given figure, two concentric circles with centre O have radii 21 cm and 42 cm . If $\angle A O B=60^{\circ}$, find the area of the shaded region. [Use $\pi=\frac{22}{7}$]

Solution : Angle for shaded region

$$
\begin{aligned}
& =360^{\circ}-60^{\circ} \\
& =300^{\circ}
\end{aligned}
$$

Area of shaded region

$$
\begin{aligned}
& =\frac{\pi \theta}{360^{\circ}}\left(R^{2}-r^{2}\right) \\
& =\frac{22}{7} \times \frac{300^{\circ}}{360^{\circ}}\left[42^{2}-21^{2}\right] \\
& =\frac{22}{7} \times \frac{5}{6} \times 63 \times 21 \\
& =3465 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

18. Water in a canal, 5.4 m wide and 1.8 m deep, is flowing with a speed of $25 \mathrm{~km} /$ hour. How much area can it irrigate in 40 minutes, if 10 cm of standing water is required for irrigation?
Solution: Width of canal $=5.4 \mathrm{~m}$

$$
\text { Depth of canal }=1.8 \mathrm{~m}
$$

Length of water in canal for $1 \mathrm{hr}=25 \mathrm{~km}$

$$
=25000 \mathrm{~m}
$$

Volume of water flown out from canal in 1 hr

$$
\begin{aligned}
& =l \times b \times h \\
& =5 \cdot 4 \times 1.8 \times 25000 \\
& =243000 \mathrm{~m}^{3}
\end{aligned}
$$

Volume of water for $40 \mathrm{~min}=243000 \times \frac{40}{60}$

$$
=162000 \mathrm{~m}^{3}
$$

Area to be irrigated with 10 cm standing water in field

$$
\begin{aligned}
& =\frac{\text { Volume }}{\text { Height }} \\
& =\frac{162000 \times 100}{10} \mathrm{~m}^{2} \\
& =1620000 \mathrm{~m}^{2} \\
& =162 \text { hectare }
\end{aligned}
$$

Ans.
19. The slant height of a frustum of a cone is 4 cm and the perimeters of its circular ends are 18 cm and 6 cm . Find the curved surface area of the frustum.
Solution : Slant height of frustum ' l ' $=4 \mathrm{~cm}$ Perimeter of upper top $=18 \mathrm{~cm}$

$$
\Rightarrow \quad 2 \pi R=18 \mathrm{~cm} \Rightarrow R=\frac{9}{\pi} \mathrm{~cm}
$$

Perimeter of lower bottom $=6 \mathrm{~cm}$

$$
\Rightarrow \quad 2 \pi r=6 \Rightarrow r=\frac{3}{\pi} \mathrm{~cm}
$$

$$
\text { Curved S.A. of frustum }=\pi l[R+r]
$$

$$
=\pi \times 4 \times\left[\frac{9}{\pi}+\frac{3}{\pi}\right]
$$

$$
=\pi \times 4 \times \frac{12}{\pi}
$$

$$
=48 \mathrm{~cm}^{2}
$$

Ans.
20. The dimensions of a solid iron cuboid are $4.4 \mathrm{~m} \times 2.6 \mathrm{~m} \times 1.0 \mathrm{~m}$. It is melted and recast into a hollow cylindrical pipe of 30 cm inner radius and thickness 5 cm . Find the length of the pipe.
Solution : Inner radius of pipe ' r ' $=30 \mathrm{~cm}$
Thickness of pipe $=5 \mathrm{~cm}$
$\therefore \quad$ Outer radius $=30+5$

$$
\Rightarrow \quad R=35 \mathrm{~cm}
$$

Now, Vol. of hollow pipe $=$ Vol. of cuboid

$$
\pi h\left(R^{2}-r^{2}\right)=l \times b \times h
$$

$$
\frac{22}{7} \times h\left[35^{2}-30^{2}\right]=4.4 \times 2.6 \times 1 \times 100 \times 100
$$

$$
\begin{aligned}
\frac{22}{7} \times h \times 65 \times 5 & =44 \times 26 \times 1 \times 100 \times 100 \\
h & =\frac{44 \times 26 \times 100 \times 100 \times 7}{22 \times 65 \times 5} \\
& =11200 \mathrm{~cm} \\
& =112 \mathrm{~m} \quad \text { Ans. }
\end{aligned}
$$

SECTION - D

21. Solve for x :

$$
\begin{equation*}
\frac{1}{x+1}+\frac{3}{5 x+1}=\frac{5}{x+4}, x \neq-1,-\frac{1}{5},-4 \tag{4}
\end{equation*}
$$

Solution : Given, $\frac{1}{x+1}+\frac{3}{5 x+1}=\frac{5}{x+4}$

$$
\begin{array}{lrl}
\Rightarrow & \frac{1}{x+1}-\frac{5}{x+4}=\frac{-3}{5 x+1} \\
\Rightarrow & \frac{(x+4)-5(x+1)}{(x+1)(x+4)}=\frac{-3}{5 x+1} \\
\Rightarrow & \frac{x+4-5 x-5}{x^{2}+5 x+4}=\frac{-3}{5 x+1} \\
\Rightarrow & \frac{(-4 x-1)}{x^{2}+5 x+4}=\frac{-3}{5 x+1} \\
\Rightarrow & (4 x+1)(5 x+1)=3\left(x^{2}+5 x+4\right) \\
\Rightarrow & 20 x^{2}+4 x+5 x+1=3 x^{2}+15 x+12 \\
\Rightarrow & 17 x^{2}-6 x-11=0 \\
\Rightarrow & 17 x^{2}-17 x+11 x-11=0 \\
\Rightarrow & 17 x(x-1)+11(x-1)=0 \\
\Rightarrow & & (x-1)(17 x+11)=0
\end{array}
$$

$$
\Rightarrow \text { Either } x=1 \text { or } x=\frac{-11}{17}
$$

Ans.
22. Two taps running together can fill a tank in $3 \frac{1}{13}$ hours. If one tap takes 3 hours more than the other to fill the tank, then how much time will each tap take to fill the tank ?
Solution : Let tank fill by one tap $=x$ hrs
other tap $=(x+3)$ hrs Together they fill by $3 \frac{1}{13}=\frac{40}{13} \mathrm{hrs}$

Now, $\quad \frac{1}{x}+\frac{1}{x+3}=\frac{13}{40}$

$$
\Rightarrow \quad \frac{x+3+x}{(x)(x+3)}=\frac{13}{40}
$$

$$
\Rightarrow \quad \frac{2 x+3}{x^{2}+3 x}=\frac{13}{40}
$$

$$
\Rightarrow \quad 13 x^{2}+39 x=80 x+120
$$

$$
\Rightarrow \quad 13 x^{2}-41 x-120=0
$$

$$
\Rightarrow \quad 13 x^{2}-65 x+24 x-120=0
$$

$$
\Rightarrow \quad 13 x(x-5)+24(x-5)=0
$$

$$
\Rightarrow \quad(x-5)(13 x+24)=0
$$

Either $x-5=0$ or $13 x+24=0$

$$
x=5, x=-24 / 13 \text { (Rejected) }
$$

One tap fill the tank in 5 hrs
So other tap fill the tank in $5+3=8 \mathrm{hrs}$
Ans.
23. If the ratio of the sum of the first n terms of two A.P.s is $(7 n+1):(4 n+27)$, then find the ratio of their $9^{\text {th }}$ terms.
Solution : Ratio of sum of first n terms of two A.P.s are

$$
\frac{\frac{n}{2}[2 a+(n-1) d]}{\frac{n}{2}[2 A+(n-1) D]}=\frac{7 n+1}{4 n+27}
$$

Put

$$
n=17
$$

$$
\Rightarrow \quad \frac{2 a+(16) d}{2 A+(16) D}=\frac{120}{95}
$$

$$
\Rightarrow \quad \frac{2 a+(16) d}{2 A+(16) D}=\frac{120}{95}=\frac{24}{19}
$$

$$
\Rightarrow \quad \frac{a+8 d}{A+8 D}=\frac{24}{19}
$$

Hence ratio of $9^{\text {th }}$ terms of two A.P.s is $24: 19$
Ans.
24. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

Solution : Given, a circle with centre O and external point P. Two tangents $P A$ and $P B$ are drawn.

To prove :

$$
P A=P B
$$

Const. : Join radius $O A$ and $O B$ also join O to P.
Proof: In $\triangle O A P$ and $\triangle O B P$,

$$
\begin{array}{rrrr}
& O A & =O B & \text { (Radii) } \\
& \angle A & =\angle B & \text { (Each } \left.90^{\circ}\right) \\
& O P & =O P & \text { (Common) } \\
\therefore & \triangle A O P & \cong \triangle B O P & \text { (RHS cong.) } \\
\therefore & P A & =P B & \text { [By C.P.C.T.] }
\end{array}
$$

Hence Proved.
25. In the given figure, $X Y$ and $X^{\prime} Y$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C, is intersecting $X Y$ at A and $X^{\prime} Y$ at B. Prove that $\angle A O B=90^{\circ}$.

Solution : Given, $X X^{\prime} \& Y \Upsilon$ are parallel.
Tangent $A B$ is another tangent which touches the circle at C.

To prove : $\quad \angle A O B=90^{\circ}$
Const. : Join OC.
Proof: In $\triangle O P A$ and $\triangle O C A$,

$$
\begin{equation*}
O P=O C \tag{Radii}
\end{equation*}
$$

$$
\angle O P A=\angle O C A
$$

(Radius \perp Tangent)

$$
\begin{array}{lcr}
& O A=O A & \text { (Common) } \\
\therefore & \triangle O P A \cong \triangle O C A & (C P C T) \\
\therefore & \angle 1=\angle 2 & \ldots(\text { i) } \\
\text { Similarly, } & \triangle O Q B \cong \triangle O C B & \\
\therefore & \angle 3=\angle 4 & \ldots \text { (ii) } \tag{ii}
\end{array}
$$

Also, $P O Q$ is a diameter of circle

$$
\therefore \quad \angle P O Q=180^{\circ}
$$

(Straight angle)
$\therefore \quad \angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$
From eq. (i) and (ii),

$$
\begin{aligned}
\angle 2+\angle 2+\angle 3+\angle 3 & =180^{\circ} \\
2(\angle 2+\angle 3) & =180^{\circ} \\
\angle 2+\angle 3 & =90^{\circ} \\
\text { Hence, } \quad \angle A O B & =90^{\circ}
\end{aligned}
$$

26. Construct a triangle $A B C$ with side $B C=7 \mathrm{~cm}$, $\angle B=45^{\circ}, \angle A=105^{\circ}$. Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the $\triangle A B C$.
Solution : $B C=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ}$

$$
\begin{align*}
\angle C & =180^{\circ}-(\angle B+\angle A) \tag{4}\\
& =180^{\circ}-\left(45^{\circ}+105^{\circ}\right) \\
& =180^{\circ}-150^{\circ} \\
& =30^{\circ}
\end{align*}
$$

Steps of construction :
(i) Draw a line segment $B C=7 \mathrm{~cm}$.
(ii) Draw an angle 45° at B and 30° at C. They intersect at A.
(iii) Draw an acute angle at B.
(iv) Divide angle ray in 4 equal parts as B_{1}, B_{2}, B_{3} and B_{4}.
(v) Join B_{4} to C.
(vi) From B_{3}, draw a line parallel to $B_{4} C$ intersecting $B C$ at C^{\prime}.
(vii) Draw another line parallel to $C A$ from C^{\prime} intersecting $A B$ ray at A^{\prime}.
Hence, $\triangle A^{\prime} B C^{\prime}$ is required triangle such that $\triangle A^{\prime} B C^{\prime} \sim \triangle A B C$ with $A^{\prime} B=\frac{3}{4} A B$.
27. An aeroplane is flying at a height of 300 m above the ground. Flying at this height, the angles of depression from the aeroplane of two points on both banks of a river in opposite directions are 45° and 60° respectively. Find the width of the river. [Use $\sqrt{3}=1.732$]

Solution : Let aeroplane is at $A, 300 \mathrm{~m}$ high from a river. C and D are opposite banks of river.

In right $\triangle A B C$,

$$
\begin{aligned}
\frac{B C}{A B} & =\cot 60^{\circ} \\
\Rightarrow \frac{x}{300}=\frac{1}{\sqrt{3}} \Rightarrow x & =\frac{300}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =100 \sqrt{3} \mathrm{~m} \\
& =100 \times 1.732=173.2 \mathrm{~m}
\end{aligned}
$$

In right $\triangle A B D$,

$$
\frac{B D}{A B}=\cot 45^{\circ}
$$

$$
\Rightarrow \quad \frac{y}{300}=1 \Rightarrow y=300
$$

$$
\text { Width of river }=x+y
$$

$$
=173 \cdot 2+300
$$

$$
=473 \cdot 2 \mathrm{~m}
$$

Ans.
28. If the points $A(k+1,2 k), B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are collinear, then find the value of k.
Solution : Since $A(k+1,2 k), B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are collinear points, so area of triangle $=0$.

$\Delta=\frac{1}{2}\left[(k+1)(2 k+3)-6 k^{2}+15 k^{2}-(5 k-1)\right.$

$$
(2 k+3)+2 k(5 k-1)-(k+1)(5 k)]
$$

$$
0=\frac{1}{2}\left[2 k^{2}+5 k+3-6 k^{2}+15 k^{2}-10 k^{2}-13 k+3\right.
$$

$$
\left.+10 k^{2}-2 k-5 k^{2}-5 k\right]
$$

$0=\frac{1}{2}\left[6 k^{2}-15 k+6\right]$

$$
\begin{array}{lr}
\Rightarrow & 6 k^{2}-15 k+6=0 \\
\Rightarrow & 6 k^{2}-12 k-3 k+6=0 \\
\Rightarrow & 6 k(k-2)-3(k-2)=0 \\
\Rightarrow & (k-2)(6 k-3)=0 \\
\therefore & k=2 \text { or } k=\frac{1}{2}
\end{array}
$$

Ans.
29. Two different dice are thrown together. Find the probability that the numbers obtained have
(i) even sum, and
(ii) even product.
[4]
Solution : When two different dice are thrown together
Total outcomes $=6 \times 6=36$
(i) For even sum-Favourable outcomes are
$(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1)$, $(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3)$, $(5,5),(6,2),(6,4),(6,6)$
No. of favourable outcomes $=18$

$$
\begin{aligned}
\therefore \quad P(\text { even sum }) & =\frac{\text { Favourable outcomes }}{\text { Total outcomes }} \\
& =\frac{18}{16}=\frac{1}{2}
\end{aligned}
$$

(ii) For even product-Favourable outcomes are $(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4)$, $(2,5),(2,6)(3,2),(3,4),(3,6),(4,1),(4,2)$, $(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6)$, $(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)$.
No. of favourable outcomes $=27$
$\therefore P($ even product $)=\frac{\text { Favourable outcomes }}{\text { Total outcomes }}$

$$
=\frac{27}{36}=\frac{3}{4}
$$

Ans.
30. In the given figure, $A B C D$ is a rectangle of dimensions $21 \mathrm{~cm} \times 14 \mathrm{~cm}$. A semicircle is drawn with $B C$ as diameter. Find the area and the perimeter of the shaded region in the figure.
[4]

Solution : Area of shaded region

$$
=\text { Area of rectangle }- \text { Area of semi-circle }
$$

$$
=l \times b-\frac{1}{2} \pi r^{2}
$$

$$
\begin{aligned}
& =21 \times 14-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \\
& =294-77 \\
& =217 \mathrm{~cm}^{2}
\end{aligned}
$$

Perimeter of shaded region $=2 l+b+\pi r$

$$
\begin{aligned}
& =2 \times 21+14+\frac{22}{7} \times 7 \\
& =42+14+22 \\
& =78 \mathrm{~cm}
\end{aligned}
$$

Ans.
31. In a rain-water harvesting system, the rainwater from a roof of $22 \mathrm{~m} \times 20 \mathrm{~m}$ drains into a cylindrical tank having diameter of base 2 m and heigth 3.5 m . If the tank is full, find the rainfall in cm .
Write your views on water conservation. [4] Solution : Volume of water collected in system = Volume of cylindrical tank

$$
\begin{array}{rlrl}
& & L \times B \times H & =\pi r^{2} h \\
\Rightarrow & 22 \times 20 \times H & =\frac{22}{7} \times 1 \times 1 \times 3.5 \\
\Rightarrow & 22 \times 20 \times H & =11 \\
\Rightarrow & & H & =\frac{11}{22 \times 20} \\
& & =\frac{1}{40} \mathrm{~m}
\end{array}
$$

$$
=\frac{1}{40} \times 100
$$

$$
=\frac{5}{2}
$$

$$
=2 \cdot 5 \mathrm{~cm}
$$

Rainfall on system $=2.5 \mathrm{~cm}$
Ans.

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. Which term of the A.P. $8,14,20,26$, ... will be 72 more than its $41^{\text {st }}$ term ?

Solution : A.P. is $8,14,20,26, \ldots$.

$$
\left.\begin{array}{rlrl}
& & a & =8, d=14-8=6 \\
\text { Let } & & a_{n} & =a_{41}+72 \\
\Rightarrow & & a+(n-1) d & =a+40 d+72 \\
\Rightarrow & & (n-1) 6 & =40 \times 6+72 \\
& & & =240+72 \\
\Rightarrow & & n-1 & =\frac{312}{6}=52 \\
& & & n
\end{array}\right)=52+1=53^{\text {rd }} \text { term }
$$

Ans.

SECTION - C

18. From a solid right circular cylinder of height 2.4 cm and radius 0.7 cm , a right circular cone of same height and same radius is cut out. Find the total surface area of the remaining solid.
Solution : Given,
Height of cylinder ' $h^{\prime}=2.4 \mathrm{~cm}$
Radius of base ' r ' $=0.7 \mathrm{~cm}$
And slant height $l=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{(2 \cdot 4)^{2}+(0 \cdot 7)^{2}} \\
& =\sqrt{5 \cdot 76+0 \cdot 49} \\
& =\sqrt{6 \cdot 25} \\
& =2 \cdot 5 \mathrm{~cm}
\end{aligned}
$$

Total surface area of the remaining solid $=$ CSA of cylinder + CSA of cone

$$
+ \text { Area of top }
$$

$$
\begin{aligned}
& =2 \pi r h+\pi r l+\pi r^{2} \\
& =\pi r[2 h+l+r] \\
& =\frac{22}{7} \times 0.7[2 \times 2 \cdot 4+2 \cdot 5+0 \cdot 7] \\
& =2 \cdot 2[4 \cdot 8+2.5+0.7] \quad \\
& =2 \cdot 2 \times 8=17 \cdot 6 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

19. If the $10^{\text {th }}$ term of an A.P. is 52 and the $17^{\text {th }}$ term is 20 more than the $13^{\text {th }}$ term, find the A.P.

Solution : Given, $a_{10}=52 ; a_{17}=a_{13}+20$
$\Rightarrow \quad a+16 d=a+12 d+20$
$\Rightarrow \quad 16 d=12 d+20$
$\Rightarrow \quad 4 d=20$
$\Rightarrow \quad d=\frac{20}{4}=5$
Also $\quad a+9 d=52$
$\Rightarrow \quad a+9 \times 5=52$
$\Rightarrow \quad a+45=52$
$\therefore \quad a=7$
Therefore A.P. $=7,12,17,22,27, \ldots$ Ans.
20. If the roots of the equation $\left(c^{2}-a b\right) x^{2}$ $-2\left(a^{2}-b c\right) x+b^{2}-a c=0$ in x are equal, then show that either $a=0$ or $a^{3}+b^{3}+c^{3}=3 a b c$.
[3]
Solution : $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}$

$$
\begin{aligned}
& \begin{aligned}
-a c & =0 \\
\text { For equal roots, } & D
\end{aligned}=0 \\
\Rightarrow \quad b^{2}-4 a c & =0 \\
\left.\Rightarrow \quad\left[-2\left(a^{2}-b c\right)\right]^{2}-4\left(c^{2}-a b\right)\left(b^{2}-a c\right)\right] & =0 \\
\Rightarrow 4\left[a^{4}+b^{2} c^{2}-2 a^{2} b c\right]-4\left[b^{2} c^{2}-a c^{3}-a b^{3}\right. & \\
\left.+a^{2} b c\right] & =0 \\
\Rightarrow 4\left[a^{4}+b^{2} c^{2}-2 a^{2} b c-b^{2} c^{2}+a c^{3}+a b^{3}\right. & \\
\left.-a^{2} b c\right] & =0 \\
\Rightarrow \quad 4 a\left[a^{3}-3 a b c+c^{3}+b^{3}\right] & =0 \\
\text { Either } \quad 4 a=0 \text { or } \quad a^{3}+b^{3}+c^{3}-3 a b c & =0
\end{aligned}
$$

$$
a=0 \text { or } a^{3}+b^{3}+c^{3}=3 a b c . \quad \text { Hence Proved. }
$$

SECTION - D
28. Solve for x :

$$
\begin{equation*}
\frac{1}{2 x-3}+\frac{1}{x-5}=1 \frac{1}{9}, x \neq \frac{3}{2}, 5 \tag{4}
\end{equation*}
$$

Solution : Given, $\frac{1}{2 x-3}+\frac{1}{x-5}=1 \frac{1}{9}$
$\Rightarrow \quad \frac{x-5+2 x-3}{(2 x-3)(x-5)}=\frac{10}{9}$
$\Rightarrow \quad \frac{3 x-8}{2 x^{2}-13 x+15}=\frac{\sqrt{3}}{9}$
$\Rightarrow \quad 9(3 x-8)=10\left(2 x^{2}-13 x+15\right)$
$\Rightarrow \quad 27 x-72=20 x^{2}-130 x+150$
$\Rightarrow \quad 20 x^{2}-157 x+222=0$
$\Rightarrow 20 x^{2}-120 x-37 x+222=0$
$\Rightarrow \quad 20 x(x-6)-37(x-6)=0$
$\Rightarrow \quad(x-6)(20 x-37)=0$
Either

$$
x-6=0 \text { or } 20 x-37=0
$$

$$
\Rightarrow \quad x=6, x=\frac{37}{20} \text { Ans. }
$$

29. A train covers a distance of 300 km at a uni form speed. If the speed of the train is increased by $5 \mathrm{~km} /$ hour, it takes 2 hours less in the journey. Find the original speed of the train.
Solution : Let original speed of train $=x \mathrm{~km} / \mathrm{hr}$ Increased speed of train $=(x+5) \mathrm{km} / \mathrm{hr}$

Distance $=300 \mathrm{~km}$
According to the question,

$$
\begin{array}{rlrl}
& & \frac{300}{x}-\frac{300}{x+5} & =2 \\
\Rightarrow & \frac{300(x+5-x)}{(x)(x+5)} & =2 \\
\Rightarrow & & 1500 & =2\left(x^{2}+5 x\right) \\
\Rightarrow & & 1500 & =2 x^{2}+10 x \\
\Rightarrow & & 2 x^{2}+10 x-1500 & =0 \\
\Rightarrow & & x^{2}+5 x-750 & =0 \\
\Rightarrow & x & x+30 x-25 x-750 & =0 \\
\Rightarrow & & (x+30)-25(x+30) & =0 \\
\Rightarrow & x-25) & =0
\end{array}
$$

Either $x+30=0$ or $x-25=0$
$\Rightarrow \quad x=-30$ (Rejected),
so

$$
x=25
$$

Original speed of train is $25 \mathrm{~km} / \mathrm{hr}$. Ans.
30. A man observes a car from the top of a tower, which is moving towards the tower with a uniform speed. If the angle of depression of the car changes from 30° to 45° in 12 minutes, find the time taken by the car now to reach the tower.

Solution : Let $A B$ is a tower, car is at point D at 30° and goes to C at 45° in 12 minutes.

In $\triangle A B C$,

$$
\begin{align*}
\frac{A B}{B C} & =\tan 45^{\circ} \\
\Rightarrow \quad & \frac{h}{x} \tag{i}
\end{align*}=1 \Rightarrow h=x
$$

In $\triangle A B D$,

$$
\begin{align*}
\frac{A B}{B D} & =\tan 30^{\circ} \\
\frac{h}{x+y} & =\frac{1}{\sqrt{3}} \Rightarrow h=\frac{x+y}{\sqrt{3}} \tag{ii}
\end{align*}
$$

Comparing eq. (i) \& (ii), we get

$$
\begin{aligned}
x & =\frac{x+y}{\sqrt{3}} \Rightarrow \sqrt{3} x=x+y \\
\Rightarrow \quad(\sqrt{3}-1) x & =y
\end{aligned}
$$

Car covers the distance y in time $=12 \mathrm{~min}$ So $(\sqrt{3}-1) x$ distance covers in 12 min

Distance x covers in time $=\frac{12}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$

$$
\begin{aligned}
& =\frac{12(\sqrt{3}+1)}{3-1=2} \\
& =6(\sqrt{3}+1) \mathrm{min} \\
& =6 \times 2.732 \\
& =16.39
\end{aligned}
$$

Now, car reaches to tower in 16.39 minutes.

Ans.

31. In the given figure, $\triangle A B C$ is a right-angled triangle in which $\angle A$ is 90°. Semi-circles are drawn on $A B, A C$ and $B C$ as diameters. Find the area of the shaded region.

Website : www.ssstrategies.com or www.newtongate.in

Solution : In right $\triangle B A C$, by pythagoras theorem,

$$
\begin{aligned}
B C^{2} & =A B^{2}+A C^{2} \\
& =(3)^{2}+(4)^{2} \\
& =9+16=25 \\
B C & =\sqrt{25}=5 \mathrm{~cm}
\end{aligned}
$$

Area of semi-circle with diameter $B C=\frac{1}{2} \pi r^{2}$

$$
=\frac{1}{2} \times \pi\left(\frac{5}{2}\right)^{2}=\frac{25}{8} \pi \mathrm{~cm}^{2}
$$

Area of semi-circle with diameter $A B=\frac{1}{2} \pi r^{2}$

$$
=\frac{1}{2} \pi\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi \mathrm{~cm}^{2}
$$

Area of semi-circle with diameter $A C=\frac{1}{2} \pi r^{2}$

$$
=\frac{1}{2} \pi\left(\frac{4}{2}\right)^{2}=\frac{16}{8} \pi \mathrm{~cm}^{2}
$$

Area of rt. $\triangle B A C=\frac{1}{2} \times A B \times A C$

$$
=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}
$$

Area of dotted region $=\left(\frac{25}{8} \pi-6\right) \mathrm{cm}^{2}$
Area of shaded region

$$
\begin{aligned}
& =\frac{16}{8} \pi+\frac{9}{8} \pi-\left(\frac{25}{8} \pi-6\right) \\
& =\frac{16}{8} \pi+\frac{9}{8} \pi-\frac{25}{8} \pi+6 \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.

Mathematics 2017 (Outside Delhi) II

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. For what value of n, are the $n^{\text {th }}$ terms of two A.Ps 63, 65, 67, \ldots. and 3, 10, 17, equal ? [2] Solution : $1^{\text {st }}$ A.P. is $63,65,67, \ldots$
$a=63, \quad d=65-63=2$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =63+(n-1) 2 \\
& =63+2 n-2=61+2 n
\end{aligned}
$$

$2^{\text {nd }} A . P$ is $3,10,17, \ldots$
$a=3, \quad d=10-3=7$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =3+(n-1) 7 \\
& =3+7 n-7 \\
& =7 n-4
\end{aligned}
$$

According to question,

$$
\begin{aligned}
61+2 n & =7 n-4 \\
61+4 & =7 n-2 n \\
65 & =5 n
\end{aligned}
$$

$$
\begin{array}{ll}
& n=\frac{65}{5}=13 \\
\therefore \quad & n=13
\end{array}
$$

Hence, $13^{\text {th }}$ term of both A.P. is equal Ans.

SECTION - C

18. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius on its circular face. The total height of the toy is 15.5 cm . Find the total surface area of the toy.

Solution : Given, radius of base ' r ' $=3.5 \mathrm{~cm}$
Total height of toy $=15.5 \mathrm{~cm}$
Height of cone ' h ' $=15 \cdot 5-3 \cdot 5$
$=12 \mathrm{~cm}$

$$
\begin{aligned}
\text { Slant height ' } l^{\prime} & =\sqrt{h^{2}+r^{2}} \\
& =\sqrt{12^{2}+3 \Phi^{2}} \\
& =\sqrt{144+1225} \\
& =\sqrt{156 \cdot 25} \\
& =12.5 \mathrm{~cm}
\end{aligned}
$$

Total S.A. of toy $=$ C.S.A. of cone

+ C.S.A. of hemisphere

$$
\begin{aligned}
& =\pi r l+2 \pi r^{2} \\
& =\pi r[l+2 r] \\
& =\frac{22}{7} \times 3.5[12.5+2 \times 3.5] \\
& =22 \times 0.5[12.5+7] \\
& =11 \times 19.5 \quad \text { Ans. } \\
& =214.5 \mathrm{~cm}^{2} \quad
\end{aligned}
$$

19. How many terms of an A.P. $9,17,25, \ldots$ must be taken to give a sum of 636 ?
Solution : A.P. is $9,17,25, \ldots, S_{n}=636$
$a=9, d=17-9=8$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& 636=\frac{n}{2}[18+8 n-8] \\
& 636=\frac{n}{2}[10+8 n] \\
& 636=n(5+4 n) \\
& 636=5 n+4 n^{2} \\
& 4 n^{2}+5 n-636=0 \\
& 4 n^{2}+53 n-48 n-636=0 \\
& n(4 n+53)-12(4 n+53)=0 \\
&(n-12)(4 n+53)=0 \\
& n-12=0 \\
& \therefore \quad\left(\because n \neq \frac{-53}{4} \text { as } n>0\right) \\
& \therefore \quad n=12 \quad \text { Ans. }
\end{aligned}
$$

20. If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-$ $2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
[3]

Solution :

$$
\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0
$$

For equal roots, $D=0$

$$
\begin{array}{cc}
& {[-2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0} \\
\Rightarrow & 4(a c+b d)^{2}-4\left(a^{2} c^{2}+a^{2} d^{2}\right. \\
& \left.+b^{2} c^{2}+b^{2} d^{2}\right)=0 \\
\Rightarrow & 4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d-a^{2} c^{2}-a^{2} d^{2}\right. \\
& \left.+b^{2} c^{2}+b^{2} d^{2}\right]=0 \\
\Rightarrow & -4\left[a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right]=0 \\
\Rightarrow & -4(a d-b c)^{2}=0 \\
& -4 \neq 0 \text { so, }(a d-b c)^{2}=0 \\
\Rightarrow & a d-b c=0 \\
\Rightarrow & \quad a d=b c \\
\therefore & \frac{a}{b}=\frac{c}{d}
\end{array}
$$

Hence Proved.

SECTION - D

28. Solve for x :

$$
\begin{equation*}
\frac{x-1}{2 x+1}+\frac{2 x+1}{x-1}=2, \text { where } x \neq-\frac{1}{2}, 1 \tag{4}
\end{equation*}
$$

Solution : $\frac{(x-1)^{2}+(2 x+1)^{2}}{(2 x+1)(x-1)}=2$
$\Rightarrow \frac{x^{2}+1-2 x+4 x^{2}+1+4 x}{2 x^{2}-x-1}=\frac{2}{1}$
$\Rightarrow \quad 5 x^{2}+2 x+2=2\left(2 x^{2}-x-1\right)$
$\Rightarrow \quad 5 x^{2}+2 x+2=4 x^{2}-2 x-2$
$\Rightarrow \quad x^{2}+4 x+4=0$
$\Rightarrow \quad(x+2)^{2}=0$
Either $x+2=0$ or $x+2=0$
$\therefore \quad x=-2,-2$ Ans.
29. A takes 6 days less than B to do a work. If both A and B working together can do it in 4 days, how many days will B take to finish it?
Solution : Let B can finish a work in x days so, $\quad A$ can finish work in $(x-6)$ days Together they finish work in 4 days Now,

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x-6}
\end{aligned}=\frac{1}{4}, ~\left(\frac{x-6+x}{(x)(x-6)}=\frac{1}{4}\right.
$$

Mathematics 2017 (Outside Delhi) Term II

Either

$$
x-12=0 \text { or } x-2=0
$$

$$
x=12 \text { or } x=2 \text { (Rejected) }
$$

B can finish work in 12 days
A can finish work in 6 days
Ans.
30. From the top of a tower, 100 m high, a man observes two cars on the opposite sides of the tower and in same straight line with its base, with angles of depression 30° and 45°. Find the distance between the cars.
[Take $\sqrt{3}=1.732$]
Solution : Let $A B$ is a tower.
Cars are at point C and D respectively

In $\triangle A B C$,

$$
\begin{aligned}
\frac{A B}{B C} & =\tan 30^{\circ} \\
\frac{100}{x} & =\frac{1}{\sqrt{3}} \\
x & =100 \sqrt{3} \\
& =100 \times 1.732 \\
& =173.2 \mathrm{~m}
\end{aligned}
$$

In $\triangle A B D$,

$$
\begin{aligned}
\frac{A B}{B D} & =\tan 45^{\circ} \\
\frac{100}{y} & =1 \\
y & =100 \mathrm{~m}
\end{aligned}
$$

Distance between two cars $=x+y$

$$
\begin{aligned}
& =173 \cdot 2+100 \\
& =273 \cdot 2 \mathrm{~m}
\end{aligned}
$$

Ans.
31. In the given figure, O is the centre of the circle with $A C=24 \mathrm{~cm}, A B=7 \mathrm{~cm}$ and $\angle B O D=90^{\circ}$. Find the area of the shaded region.

Solution : Given, $C(O, O B)$ with $A C=24 \mathrm{~cm}$ $A B=7 \mathrm{~cm}$ and $\angle B O D=90^{\circ}$

$\angle C A B=90^{\circ}$ (Angle in semi-circle)
Using pythagoras theorem in $\triangle C A B$,

$$
\begin{aligned}
B C^{2} & =A C^{2}+A B^{2} \\
& =(24)^{2}+(7)^{2} \\
& =576+49 \\
& =625
\end{aligned}
$$

$$
B C=25 \mathrm{~cm}
$$

Radius of circle $=O B=O D=O C=\frac{25}{2} \mathrm{~cm}$
Area of shaded region
=Areaofsemi-circlewithdiamieter $B C$-Areaof $\triangle C A B+$ Area of sector $B O D$

$$
\begin{aligned}
& =\frac{1}{2} \pi\left(\frac{25}{2}\right)^{2}-\frac{1}{2} \times 24 \times 7+\frac{90^{\circ}}{360^{\circ}} \pi\left(\frac{25}{2}\right)^{2} \\
& =\frac{3}{4} \times \frac{22}{7} \times \frac{25}{2} \times \frac{25}{2}-84 \\
& =\frac{20625}{56}-84 \\
& =\frac{20625-4704}{56}
\end{aligned}
$$

$$
=\frac{15921}{56}
$$

$$
=284 \cdot 3 \mathrm{~cm}^{2} \text { (approx) }
$$

Ans.

$$
\begin{aligned}
& \Rightarrow \quad 4(2 x-6)=x^{2}-6 x \\
& \Rightarrow \quad 8 x-24=x^{2}-6 x \\
& \Rightarrow \quad x^{2}-14 x+24=0 \\
& \Rightarrow \quad x^{2}-12 x-2 x+24=0 \\
& \Rightarrow \quad x(x-12)-2(x-12)=0 \\
& \Rightarrow \quad(x-12)(x-2)=0
\end{aligned}
$$

SECTION - A

1. The ratio of the height of a tower and the length of its shadow on the ground is $\sqrt{3}: 1$. What is the angle of elevation of the sun ?

Solution : Given, $\frac{A B}{B C}=\frac{\sqrt{3}}{1}$

In $\triangle A B C$,

$$
\begin{aligned}
& \tan \theta
\end{aligned}=\frac{A B}{B C}=\frac{\sqrt{3}}{1}
$$

Hence, the angle of elevation is 60°. Ans.
2. Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere ?
Solution : Let radius of hemisphere be r units Volume of hemisphere $=$ S.A. of hemisphere

$$
\begin{aligned}
\frac{2}{3} \pi r^{3} & =3 \pi r^{2} \\
\Rightarrow \quad r & =\frac{9}{2} \text { or diameter }=9 \text { units }
\end{aligned}
$$

Ans.
3. A number is chosen at random from the numbers - 3, -2,-1, 0, 1, 2, 3 .
What will be the probability that square of this number is less then or equal to 1 ? [1] Solution : Possible outcomes $\{-3,-2,-1,0$, $1,2,3\}, n=7$ and only three numbers $-1,0$, 1 fall under given condition so,

$$
\text { Required probability }=\frac{3}{7}
$$

Ans.
4. If the distance between the points $(4, k)$ and $(1,0)$ is 5 , then what can be the possible values of k ?
Solution : Distance between $(4, k)$ and $(1,0)$

$$
\sqrt{(1-4)^{2}+(0-k)^{2}}=5
$$

On squaring both sides,

$$
9+k^{2}=25
$$

So

$$
\begin{array}{rlr}
k^{2} & =25-9=16 & \\
k & = \pm 4 \quad \text { Ans. }
\end{array}
$$

SECTION - B

5. Find the roots of the quadratic equation

$$
\begin{equation*}
\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0 . \tag{2}
\end{equation*}
$$

Solution : Given quadratic equation is,

$$
\begin{array}{r}
\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0 \\
\Rightarrow \quad \sqrt{2} x^{2}+5 x+2 x+5 \sqrt{2}=0
\end{array}
$$

[Splitting middle term]
$\Rightarrow \quad x(\sqrt{2} x+5)+\sqrt{2}(\sqrt{2} x+5)=0$

$$
\Rightarrow \quad(\sqrt{2} x+5)(x+\sqrt{2})=0
$$

$$
\Rightarrow \quad \text { Either }(\sqrt{2} x+5)=0 \text { or }(x+\sqrt{2})=0
$$

$$
\Rightarrow \quad x=-\frac{5}{\sqrt{2}} \text { or } x=-\sqrt{2}
$$

Hence roots are $\frac{-5}{\sqrt{2}}$ and $-\sqrt{2}$.
Ans.
6. Find how many integers between 200 and 500 are divisible by 8 .
Solution : Smallest divisible no. (by 8) in given range $=208$

Last divisible no. (by 8) in range $=496$

So number of terms between 200 and 500 divisible by 8 are 37 .

Ans.
7. Prove that tangents drawn at the ends of a diameter of a circle are parallel to each other.

Solution : Given, $P Q$ is a diameter of a circle with centre O. The lines $A B$ and $C D$ are tangents at P and Q respectively.
To Prove : $A B \| C D$

$$
\begin{aligned}
& \text { So, } a=208, d=8, n=?, a_{n}=496 \\
& a_{n}=a+(n-1) d \\
& =208+(n-1) 8 \\
& =496 \\
& \Rightarrow \quad 8 n+208-8=496 \\
& \Rightarrow \quad 8 n=496-200=296 \\
& \therefore \quad n=\frac{296}{8}=37
\end{aligned}
$$

Proof : $A B$ is a tangent to the circle at P and $O P$ is the radius through the point of contact

$$
\therefore \quad \angle O P A=90^{\circ}
$$

Similarly $C D$ is a tangent to circle at Q and $O Q$ is radius through the point of contact

$$
\begin{aligned}
\therefore & & \angle O Q D & =90^{\circ} \\
\Rightarrow & & \angle O P A & =\angle O Q D
\end{aligned}
$$

But both form pair of alternate angles

$$
\therefore \quad A B \| C D
$$

Hence Proved.

8. Find the value of k for which the equation $x^{2}+k(2 x+k-1)+2=0$ has real and equal roots.

Solution : Given equation is,

$$
\begin{aligned}
x^{2}+k(2 x+k-1)+2 & =0 \\
\Rightarrow x^{2}+2 k x+k(k-1)+2 & =0
\end{aligned}
$$

Here $a=1, b=2 k$ and $c=k(k-1)+2$
For real and equal roots

$$
\begin{array}{rlrl}
& b^{2}-4 a c & =0 \\
& & (2 k)^{2}-4 \cdot 1 \cdot(k(k-1)+2) & =0 \\
\Rightarrow & 4 k^{2}-4\left(k^{2}-k+2\right) & =0 \\
\Rightarrow & 4 k^{2}-4 k^{2}+4 k-8 & =0 \\
\Rightarrow & & 4 k & =8 \\
& \Rightarrow & k & =\frac{8}{4}=2
\end{array}
$$

Ans.
9. Draw a line segment of length 8 cm and divide it internally in the ratio $4: 5$.
[2]
Solution : Steps of construction :
(i) Draw $A B=8 \mathrm{~cm}$.
(ii) Draw any ray $A X$ making an acute angle with $A B$.
(iii) Draw $9(4+5)$ points on ray $A X$ namely $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}$ at equal distance.
(iv) Join $B A_{9}$.
(v) Through point A_{4}, drawaline parallel to $A_{9} B$ intersecting $A B$ at the point C.
Then $A C$: $C B=4: 5$

10. In the given figure, $P A$ and $P B$ are tangents to the circle from an external point $P . C D$ is another tangent touching the circle at Q. If $P A=12 \mathrm{~cm}, Q C=Q D=3 \mathrm{~cm}$, then find $P C+P D$.

Solution: Given, $P A=P B=12 \mathrm{~cm}$
[Tangent from external point]

$$
\begin{aligned}
& A C=C Q=3 \mathrm{~cm} \\
& B D=Q D=3 \mathrm{~cm}
\end{aligned}
$$

[Tangent from external point]

$$
\text { So, } \begin{aligned}
P C+P D & \\
& =(P A-A C)+(P B-B D) \\
& =(12-3)+(12-3) \\
& =9+9=18 \mathrm{~cm}
\end{aligned}
$$

Ans.
SECTION - C
11. If $m^{\text {th }}$ term of an A.P. is $\frac{1}{n}$ and $n^{\text {th }}$ term is $\frac{1}{m}$, then find the sum of its first $m n$ terms. [3] Solution : Let a and d be the first term and common difference respectively of the given A.P.

Then, $\quad \frac{1}{n}=m^{\text {th }}$ term $\Rightarrow \frac{1}{n}=a+(m-1) d$

$$
\begin{equation*}
\frac{1}{m}=n^{\text {th }} \text { term } \Rightarrow \frac{1}{m}=a+(n-1) d \tag{i}
\end{equation*}
$$

By subtracting eq. (ii) from eq. (i),

$$
\begin{array}{rlrl}
& & \frac{1}{n}-\frac{1}{m} & =(m-n) d \\
\Rightarrow & & \frac{m-n}{m n} & =(m-n) d \\
\Rightarrow & d & =\frac{1}{m n}
\end{array}
$$

Putting $d=\frac{1}{m n}$ in eq. (i),

$$
\begin{array}{ll}
\text { We get, } & \frac{1}{n}=a+(m-1) \frac{1}{m n} \\
\Rightarrow & \frac{1}{n}=a+\frac{1}{n}-\frac{1}{m n} \\
\Rightarrow & a=\frac{1}{m n}
\end{array}
$$

Sum of first $m n$ terms

$$
\begin{aligned}
& =\frac{m n}{2}[2 a+(m n-1) d] \\
& =\frac{m n}{2}\left[\frac{2}{m n}+(m n-1) \frac{1}{m n}\right] \\
& {\left[\because a=\frac{1}{m n}, d=\frac{1}{m n}\right]} \\
& =\frac{m n}{2}\left[\frac{1}{m n}+1\right] \\
& =\frac{1+m n}{2} \\
& \text { Ans. }
\end{aligned}
$$

12. Find the sum of \boldsymbol{n} terms of the series

$$
\begin{equation*}
\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots \ldots \ldots \tag{3}
\end{equation*}
$$

Solution : In given series, $a=\left(4-\frac{1}{n}\right)$

$$
\begin{aligned}
d=\left(4-\frac{2}{n}\right) & -\left(4-\frac{1}{n}\right)=4-\frac{2}{n}-4+\frac{1}{n}=-\frac{1}{n} \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}\left[2\left(4-\frac{1}{n}\right)+(n-1)\left(-\frac{1}{n}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n}{2}\left[8-\frac{2}{n}-\frac{(n-1)}{n}\right] \\
& =\frac{n}{2}\left[7-\frac{1}{n}\right] \\
& =\frac{n}{2}\left[\frac{7 n-1}{n}\right] \\
& =\frac{7 n-1}{2}
\end{aligned}
$$

Ans.
13. If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+c^{2}-a^{2}$ $=0$ has equal roots then show that $c^{2}=a^{2}\left(1+m^{2}\right)$.
[3]
Solution : The given equation $\left(1+m^{2}\right) x^{2}+$ $2 m c x+c^{2}-a^{2}=0$ has equal roots
Here, $A=1+m^{2}, B=2 m c, C=c^{2}-a^{2}$
For equal roots, $D=0=B^{2}-4 A C$
$\Rightarrow \quad(2 m c)^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right)=0$
$\Rightarrow 4 m^{2} c^{2}-4\left(c^{2}-a^{2}+m^{2} c^{2}-m^{2} a^{2}\right)=0$
$\Rightarrow \quad m^{2} c^{2}-c^{2}+a^{2}-m^{2} c^{2}+m^{2} a^{2}=0$
$\Rightarrow \quad-c^{2}+a^{2}\left(1+m^{2}\right)=0$
\Rightarrow
$c^{2}=a^{2}\left(1+m^{2}\right)$

Hence Proved.

14. The $\frac{3}{4}$ th part of a conical vessel of internal radius 5 cm and height 24 cm is full of water. The water is emptied into a cylindrical vessel with internal radius 10 cm . Find the height of water in cylindrical vessel.
Solution : According to the question,
$\frac{3}{4}$ Volume of water in conical vessel
$=$ Volume of cylindrical vessel

$$
\frac{3}{4} \times \frac{1}{3} \times \pi \times r_{\text {cone }}^{2} \times h_{\text {cone }}=\pi r_{c y}^{2} h_{c y}
$$

or

$$
\begin{aligned}
h_{c y} & =\frac{1}{4} \times \frac{r_{\text {cone }}^{2} \times h_{\text {cone }}}{r_{c y}^{2}} \\
& =\frac{1}{4} \times \frac{5 \times 5 \times 24}{10 \times 10}=\frac{3}{2} \\
& =1.5 \mathrm{~cm}
\end{aligned}
$$

Hence height of water in cylindrical vessel is 1.5 cm .

Ans.
15. In the given figure, $O A C B$ is a quadrant of a circle with centre O and radius 3.5 cm . If $O D$ $=2 \mathrm{~cm}$, find the area of the shaded region.

Solution : Area of shaded region $=$ Area of quadrant $O A C B$ - Area of $\triangle D O B$

$$
\begin{aligned}
& =\frac{90}{360} \times \pi \times(3.5)^{2}-\frac{1}{2} \times 2 \times 3.5 \\
& =\frac{1}{4} \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10}-3.5 \\
& =\frac{1925}{200}-3.5 \\
& =9.625-3.5 \\
& =6.125 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, area of shaded region is $6.125 \mathrm{~cm}^{2}$
Ans.
16. Two tangents $T P$ and $T Q$ are drawn to a circle with centre O from an external point T. Prove that $\angle P T Q=2 \angle O P Q$.
Solution : Given, a circle with centre O, an external point T and two tangents $T P$ and $T Q$. Let $\angle P T Q=\theta$.

To prove

$$
\angle P T Q=2 \angle O P Q
$$

Proof:

$$
T P=T Q
$$

[Tangent from an external point]
So $\triangle T P Q$ is an isosceles triangle

$$
\angle T P Q=\angle T Q P
$$

[Angle opposite to equal sides of a Δ]
So, $\angle T P Q=\angle T Q P=\frac{1}{2}\left(180^{\circ}-\theta\right)=90^{\circ}-\frac{\theta}{2}$
But,

$$
\angle T P O=90^{\circ}
$$

[Angle between tangent and radius]
$\therefore \angle O P Q=\angle O P T-\angle T P Q=90^{\circ}-\left(90^{\circ}-\frac{\theta}{2}\right)$

$$
=\frac{\theta}{2}=\frac{1}{2} \angle P T Q
$$

Or $\angle P T Q=2 \angle O P Q \quad$ Hence Proved.
17. Show that $\triangle A B C$, where $A(-2,0), B(2,0)$, $C(0,2)$ and $\triangle P Q R$ where $P(-4,0), Q(4,0)$, $R(0,4)$ are similar triangles.
Solution : Coordinates of vertices are
$A(-2,0), B(2,0), C(0,2)$
$P(-4,0), Q(4,0), R(0,4)$

$$
\begin{aligned}
A B & =\sqrt{(2+2)^{2}+(0-0)^{2}}=4 \text { units } \\
B C & =\sqrt{(0-2)^{2}+(2-0)^{2}} \\
& =\sqrt{4+4}=2 \sqrt{2} \text { units } \\
C A & =\sqrt{(-2-0)^{2}+(0-2)^{2}} \\
& =\sqrt{8}=2 \sqrt{2} \text { units } \\
P R & =\sqrt{(0+4)^{2}+(4-0)^{2}} \\
& =\sqrt{4^{2}+(4)^{2}}=4 \sqrt{2} \text { units } \\
Q R & =\sqrt{(0-4)^{2}+(4-0)^{2}} \\
& =\sqrt{4^{2}+(4)^{2}}=4 \sqrt{2} \text { units } \\
P Q & =\sqrt{(4+4)^{2}+(0-0)^{2}} \\
& =\sqrt{(8)^{2}}=8 \text { units }
\end{aligned}
$$

We see that sides of $\triangle P Q R$ are twice the sides of $\triangle A B C$.
Hence, both triangles are similar.

Hence Proved.

18. The area of a triangle is 5 sq units. Two of its vertices are $(2,1)$ and $(3,-2)$. If the third vertex is $\left(\frac{7}{2}, y\right)$, find the value of y.
Solution : Given,
$A(2,1), B(3,-2)$ and $C\left(\frac{7}{2}, y\right)$
Now, Area $\left.(\triangle A B C)=\frac{1}{2} \right\rvert\, x_{1}\left(y_{2}-y_{3}\right)$
$+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right) \mid$
$5=\frac{1}{2}\left|2(-2-y)+3(y-1)+\frac{7}{2}(1+2)\right|$
$\Rightarrow \quad 10=\left|-4-2 y+3 y-3+\frac{7}{2}+7\right|$

$$
\begin{aligned}
& \Rightarrow \quad 10=\left|y+\frac{7}{2}\right| \\
& \Rightarrow \quad 10=y+\frac{7}{2} \quad \text { or } \quad-10=\left(y+\frac{7}{2}\right) \\
& \Rightarrow \quad y=\frac{13}{2} \quad \text { or } \quad y=\frac{-27}{2}
\end{aligned}
$$

Ans.
19. Two different dice are thrown together. Find the probability that the numbers obtained
(i) have a sum less than 7
(ii) have a product less than 16
(iii) is a doublet of odd numbers.

Solution : Total possible outcomes in each case $=6 \times 6=36$
(i) Have a sum less than 7,

Possible outcomes are,
$(1,1)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)$ $(2,4)$
$(3,1)(3,2)(3,3)(4,1)(4,2)(5,1)$
$\therefore \quad n(E)=15$
So, \quad probability $=\frac{15}{36}=\frac{5}{12}$
Ans.
(ii) Have a product less than 16,

Possible outcomes are,
$(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$
$(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$
$(3,1)(3,2)(3,3)(3,4)(3,5)$
$(4,1)(4,2)(4,3)$
$(5,1)(5,2)(5,3)$
$(6,1)(6,2)$
$\therefore \quad n(E)=25$
So, \quad probability $=\frac{25}{36}$
Ans.
(iii) Is a doublet of odd no.,

Possible outcomes are
$(1,1),(3,3),(5,5)$

$$
\therefore \quad n(E)=3
$$

$P($ doublet of odd no. $)=\frac{3}{36}=\frac{1}{12} \quad$ Ans.
20. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m / h.

Solution : From $\triangle A B C, \frac{A B}{B C}=\tan 60^{\circ}$
or

$$
\begin{aligned}
& B C=\frac{A B}{\tan 60^{\circ}} \\
& B C=\frac{150}{\sqrt{3}} \mathrm{~m}
\end{aligned}
$$

From $\triangle A B D, \frac{A B}{B D}=\tan 45^{\circ}$ or $A B=B D$

$$
\left[\because \tan 45^{\circ}=1\right]
$$

$$
\Rightarrow \quad B D=150 \mathrm{~m}
$$

Distance covered in 2 min . $=B D-B C$

$$
=150-\frac{150}{\sqrt{3}}=\frac{150 \sqrt{3}-150}{\sqrt{3}}
$$

Distance covered in 1 hour

$$
=\frac{150(\sqrt{3}-1)}{\sqrt{3} \times 2} \times 60 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Speed } & =\frac{4500(\sqrt{3}-1)}{\sqrt{3}} \\
& =4500-1500 \sqrt{3} \\
& =4500-2598=1902 \mathrm{~m} / \mathrm{hr}
\end{aligned}
$$

Hence, the speed of boat is $1902 \mathrm{~m} / \mathrm{hr}$. Ans.
SECTION - D
21. Construct an isosceles triangle with base 8 cm and altitude 4 cm . Construct another triangl whose sides are $\frac{2}{3}$ times the corresponding sides of the isosceles triangle.
Solution : Steps of construction :
(i) Draw $B C=8 \mathrm{~cm}$.
(ii) Construct $X Y$, the perpendicular bisector of line segment $B C$, meeting $B C$ at M.
(iii) Cut $M A=4 \mathrm{~cm}$ on $X M$. Join $B A \& C A$, $\triangle A B C$ is obtained.
(iv) At B, draw an acute angle in downward direction. Draw 3 arcs B_{1}, B_{2} and B_{3} on it.
(v) Join $B_{3} C$ and at B_{2} draw line parallel to $B_{3} C$, cutting $B C$ at C^{\prime}.
(vi) At C^{\prime}, draw $A^{\prime} C^{\prime}$ parallel to $A C$.

Thus, $\Delta A^{\prime} C^{\prime} B$ is required triangle.

23. The ratio of the sums of first m and first n terms of an A. P. is $m^{2}: n^{2}$.
Show that the ratio of its $m^{\text {th }}$ and $n^{\text {th }}$ terms is

$$
\begin{equation*}
(2 m-1):(2 n-1) . \tag{4}
\end{equation*}
$$

Solution : Let a be first term and d is common difference.

Then, $\quad \frac{S_{m}}{S_{n}}=\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\left(\frac{m^{2}}{n^{2}}\right)$
$\Rightarrow \quad n[2 a+(m-1) d]=m[2 a+(n-1) d]$
$\Rightarrow \quad 2 a n+n d(m-1)=2 a m+m d(n-1)$
$\Rightarrow 2 a(n-m)=[m(n-1)-n(m-1)] d$

$$
=(m n-m-m n+n) d
$$

$$
\Rightarrow \quad 2 a(n-n)=(n-m) d
$$

or $\quad 2 a=d$

Now,

$$
\begin{aligned}
\frac{T_{m}}{T_{n}} & =\frac{a+(m-1) d}{a+(n-1) d} \\
& =\frac{a+(m-1) 2 a}{a+(n-1) 2 a} \\
& =\frac{2 m-1}{2 n-1}
\end{aligned}
$$

Hence Proved.
24. Speed of a boat in still water is $15 \mathrm{~km} / \mathrm{h}$. It goes 30 km upstream and returns back at the same point in 4 hours 30 minutes. Find the speed of the stream.
Solution : Let speed of stream be x.

According to question,

$$
\left.\begin{array}{rlrl}
& & \frac{30}{x+15}+\frac{30}{15-x} & =4+\frac{30}{60} \\
& \Rightarrow & 30 \frac{(15-x+x+15)}{(15)^{2}-(x)^{2}} & =\frac{9}{2} \\
\Rightarrow & & \frac{900}{225-x^{2}} & =\frac{9}{2} \\
\Rightarrow & & \frac{2}{9} \times 900 & =225-x^{2} \\
\Rightarrow & & & 200
\end{array}\right)=225-x^{2},
$$

Speed of stream is $5 \mathrm{~km} / \mathrm{hr}$.
Ans.
25. If $a \neq \boldsymbol{b} \neq \boldsymbol{c}$, prove that the points $\left(a, a^{2}\right),\left(b, b^{2}\right)$ (c, c^{2}) will not be collinear.
Solution: Area $\left.=\frac{1}{2} \right\rvert\, a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)$

$$
\begin{aligned}
& +c\left(a^{2}-b^{2}\right) \mid \\
= & \frac{1}{2}\left|a(b-c)(b+c)-a^{2}(b-c)-b c(b-c)\right| \\
= & \frac{1}{2}\left|(b-c)\left\{a(b+c)-a^{2}-b c\right\}\right| \\
= & \frac{1}{2}\left|(b-c)\left(a b+a c-a^{2}-b c\right)\right| \\
= & \frac{1}{2}|(b-c)(a-b)(c-a)|
\end{aligned}
$$

This can never be zero as $a \neq b \neq c$ Hence, these point can never be collinear.

Hence Proved.

26. The height of a cone is 10 cm . The cone is divided into two parts using a plane parallel to its base at the middle of its height. Find the ratio of the volumes of the two parts. [4]
Solution : Let $B C=r \mathrm{~cm} \& D E=R \mathrm{~cm}$
Since B is mid-point of $A D \& B C \| D E$
$\therefore C$ is mid-point of $A E$ or $A C=C E$

Also $\triangle A B C \sim \triangle \mathrm{ADE}$

$$
\begin{aligned}
\therefore \quad \frac{A B}{A D} & =\frac{B C}{D E}=\frac{A C}{A E}=\frac{1}{2} \\
B C & =\frac{1}{2} D E \\
r & =\frac{1}{2} R \text { or } R=2 r
\end{aligned}
$$

Now, $\frac{\text { Volume of cone }}{\text { Volume of frustum }}$

$$
=\frac{\frac{1}{3} \pi r^{2}\left(\frac{h}{2}\right)}{\frac{1}{3} \pi\left(\frac{h}{2}\right)\left(R^{2}+r^{2}+R r\right)}
$$

$$
=\frac{r^{2}}{\left(R^{2}+r^{2}+R r\right)}=\frac{r^{2}}{4 r^{2}+r^{2}+2 r \cdot r}
$$

$$
=\frac{r^{2}}{7 r^{2}}=\frac{1}{7} \text { or } 1: 7
$$

Ans.
27. Peter throws two different dice together and finds the product of the two numbers obtained. Rina throws a die and squares the number obtained.
Who has the better chance to get the number 25.
[4]
Solution : Total possible events in case of peter is 36 favourable outcome is $(5,5)$
$\therefore \quad n(E)=1$
So, $P($ getting 25 as product $)=\frac{1}{36}$
While total possible event in case of Rina is 6 Favourable outcome is 5
$\therefore \quad n(E)=1$
So, $\quad P($ square is 25$)=\frac{1}{6}$
As $\frac{1}{6}>\frac{1}{36}$, so Rina has better chance. Ans.
28. A chord $P Q$ of a circle of radius 10 cm subtends an angle of 60° at the centre of circle. Find the area of major and minor segments of the circle.
Solution : $r=10 \mathrm{~cm}, i=60^{\circ}$

Minor Segment

Area of minor segment

$$
\begin{aligned}
& =\frac{\theta}{360} \times \pi r^{2}-\frac{1}{2} r^{2} \sin i \\
& =\frac{60^{\circ}}{360^{\circ}} \times 3.14 \times 10 \\
& \quad \times 10-\frac{1}{2} \times 10 \times 10 \sin 60^{\circ} \\
& =\frac{1}{6} \times 3.14 \times 100-\frac{1}{2} \times 100 \times \frac{\sqrt{3}}{9} \\
& =\frac{314}{6}-\frac{100}{4} \times 1.73 \\
& =\frac{314}{6}-\frac{173}{4}=\frac{628-519}{12}=\frac{109}{12} \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
Area of major segment

$$
\begin{aligned}
& =\text { Area of circle }- \text { Area of minor segment } \\
& =\pi r^{2}-\frac{109}{12} \mathrm{~cm}^{2} \\
& =3 \cdot 14 \times 10 \times 10-\frac{109}{12}
\end{aligned}
$$

$$
=314-\frac{109}{12}=\frac{3768-109}{12}=\frac{3659}{12} \mathrm{~cm}^{2}
$$

Ans.
29. The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30° and the angle of depression of its shadow in water of lake is 60°. Find the height of the cloud from the surface of water.
Solution : In $\triangle C M P$,

$$
\begin{align*}
\tan 30^{\circ} & =\frac{C M}{P M} \\
\Rightarrow \quad & \frac{1}{\sqrt{3}} \tag{i}
\end{align*}=\frac{h}{P M} \text { or } P M=\sqrt{3} h
$$

In $\triangle P M C$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{C^{\prime} M}{P M} \\
& =\frac{h+60+60}{P M}=\sqrt{3} \\
\text { or } \quad P M & =\frac{h+120}{\sqrt{3}} \tag{ii}
\end{align*}
$$

From equation (i) and (ii)

$$
\begin{array}{rlrl}
& & \sqrt{3} h & =\frac{h+120}{\sqrt{3}} \\
\Rightarrow & & 3 h & =h+120 \\
\Rightarrow & 2 h & =120 \\
\Rightarrow & & h & =60 \mathrm{~m}
\end{array}
$$

Height of cloud from surface of water

$$
\begin{aligned}
& =h+60 \\
& =60+60 \\
& =120 \mathrm{~m} .
\end{aligned}
$$

Ans.
30. In the given figure, the side of square is 28 cm and radius of each circle is half of the length of the side of the square where O and O ' are centres of the circles. Find the area of shaded region.

$$
\begin{aligned}
& \text { Solution : } r=\frac{1}{2}(\text { side })=14 \mathrm{~cm}, \\
& \therefore \quad \text { side }=28 \mathrm{~cm}
\end{aligned}
$$

Area of shaded region

$$
=2 \times(\text { area of circle })+\text { area of square }
$$

$$
-2 \times(\text { area of quadrant })
$$

$$
\begin{aligned}
& =2 \times \pi r^{2}+(\text { side })^{2}-2\left(\frac{1}{4} \times \pi r^{2}\right) \\
& =2 \pi r^{2}-\frac{1}{2} \pi r^{2}+(\text { side })^{2} \\
& =\frac{3}{2} \pi r^{2}+(\text { side })^{2} \\
& =\frac{3}{2} \times \frac{22}{7} \times 14 \times 14+28 \times 28 \\
& =924+784 \\
& =1708 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
31. In a hospital, used water is collected in a cylindrical tank of diameter 2 m and height 5 m . After recycling, this water is used to irrigate a park of hospital whose length is 25 m and breadth is 20 m . If tank is filled completely then what will be height of standing water used for irrigating the park.
Write your views on recycling of water. [4] Solution : Given,
diameter of cylinder $(d)=2 \mathrm{~m}$
Radius of cylinder $(r)=1 \mathrm{~m}$
Heigth of cylinder $\left(h_{1}\right)=5 \mathrm{~m}$
Length of park $(l)=25 \mathrm{~m}$
Breadth of park $(b)=20 \mathrm{~m}$,
Let height of standing water in the park $=h$ Volume of water used to irrigate the park $=$ Volume stored in cylindrical tank

$$
\begin{aligned}
l \times b \times h & =\pi r^{2} h_{1} \\
25 \times 20 \times h & =\frac{22}{7} \times 1 \times 1 \times 5 \\
h & =\frac{22 \times 5}{7 \times 25 \times 20} \\
& =\frac{3.14}{100} \\
& =0.0314 \mathrm{~m} \\
& =3.14 \mathrm{~cm}
\end{aligned}
$$

Ans.

Note : Except for the following questions, all the remaining questions have been asked in previous set.

SECTION - B

10. Draw a line segment of length 7 cm and divide it internally in the ratio 2:3. Solution :

Steps of construction :
(i) $\operatorname{Draw} A B=7 \mathrm{~cm}$.
(ii) At A draw an acute angle with 5 equidistant marks $A_{1}, A_{2}, A_{3^{\prime}}, A_{4}, A_{5}$.
(iii) Join $A_{5} B$.
(iv) Draw $A_{2} C \| A_{5} B$ to get point C on $A B$.

Thus, $A C: C B=2: 3$

SECTION - C

19. A metallic solid sphere of radius 10.5 cm is melted and recasted into smaller solid cones, each of radius 3.5 cm and height 3 cm . How many cones will be made?
Solution: Volumeofmetalincones $=$ Volumeof solid sphere

Let $n=$ number of cones
$n \times$ volume of each cone $=$ volume of solid sphere

$$
\begin{aligned}
n & =\frac{\text { Volume of sphere }}{\text { Volume of cone }} \\
& =\frac{\frac{4}{3} \pi r_{\text {sp }}^{3}}{\frac{1}{3} \pi r_{\text {cone }}^{2} h} \\
& =\frac{4 \times 10.5 \times 10.5 \times 10.5}{3 \cdot 5 \times 3.5 \times 3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \times 105 \times 105 \times 105 \times 10 \times 10}{35 \times 35 \times 3 \times 10 \times 10 \times 10} \\
& =\frac{4 \times 3 \times 105}{10}=126
\end{aligned}
$$

So, 126 cones will be made.
Ans.
20. From the top of a 7 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is 45°. Find the height of the tower.
Solution : Let C be top of a 7 m building $C D$ and $A B$ be tower. From C, draw $C E \perp A B$, so $E B D C$ is a rectangle.

From $\triangle C B D, \tan 45^{\circ}=\frac{C D}{B D}$
or

$$
B D=C D=7 \mathrm{~m}
$$

From $\triangle A E C$,

$$
\begin{aligned}
\frac{A E}{E C} & =\tan 60^{\circ} \\
\Rightarrow \quad A E & =E C \tan 60^{\circ}=7 \sqrt{3} \\
& \quad[\because E C=B D] \\
\text { Height of tower is } A B & =A E+E B=A E+D C \\
& =7 \sqrt{3}+7 \\
& =7(\sqrt{3}+1) \mathrm{m} . \quad \text { Ans. }
\end{aligned}
$$

SECTION - D
28. Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm . Now construct another triangle whose sides are $\frac{3}{5}$ times the corresponding sides of the given triangle. [4]

Steps of construction :
(i) Draw $A B=4 \mathrm{~cm}$.
(ii) $\operatorname{Draw} A C \perp A B$ of 3 cm .
(iii) Join $B C$.
(iv) Draw an acute angle at A with 5 equidistant marks.
(v) Join $A_{5} B$.
(vi) Draw $A_{3} B^{\prime} \| A_{5} B$.
(vii) Draw $B^{\prime} C^{\prime} \| B C$.

Thus, $A B^{\prime} C^{\prime}$ is required triangle.
29. If the sum of first m terms of an A.P. is the same as the sum of its first n terms, show that the sum of its first $(m+n)$ terms is zero.

Solution : Let a be first term and d is common difference of given A.P. then,

$$
\begin{array}{rlrl}
& S_{m}=S_{n} \\
& & \frac{m}{2}\{2 a+(m-1) d\}=\frac{n}{2}\{2 a+(n-1) d\} \\
& & \frac{2 a m}{2}+\frac{m}{2}(m-1) d-\frac{2 a n}{2}-\frac{n}{2}(n-1) d & =0 \\
\Rightarrow & 2 a m-2 a n+\{m(m-1)-n(n-1)\} d & =0 \\
\Rightarrow & & 2 a(m-n)+\left(m^{2}-m-n^{2}+n\right) d & =0 \\
\Rightarrow & & 2 a(m-n)+\left\{m^{2}-n^{2}-(m-n)\right\} d & =0 \\
\Rightarrow & & 2 a(m-n)+\{(m-n)(m+n-1)\} d & =0 \\
\Rightarrow & & (m-n)(2 a+(m+n-1)) d & =0 \\
\Rightarrow & & 2 a+(m+n-1) d & =0
\end{array}
$$

Now, $S_{m+n}=\frac{m+n}{2}\{2 a+(m+n-1) d\}$

$$
=\frac{m+n}{2} \times 0=0
$$

Hence Proved .
30. Two points A and B are on the same side of a tower and in the same straight line with its base. The angles of depression of these points from the top of the tower are 60° and 45° respectively. If the height of the tower is 15 m , then find the distance between these points.
Solution : Let $P T$ be tower

From \triangle PTA,

$$
\tan 60^{\circ}=\frac{P T}{T A} \Rightarrow T A=\frac{15}{\sqrt{3}}
$$

From \triangle PTB,

$$
\tan 45^{\circ}=\frac{P T}{T B} \Rightarrow T B=P T=15 \mathrm{~m}
$$

Distance between two points

$$
\begin{aligned}
A B & =T B-T A \\
& =15-\frac{15}{\sqrt{3}}=\frac{15(\sqrt{3}-1)}{\sqrt{3}} \mathrm{~m}
\end{aligned}
$$

Ans.
31. The height of a cone is 30 cm . From its topside a small cone is cut by a plane parallel to its base. If volume of smaller cone is $\frac{1}{27}$ of the given cone, then at what height it is cut from its base ?
Solution : Volume of original cone $O A B$

Page $\mathbf{7 3}$ of $\mathbf{1 6 4}$

$$
\begin{aligned}
& =\frac{1}{3} \pi R^{2} H \mathrm{~cm}^{3} \\
& =\frac{1}{3} \pi \times R^{2} \times 30 \mathrm{~cm}^{3} \\
& =10 \pi R^{2} \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of small cone

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{27} \times \text { volume of cone } O A B
\end{aligned}
$$

(Given)

$$
\begin{aligned}
\frac{1}{27} \times 10 \pi R^{2} & =\frac{1}{3} \pi r^{2} h \\
h & =\frac{\frac{1}{27} \times 10 \pi R^{2}}{\frac{1}{3} \pi r^{2}}
\end{aligned}
$$

$$
=\frac{10}{9}\left(\frac{R}{r}\right)^{2}
$$

From similar $\triangle O P D$ and $\triangle O Q B$,

$$
\frac{Q B}{P D}=\frac{O Q}{O P}=\frac{30}{h}
$$

$$
\Rightarrow \quad \frac{R}{r}=\frac{30}{h}
$$

$$
h=\frac{10}{9}\left(\frac{30}{h}\right)^{2}
$$

$$
=\frac{9000}{9 h^{2}}
$$

$$
\Rightarrow \quad h^{3}=1000 \text { or } h=10 \mathrm{~cm}
$$

So height from base $=30-10=20 \mathrm{~cm}$. Ans.

- -

Mathematics 2017 (Delhi) Term II

SET III

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. In the figure, $A B$ and $C D$ are common tangents to two circles of unequal radii. Prove that $A B=C D$.

Solution : Construction : Extend $A B$ and $C D$ to meet at a point P

Now, $P A$ and $P C$ are tangents of circle with centre O So, $\quad P A=P C$
$P B$ and $P D$ are tangent on circle with centre O^{\prime}

So,
$P B=P D$

On subtracting equation (ii) from equation (i),

$$
\begin{aligned}
P A-P B & =P C-P D \\
A B & =C D \quad \text { Hence Proved. }
\end{aligned}
$$

SECTION - C

18. If the $p^{\text {th }}$ term of an A.P. is q and $q^{\text {th }}$ term is p, prove that its $n^{\text {th }}$ term is $(p+q-n)$. [3] Solution : Let a be first term and d be common difference.

Then, $\quad p^{\text {th }}$ term $=q \Rightarrow a+(p-1) d=q$

$$
\begin{equation*}
q^{\text {th }} \text { term }=p \Rightarrow a+(q-1) d=p \tag{i}
\end{equation*}
$$

On subtracting eq. (ii) from eq. (i)

$$
\begin{array}{rlrl}
& & (p-1) d-(q-1) d & =q-p \\
\Rightarrow & p d-d-q d+d & =q-p \\
\Rightarrow & & (p-q) d & =q-p \text { or } d=\frac{q-p}{p-q}=-1
\end{array}
$$

Putting value of d in eq. (i)

$$
\begin{aligned}
a+(p-1)(-1) & =q \\
a & =q+p-1 \\
\Rightarrow \quad n^{\text {th }} \text { term } & =a+(n-1) d \\
& =q+p-1+(n-1)(-1) \\
& =q+p-1+1-n=q+p-n \\
\Rightarrow \quad T_{n} & =q+p-n \quad \text { Hence Proved. }
\end{aligned}
$$

19. A solid metallic sphere of diameter 16 cm is melted and recasted into smaller solid cones, each of radius 4 cm and height 8 cm . Find the number of cones so formed. [3] Solution :

No. of cones formed

$$
\begin{aligned}
& =\frac{\text { Volume of sphere melted }}{\text { Volume of cone }} \\
& =\frac{\frac{4}{3} \pi r_{\text {sp }}^{3}}{\frac{1}{3} \pi r_{\text {cone } h}^{2}} \\
& =\frac{4 \times 8 \times 8 \times 8}{4 \times 4 \times 8} \\
& =16 \quad \text { Ans. }
\end{aligned}
$$

20. The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30°. If height of the tower is 50 m , find the height of the hill.
Solution : Let $A B$ be hill and $D C$ be tower.

From $\triangle A B C, \quad \frac{A B}{B C}=\tan 60^{\circ}$

$$
\Rightarrow \quad h=B C \tan 60^{\circ}=\sqrt{3} B C
$$

From $\triangle D B C, \frac{D C}{B C}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

$$
\begin{array}{rlrl}
\Rightarrow & B C & =\sqrt{3} D C=50 \sqrt{3} \\
\Rightarrow & h & =B C \sqrt{3} \\
& & =50 \sqrt{3} \times \sqrt{3} \\
& & =50 \times 3 \\
& & =150 \mathrm{~m} & \text { Ans. }
\end{array}
$$

SECTION - D

29. If the $p^{\text {th }}$ term of an A.P. is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p}$, prove that the sum of first $p q$ terms of the
A.P. is $\left(\frac{p q+1}{2}\right)$.
[4]

Solution : Let a be first term and d is common difference.
Then, $\quad a_{p}=\frac{1}{q} \Rightarrow a+(p-1) d=\frac{1}{q}$

$$
\begin{equation*}
a_{q}=\frac{1}{p} \Rightarrow a+(q-1) d=\frac{1}{p} . \tag{i}
\end{equation*}
$$

Subtracting eq. (ii) from eq. (i),

$$
\begin{aligned}
p d-q d & =\frac{1}{q}-\frac{1}{p}=\frac{p-q}{p q} \\
\Rightarrow \quad(p-q) d & =\frac{p-q}{p q} \text { or } d=\frac{1}{p q}
\end{aligned}
$$

Putting value of d in eq. (i),

$$
\begin{aligned}
& a+(p-1) \frac{1}{p q}=\frac{1}{q} \Rightarrow a=\frac{1}{q}-\frac{p}{p q}+\frac{1}{p q} \\
& \Rightarrow \quad a=\frac{1}{p q} \\
& \text { Now, } \quad S_{p q}=\frac{p q}{2}(2 a+(p q-1) d) \\
& =\frac{p q}{2}\left(\frac{2}{p q}+(p q-1) \frac{1}{p q}\right) \\
& =\frac{p q}{2}\left(\frac{2}{p q}+\frac{p q}{p q}-\frac{1}{p q}\right) \\
& \Rightarrow \quad S_{p q}=\frac{p q}{2}\left(\frac{1+p q}{p q}\right) \\
& =\frac{(p q+1)}{2} \quad \text { Hence Proved }
\end{aligned}
$$

30. An observer finds the angle of elevation of the top of the tower from a certain point on the ground as 30°. If the observer moves 20 m towards the base of the tower, the angle of elevation of the top increases by 15°, find the height of the tower. Solution : Let $A B$ be tower of height h.
From $\triangle A B C, \frac{A B}{B C}=\tan 45^{\circ}$

Page 75 of 164
Website: www.ssstrategies.com or www.newtongate.in Phone No: 7595947870/9163220583 Email :ssstrategies.com@gmail.com Address: 482 Ashoke Road, P.O. Garia , Kolkata - 700084

$$
\begin{aligned}
& \text { From } \triangle A C \\
& \text { From, } \frac{A B}{B D}=\tan 30^{\circ} \\
& \Rightarrow \quad h \\
& \Rightarrow \quad \begin{aligned}
& =\frac{B D}{\sqrt{3}} \text { or } B D=\sqrt{3} h \\
C D & =B D-B C \\
& =\sqrt{3} h-h=(\sqrt{3}-1) h \\
\Rightarrow \quad 20 & =(\sqrt{3}-1) h
\end{aligned}
\end{aligned}
$$

Mathematics 2016 (Term I)

SECTION - A

1. In $\triangle A B C, D$ and E are points $A C$ and $B C$ respectively such that $D E \| A B$. If $A D=2 x$, $B E=2 x-1, C D=x+1$ and $C E=x-1$, then find the value of x.
Solution :

$$
\begin{array}{rlrl}
\text { So, } & & \frac{A D}{C D} & =\frac{B E}{E C} \\
\Rightarrow & \frac{2 x}{x+1} & =\frac{2 x-1}{x-1} \\
\Rightarrow & 2 x(x-1) & =(x+1)(2 x-1) \\
\Rightarrow & 2 x^{2}-2 x & =2 x^{2}+2 x-x-1 \tag{i}\\
\Rightarrow & -2 x & =x-1 \\
\Rightarrow & 1 & =3 x \\
& \text { or } & x & =\frac{1}{3}
\end{array}
$$

[By B.P.T.]
3. If $x=3 \sin \theta$ and $y=4 \cos \theta$, find the value

$$
\text { of } \sqrt{16 x^{2}+9 y^{2}} .
$$

$$
\begin{array}{rlrl}
\text { Solution : } & x & =3 \sin \theta \\
\Rightarrow & x^{2} & =9 \sin ^{2} \theta \\
\Rightarrow & & \sin ^{2} \theta & =\frac{x^{2}}{9}
\end{array}
$$

And

$$
y=4 \cos \theta
$$

$$
\Rightarrow \quad y^{2}=16 \cos ^{2} \theta
$$

$$
\begin{equation*}
\Rightarrow \quad \cos ^{2} \theta=\frac{y^{2}}{16} \tag{ii}
\end{equation*}
$$

On adding equation (i) and equation (ii),

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =\frac{x^{2}}{9}+\frac{y^{2}}{16} \\
\Rightarrow \quad 1 & =\frac{x^{2}}{9}+\frac{y^{2}}{16}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & 1
\end{aligned} \begin{array}{ll}
\Rightarrow & \frac{16 x^{2}+9 y^{2}}{144} \\
\Rightarrow & 16 x^{2}+9 y^{2}
\end{array}=1449 .
$$

Ans.
4. If empirical relationship between mean, median and mode is expressed as mean $=$ k (3 median - mode), then find the value of k.

Solution : Given,

$$
\text { mean }=k(3 \text { median }- \text { mode })
$$

As we know, mode $=3$ median -2 mean
\therefore mean $=k[3$ median $-(3$ median -2 mean $)]$
\Rightarrow mean $=k[3$ median -3 median +2 mean $]$
$\Rightarrow \quad$ mean $=2 k$ mean
$\Rightarrow 2 k$ mean - mean $=0$
$\Rightarrow \quad$ mean $[2 k-1]=0$
$\Rightarrow \quad 2 k-1=0$
$\Rightarrow \quad 2 k=0+1$
$\therefore \quad k=1 / 2 \quad$ Ans.

SECTION - B

5. Express 23150 as product of its prime factors. Is it unique?
Solution : Prime factors of $23150=2 \times 5 \times 5$ $\times 463$
As per the fundamental theorem of Arithmetic every number has a unique factorisation.

2	23150
5	11575
5	2315
463	463
	1

\qquad

In $\triangle A B C$ by pythagoras theorem,

$$
\begin{array}{ll}
& A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow & A C^{2}=A B^{2}+A B^{2} \quad[\text { From (i) }] \\
\Rightarrow \quad & A C^{2}=2 A B^{2} \quad \text { Hence Proved. }
\end{array}
$$

9. Prove the following identity :

$$
\begin{equation*}
\left[\frac{1-\tan A}{1-\cot A}\right]^{2}=\tan ^{2} A: \angle A \text { is acute } \tag{2}
\end{equation*}
$$

Solution : Given, $\left[\frac{1-\tan A}{1-\cot A}\right]^{2}=\tan ^{2} A: \angle A$ is acute

$$
\begin{aligned}
\text { L.H.S. } & =\left[\frac{1-\tan A}{1-\cot A}\right]^{2} \\
& =\left[\frac{1-\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}}\right]^{2} \\
& =\left[\frac{\frac{\cos A-\sin A}{\cos A}}{\frac{\sin A-\cos A}{\sin A}}\right]^{2} \\
& =\left[\frac{(\cos A-\sin A) \sin A}{-(\cos A-\sin A) \cos A}\right]^{2} \\
& =\left[-\frac{\sin A}{\cos A}\right]^{2} \\
& =[-\tan A]^{2} \\
& =\tan ^{2} A=\text { R.H.S. }
\end{aligned}
$$

Hence Proved.
10. Given below is a cumulative frequency distribution table. Corresponding to it, make an ordinary frequency distribution table. [2]

x	$c f$
More than or equal to 0	45
More than or equal to 10	38
More than or equal to 20	29
More than or equal to 30	17
More than or equal to 40	11
More than or equal to 50	6

Solution :

C.I.	Frequency
$0-10$	$07(45-38)$
$10-20$	$09(38-29)$
$20-30$	$12(29-17)$
$30-40$	$06(17-11)$
$40-50$	$05(11-6)$
$50-60$	$06(6-0)$

SECTION - C

11. Find LCM and HCF of 3930 and 1800 by prime factorisation method.
Solution : By prime factorization method, Factors of 3930 and 1800 are,

2	3930
3	1965
5	655
131	131
	1

2	1800
2	900
2	450
3	225
3	75
5	25
5	5
	1

So, $\quad 3930=2 \times 3 \times 5 \times 131$

$$
1800=2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5
$$

then, $\mathrm{HCF}=2 \times 3 \times 5=30$
and, LCM $=2 \times 3 \times 5 \times 131 \times 2 \times 2 \times 3 \times 5$

$$
=235800
$$

Ans.
12. Using division algorithm, find the quotient and remainder on dividing $f(x)$ by $g(x)$ where $f(x)=6 x^{3}+13 x^{2}+x-2$ and $g(x)=2 x+1$.

Solution : Given, $f(x)=6 x^{3}+13 x^{2}+x-2$
and $g(x)=2 x+1$,

$$
\begin{aligned}
& f(x) \div g(x) \Rightarrow \\
& 2 x+1) \frac{6 x^{3}+13 x^{2}+x-2}{}\left(3 x^{2}+5 x-2\right. \\
& 6 x^{3}+3 x^{2} \\
& -\quad- \\
& \frac{10 x^{2}+x-2}{} \\
& \frac{-\quad-}{10 x^{2}+5 x} \\
& \frac{-4 x-2}{} \\
& \frac{-4 x-2}{0}
\end{aligned}
$$

Quotient $=3 x^{2}+5 x-2$ and Remainder $=0$

Ans.

13. If three zeroes of a polynomial $x^{4}-x^{3}-$ $3 x^{2}+3 x$ are $0, \sqrt{3}$ and $-\sqrt{3}$, then find the fourth zero.

Solution : Let, $\quad P(x)=x^{4}-x^{3}-3 x^{2}+3 x$
Given, $0, \sqrt{3},-\sqrt{3}$ are three zeroes, so

$$
\begin{aligned}
x & =0 \\
x & =\sqrt{3} \text { and } x=-\sqrt{3} \\
\Rightarrow \quad(x-\sqrt{3}) & =0 \text { and } x+\sqrt{3}=0
\end{aligned}
$$

Here, $x(x+\sqrt{3})(x-\sqrt{3})$ will also be the factor of $P(x)$.

Or, $x\left(x^{2}-3\right)$ will be the factor of $P(x)$.
then $\left.\quad x^{3}-3 x\right) x^{4}-x^{3}-3 x^{2}+3 x(x-1$

$$
\begin{array}{cl}
x^{4} & -3 x^{2} \\
- & + \\
\hline & -x^{3}+3 x \\
-x^{3}+3 x \\
& +\quad= \\
&
\end{array}
$$

Quotient $=(x-1)$
So fourth zero $\Rightarrow x-1=0$

$$
\Rightarrow \quad x=1
$$

Hence, four zeroes will be $1,0, \sqrt{3},-\sqrt{3}$.
Ans.
14. Solve the following pair of equations by reducing them to a pair of linear equations :

$$
\begin{aligned}
& \frac{1}{x}-\frac{4}{y}=2 \\
& \frac{1}{x}+\frac{3}{y}=9
\end{aligned}
$$

Solution: Given, $\frac{1}{x}-\frac{4}{y}=2$

$$
\begin{array}{rlrl}
& \text { and } & \frac{1}{x}+\frac{3}{y} & =9 \\
\text { Let } & \frac{1}{x} & =u, \frac{1}{y}=v
\end{array}
$$

So,

$$
\begin{array}{r}
u-4 v=2 \\
u+3 v=9 \tag{ii}
\end{array}
$$

On solving eq. (i) and eq. (ii),

$$
u-4 v=2
$$

$$
u+3 v=9
$$

$$
\frac{-\quad-}{-7 v=-7}
$$

$\Rightarrow \quad v=1$
Putting the value of v in eq. (i),

$$
\begin{array}{lr}
\Rightarrow & u-4 v=2 \\
\Rightarrow & u-4 \times 1=2 \\
\Rightarrow & u-4=2 \\
\Rightarrow & u=2+4 \\
\Rightarrow & u=6 \\
\text { So, } & v=1 \Rightarrow \frac{1}{y}=1, y=1 \\
\text { and } & u=6 \Rightarrow \frac{1}{x}=6, x=\frac{1}{6}
\end{array}
$$

Hence, $x=\frac{1}{6}$ and $y=1$
Ans.
15. $\triangle A B C$ is a right angled triangle in which $\angle B=90^{\circ} . D$ and E are any point on $A B$ and $B C$ respectively. Prove that

$$
\begin{equation*}
A E^{2}+C D^{2}=A C^{2}+D E^{2} . \tag{3}
\end{equation*}
$$

Solution : In $\triangle A B C, \angle B=60^{\circ}$ and D, E are point of $A B, B C$ respectively.

To prove :

$$
A C^{2}+D E^{2}=A E^{2}+C D^{2}
$$

In $\triangle A B C$ by using Pythagoras theorem,

$$
\begin{equation*}
A C^{2}=A B^{2}+B C^{2} \tag{i}
\end{equation*}
$$

In $\triangle A B E$ by using Pythagoras theorem

$$
\begin{equation*}
A E^{2}=A B^{2}+B E^{2} \tag{ii}
\end{equation*}
$$

In $\triangle B C D$ by using Pythagoras theorem

$$
\begin{equation*}
C D^{2}=B D^{2}+B C^{2} \tag{iii}
\end{equation*}
$$

In $\triangle D B E$ by using Pythagoras theorem

$$
\begin{equation*}
D E^{2}=D B^{2}+B E^{2} \tag{iv}
\end{equation*}
$$

Adding eq. (i) and eq. (iv),

$$
\begin{aligned}
A C^{2}+D E^{2} & =A B^{2}+B C^{2}+B D^{2}+B E^{2} \\
& =A B^{2}+B E^{2}+B C^{2}+B D^{2} \\
A C^{2}+D E^{2} & =A E^{2}+C D^{2}
\end{aligned}
$$

[From eq. (ii) and eq. (iii)]
Hence Proved.
16. In the given figure, $R Q$ and $T P$ are perpendicular to $P Q$, also $T S \perp P R$ prove that $S T . R Q=P S . P Q$.
[3]

Solution :

In $\triangle R P Q$,

$$
\begin{array}{rlrl}
& \angle 1+\angle 2+\angle 4 & =180^{\circ} \\
\Rightarrow & \angle 1+\angle 2+90^{\circ} & =180^{\circ} \\
\Rightarrow & \angle 1+\angle 2 & =180^{\circ}-90^{\circ} \\
\Rightarrow & \angle 1 & =90^{\circ}-\angle 2 \\
\because & T P & \perp P Q \\
\therefore & \angle T P Q & =90^{\circ} \\
\Rightarrow & \angle 2+\angle 3 & =90^{\circ} \\
\Rightarrow & & \angle 3 & =90^{\circ}-\angle 2 \tag{ii}
\end{array}
$$

From eq. (i) and eq. (ii),

$$
\angle 1=\angle 3
$$

Now in $\triangle R Q P$ and $\triangle P S T$,

$$
\begin{array}{lr}
\angle 1=\angle 3 & \text { [Proved above] } \\
\angle 4=\angle 5 & \text { [Each } \left.90^{\circ}\right]
\end{array}
$$

So by AA similarity

$$
\begin{aligned}
\Delta R Q P & \sim \Delta P S T \\
\frac{S T}{Q P} & =\frac{P S}{R Q} . \quad \text { [By C.P.C.T.] } \\
\Rightarrow \quad S T . R Q & =P S . P Q \text { Hence Proved. }
\end{aligned}
$$

17. If $\sec A=\frac{2}{\sqrt{3}}$, find the value of

$$
\begin{equation*}
\frac{\tan A}{\cos A}+\frac{1+\sin A}{\tan A} \tag{3}
\end{equation*}
$$

Solution : Given, $\sec A=\frac{2}{\sqrt{3}}$

In $\triangle A B C$,

$$
\begin{array}{ll}
& A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow & 2^{2}=(\sqrt{3})^{2}+B C^{2} \\
\Rightarrow & 4=3+B C^{2} \\
\Rightarrow & B C^{2}=4-3 \\
\Rightarrow & B C^{2}=1 \\
\therefore & B C=1
\end{array}
$$

So, $\tan A=\frac{1}{\sqrt{3}} ; \cos A=\frac{\sqrt{3}}{2} ; \sin A=\frac{1}{2}$

$$
\frac{\tan A}{\cos A}+\frac{1+\sin A}{\tan A}=\frac{\frac{1}{\sqrt{3}}}{\frac{\sqrt{3}}{2}}+\frac{1+\frac{1}{2}}{\frac{1}{\sqrt{3}}}
$$

$$
=\frac{2}{3}+\frac{\frac{3}{2}}{\frac{1}{\sqrt{3}}}
$$

$$
=\frac{2}{3}+\frac{3 \sqrt{3}}{2}
$$

$$
=\frac{4+9 \sqrt{3}}{6}
$$

Ans.
18. Prove that:

$$
\begin{equation*}
\sec ^{2} \theta-\cot ^{2}\left(90^{\circ}-\theta\right)=\cos ^{2}\left(90^{\circ}-\theta\right)+\cos ^{2} \theta \tag{3}
\end{equation*}
$$

Solution : To prove :

$$
\begin{aligned}
\sec ^{2} \theta-\cot ^{2}\left(90^{\circ}-\theta\right) & =\cos ^{2}\left(90^{\circ}-\theta\right)+\cos ^{2} \theta . \\
\text { L.H.S. } & =\sec ^{2} \theta-\cot ^{2}\left(90^{\circ}-\theta\right) \\
& =\sec ^{2} \theta-\left[\cot \left(90^{\circ}-\theta\right)\right]^{2} \\
& =\sec ^{2} \theta-(\tan \theta)^{2} \\
& =\sec ^{2} \theta-\tan ^{2} \theta \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\text { R.H.S. } & =\cos ^{2}\left(90^{\circ}-\theta\right)+\cos ^{2} \theta & & =\sin ^{2} \theta+\cos ^{2} \theta \\
& =\left[\cos \left(90^{\circ}-\theta\right)\right]^{2}+\cos ^{2} \theta & & =1 \\
& =(\sin \theta)^{2}+\cos ^{2} \theta & \text { Hence, } \quad \text { L.H.S. } & =\text { R.H.S. }
\end{aligned}
$$

19. For the month of February, a class teacher of Class IX has the following absentee record for 45 students. Find the mean number of days, a student was absent.

Number of Days of Absent	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	$20-24$
Number of Students	18	3	6	2	0	1

Solution :

C.I.	f_{i}	x_{i} (mid-value)	$d=x_{i}-\mathbf{A}$	$f_{i} \times d_{i}$
$0-4$	18	2	-12	-216
$4-8$	3	6	-8	-24
$8-12$	6	10	-4	-24
$12-16$	2	$A=14$	0	00
$16-20$	0	18	4	00
$20-24$	1	22	8	08
	$\Sigma f_{i}=30$			$\Sigma f_{i} d_{i}=-256$

$$
\begin{aligned}
\text { Mean } & =A+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=14+\left(\frac{-256}{30}\right) \\
& =14-8.53 \\
& =5.47
\end{aligned}
$$

20. Find the missing frequency (x) of the following distribution, if mode is 34.5 :

Marks Obtained	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of Students	4	8	10	x	8

Solution :

C.I.	Frequency
$0-10$	4
$10-20$	$8=f_{0}$
$l=20-30$	$10=f_{1}$
$30-40$	$x=f_{2}$
$40-50$	8

$$
\begin{array}{rlrl}
& \Rightarrow \text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) h \\
34.5 & =20+\left(\frac{10-8}{20-8-x}\right) 10 \\
\Rightarrow & & 34.5 & =20+\left(\frac{2}{12-x}\right) 10 \\
\Rightarrow & \frac{14.5}{1} & =\frac{20}{12-x} \\
\Rightarrow & & 20 & =14.5(12-x)
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{20}{14.5}=12-x \\
\Rightarrow & \frac{40}{29}=12-x \\
\Rightarrow & x=12-\frac{40}{29} \\
\Rightarrow & x=\frac{348-40}{29} \\
\Rightarrow & x=\frac{308}{29} \\
\Rightarrow & x=10.62
\end{array}
$$

SECTION - D

21. Prove that $\sqrt{5}$ is an irrational number. Hence show that $3+2 \sqrt{5}$ is also an irrational number.
Solution : Let $\sqrt{5}$ be a rational number.
So, $\quad \sqrt{5}=\frac{p}{q}$

On squaring both sides,

$$
\begin{aligned}
5 & =\frac{p^{2}}{q^{2}} \\
\Rightarrow \quad q^{2} & =\frac{p^{2}}{5}
\end{aligned}
$$

$\Rightarrow 5$ is a factor of p^{2}
$\Rightarrow 5$ is a factor of p.
$\begin{aligned} & \text { Now, again let } & p & =5 c \\ & \text { So, } & \sqrt{5} & =\frac{5 c}{q}\end{aligned}$
On squaring both sides

$$
\begin{array}{ll}
& 5=\frac{25 c^{2}}{q^{2}} \\
\Rightarrow & q^{2}=5 c^{2} \\
\Rightarrow & c^{2}=\frac{q^{2}}{5}
\end{array}
$$

$\Rightarrow 5$ is factor of q^{2}.
$\Rightarrow 5$ is a factor of q.
Here, 5 is a common factor of p, q which contradicts the fact that p, q are co-prime.
Hence, our assumption is wrong, $\sqrt{5}$ is an irrational number.

Now, we have to show that $3+2 \sqrt{5}$ is an irrational number.
So, let us assume $3+2 \sqrt{5}$ is a rational number.

$$
\begin{array}{ll}
\Rightarrow & 3+2 \sqrt{5}= \\
\Rightarrow & \frac{p}{q} \\
\Rightarrow & 2 \sqrt{5}=\frac{p}{q}-3 \\
\Rightarrow & 2 \sqrt{5}=\frac{p-3 q}{q} \\
\Rightarrow & \sqrt{5}=\frac{p-3 q}{2 q} \\
\frac{p-3 q}{2 q} \text { is in the rational form of } \frac{p}{q} \text { so } \sqrt{5}
\end{array}
$$ is a rational number but we have already proved that $\sqrt{5}$ is an irrational number. So, contradiction arises because we supposed wrong that $3+2 \sqrt{5}$ is a rational number. So we can say that $3+2 \sqrt{5}$ is an irrational number.

Hence Proved.
22. Obtain all other zeroes or the polynomial $x^{4}+6 x^{3}+x^{2}-24 x-20$, if two of its zeroes are +2 and -5 .

Solution : Given, 2 and -5 are the zeroes of polynomial

$$
p(x)=x^{4}+6 x^{3}+x^{2}-24 x-20
$$

So, $(x-2)$ and $(x+5)$ are factors of $p(x)$
$\Rightarrow(x-2)(x+5)$ is also a factor of $p(x)$
So, $(x-2)(x+5)=x^{2}+3 x-10$
$\left.x^{2}+3 x-10\right) x^{4}+6 x^{3}+x^{2}-24 x-20\left(x^{2}+3 x+2\right.$

$$
x^{4}+3 x^{3}-10 x^{2}
$$

$$
\begin{gathered}
-\frac{+}{3 x^{3}+11 x^{2}-24 x-20} \\
3 x^{3}+9 x^{2}-30 x
\end{gathered}
$$

$$
\frac{-\quad+}{2 x^{2}+6 x-20}
$$

$$
2 x^{2}+6 x-20
$$

$$
\frac{-\quad+}{0}
$$

So, by remainder theorem, Dividend $=$ Divisor \times Quotient

> + Remainder

$$
\begin{aligned}
x^{4}+ & 6 x^{3}+x^{2}-24 x-20 \\
& =\left(x^{2}+3 x-10\right) \times\left(x^{2}+3 x+2\right)+0 \\
& =\left(x^{2}+3 x-10\right)\left(x^{2}+2 x+x+2\right) \\
& =\left(x^{2}+3 x-10\right)[x(x+2)+1(x+2)] \\
& =\left(x^{2}+3 x-10\right)(x+2)(x+1)
\end{aligned}
$$

So other zeros are -2 and -1 .

Ans.

23. Draw graph of following pair of linear equations:

$$
\begin{gathered}
y=2(x-1) \\
4 x+y=4
\end{gathered}
$$

Also write the coordinate of the points where these lines meets x-axis and y-axis.

Solution: $\quad y=2(x-1)$
So,

x	1	2	3	4
y	0	2	4	6

And for, $\quad 4 x+y=4$
or $\quad y=4-4 x$

x	1	2	$1 / 2$
y	0	-4	2

Co-ordinates of point where lines meets
Line $y=2(x-1): x$-axis $=(1,0)$
and $\quad y$-axis $=(0,-2)$
Line $4 x+y=4: x$-axis $=(1,0)$

$$
y \text {-axis }=(0,4)
$$

Ans.
24. A boat goes 30 km upstream and 44 km downstream in 10 hours. The same boat goes 40 km upstream and 55 km downstream in 13 hours. On this information some student guessed the speed of the boat in still water as $8.5 \mathrm{~km} / \mathrm{h}$ and speed of the stream as $3.8 \mathrm{~km} / \mathrm{h}$. Do you agree with their guess? Explain what do we learn from the incident?
Solution : Let the speed of boat $=x \mathrm{~km} / \mathrm{hr}$. Let the speed of stream $=y \mathrm{~km} / \mathrm{hr}$. Speed of boat in upstream $=(x-y) \mathrm{km} / \mathrm{hr}$. Speed of boat in downstream $=(x+y) \mathrm{km} / \mathrm{hr}$. Time taken to cover 30 km upstream

$$
=\frac{30}{x-y} \mathrm{hrs}
$$

Time taken to cover 40 km downstream

$$
=\frac{44}{x+y} \mathrm{hrs} .
$$

According to the question,
Total time taken $=10 \mathrm{hrs}$.

$$
\begin{equation*}
\Rightarrow \quad \frac{30}{x-y}+\frac{44}{x+y}=10 \tag{i}
\end{equation*}
$$

Now, Time taken to cover 55 km downstream

$$
=\frac{55}{x+y} \mathrm{hrs}
$$

Time taken to cover 40 km upstream

$$
=\frac{40}{x-y} \mathrm{hrs} .
$$

Total time taken $=13 \mathrm{hrs}$.

$$
\begin{equation*}
\frac{40}{x-y}+\frac{55}{x+y}=13 \tag{ii}
\end{equation*}
$$

Solving equation (i) and equation (ii),
Let

$$
\frac{1}{x-y}=u, \frac{1}{x+y}=v
$$

Then,

$$
30 u+44 v=10
$$

and

$$
40 u+55 v=13
$$

or

$$
\begin{equation*}
15 u+22 v=5 \tag{iiii}
\end{equation*}
$$

and

$$
\begin{equation*}
8 u+11 v=\frac{13}{5} \tag{iv}
\end{equation*}
$$

Multiplying equation (iii) by 8 and equation (iv) by 15 , we get

$$
120 u+176 v=40
$$

$$
120 u+165 v=39
$$

\qquad [on subtracting]

$$
\begin{aligned}
11 v & =1 \\
v & =\frac{1}{11}
\end{aligned}
$$

Putting the value of v in equation (iii),

$$
\begin{array}{rlrl}
& 15 u+22 v & =5 \\
\Rightarrow & 15 u+22 \times \frac{1}{11} & =5 \\
\Rightarrow & 15 u+2 & =5 \\
\Rightarrow & 15 u & =3 \\
\Rightarrow & u & =\frac{3}{15} \\
& & u & =\frac{1}{5} \\
\text { or } & v & =\frac{1}{11} \\
\text { Now, } & \frac{1}{x+y} & =\frac{1}{11} \\
\Rightarrow & x+y & =11 \\
\Rightarrow & & u & =\frac{1}{5} \\
\text { And } & & 1 \\
\Rightarrow & & x-y & =\frac{1}{5} \\
\Rightarrow & x-y & =5 \tag{vi}
\end{array}
$$

On solving equation (v) and (vi),
or

$$
\begin{aligned}
& x+y=11 \\
& x-y=5 \\
&+\quad+\quad+ \\
& \hline 2 x=16 \\
& x=8
\end{aligned}
$$

Put the value of x in equation (v),

$$
\begin{array}{rlrl}
& & 8+y & =11 \\
\Rightarrow & y & =11-8 \\
\therefore & y & =3
\end{array}
$$

The speed of boat in still water $=8 \mathrm{~km} / \mathrm{hr}$.
The speed of stream $=3 \mathrm{~km} / \mathrm{hr}$.
Ans.
25. In an equilateral $\triangle A B C, E$ is any point on $B C$ such that $B E=\frac{1}{4} B C$. Prove that

$$
\begin{equation*}
16 A E^{2}=13 A B^{2} \tag{4}
\end{equation*}
$$

Solution: Given $\quad B E=\frac{1}{4} B C$
Draw
$A D \perp B C$

In $\triangle A E D$ by pythagoras theorem,

$$
\begin{equation*}
A E^{2}=A D^{2}+D E^{2} \tag{i}
\end{equation*}
$$

In $\triangle A D B$,

$$
\begin{aligned}
& A B^{2}=A D^{2}+B D^{2} \\
& \Rightarrow \quad A B^{2}=A E^{2}-D E^{2}+B D^{2} \quad[\text { From (i) }] \\
&=A E^{2}-D E^{2}+(B E+D E)^{2} \\
& \Rightarrow \quad A B^{2}=A E^{2}-D E^{2}+B E^{2}+D E^{2}+2 B E \cdot D E \\
& \Rightarrow \quad A B^{2}=A E^{2}+B E^{2}+2 B E \cdot D E \\
& \Rightarrow \quad A B^{2}=A E^{2}+\left(\frac{B C}{4}\right)^{2}+2 \frac{B C}{4} \cdot(B D-B E) \\
& \Rightarrow \quad A B^{2}=A E^{2}+\frac{B C^{2}}{16}+\frac{B C}{2}\left(\frac{B C}{2}-\frac{B C}{4}\right) \\
& \Rightarrow \quad A B^{2}=A E^{2}+\frac{A B^{2}}{16}+\frac{A B}{2}\left[\frac{2 A B-A B}{4}\right] \\
& \Rightarrow \quad A B^{2}=A E^{2}+\frac{A B^{2}}{16}+\frac{A B}{2} \times \frac{A B}{4}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & A B^{2}-\frac{A B^{2}}{16}-\frac{A B^{2}}{8}=A E^{2} \\
\Rightarrow & \frac{16 A B^{2}-A B^{2}-2 A B^{2}}{16}=A E^{2} \\
\Rightarrow & 16 A B^{2}-3 A B^{2}=16 A E^{2} \\
\Rightarrow & 13 A B^{2}=16 A E^{2}
\end{array}
$$

Hence Proved.

26. In the figure, if $\angle A B D=\angle X Y D=\angle C D B=90^{\circ}$. $A B=a, X Y=c$ and $C D=b$, then prove that $c(a+b)=a b$.
[4]

Solution : To prove : $c(a+b)=a b$

In $\triangle A B D \& \Delta D X Y$,

$$
\begin{align*}
\angle B & =\angle X Y D & {\left[\text { Each } 90^{\circ}\right] } \\
\angle X D Y & =\angle A D B & {[\text { Common] }}
\end{align*}
$$

So by AA similarity,

$$
\begin{align*}
& & \Delta D A B & \sim \Delta D X Y \\
& \therefore & \frac{D Y}{D B} & =\frac{X Y}{A B} \\
& \Rightarrow & D Y & =\frac{c}{a}(B D) \tag{i}
\end{align*}
$$

In $\triangle B C D \& \Delta B Y X$,

$$
\begin{align*}
& \angle X Y B=\angle D \tag{Each90}\\
& \angle C B D=\angle X B Y
\end{align*}
$$

So by AA similarity,

$$
\begin{aligned}
& & \Delta B Y X & \sim \triangle B D C \\
& \therefore & \frac{B Y}{B D} & =\frac{X Y}{C D}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad B Y=\frac{c}{b}(B D) \tag{ii}
\end{equation*}
$$

Adding equation (i) and equation (ii),

$$
\begin{array}{rlrl}
& & D Y+B Y=\frac{c}{a}(B D)+\frac{c}{b}(B D) \\
\Rightarrow & B D=B D\left[\frac{c}{a}+\frac{c}{b}\right] \\
\Rightarrow & \frac{B D}{B D}=\left[\frac{c b+c a}{a b}\right] \\
\Rightarrow & 1 & =\frac{c(a+b)}{a b} \\
\Rightarrow & c(a+b)=a b \text { Hence Proved. }
\end{array}
$$

27. In the $\triangle A B C$ (see figure), $\angle A=$ right angle, $A B=\sqrt{x}$ and $B C=\sqrt{x+5}$. Evaluate $\sin C \cdot \cos C \cdot \tan C+\cos ^{2} C \cdot \sin A$

Solution : In $\triangle A B C$, by pythagoras theorem,

$$
\Rightarrow \quad \begin{aligned}
(\sqrt{x+5})^{2} & =(\sqrt{x})^{2}+A C^{2} \\
x+5 & =x+A C^{2} \\
\sqrt{x+5} & \sqrt{x}
\end{aligned}
$$

$$
\begin{array}{lr}
\Rightarrow & 5=A C^{2} \\
\text { or } & A C=\sqrt{5}
\end{array}
$$

$$
\therefore \quad \sin C=\frac{\sqrt{x}}{\sqrt{x+5}} ; \cos C=\frac{\sqrt{5}}{\sqrt{x+5}}
$$

$$
\tan C=\frac{\sqrt{x}}{\sqrt{5}}
$$

$$
\text { and } \quad \begin{aligned}
\sin A & =\sin 90^{\circ} \\
& =1
\end{aligned}
$$

Then, $\sin C \cos C \tan C+\cos ^{2} C \sin A$

$$
\begin{aligned}
& =\frac{\sqrt{x}}{\sqrt{x+5}} \frac{\sqrt{5}}{\sqrt{x+5}} \frac{\sqrt{x}}{\sqrt{5}}+\left(\frac{\sqrt{5}}{\sqrt{x+5}}\right)^{2} \cdot 1 \\
& =\frac{x}{x+5}+\frac{5}{x+5} \\
& =\frac{x+5}{x+5} \\
& =1 \quad \text { Ans. }
\end{aligned}
$$

28. If $\frac{\cos B}{\sin A}=n$ and $\frac{\cos B}{\cos A}=m$, then show that

$$
\begin{equation*}
\left(m^{2}+n^{2}\right) \cos ^{2} A=n^{2} \tag{4}
\end{equation*}
$$

Solution : Given, $n=\frac{\cos B}{\sin A} ; m=\frac{\cos B}{\cos A}$

$$
\text { So, } \quad n^{2}=\frac{\cos ^{2} B}{\sin ^{2} A} ; m^{2}=\frac{\cos ^{2} B}{\cos ^{2} A}
$$

L.H.S. $=\left(m^{2}+n^{2}\right) \cos ^{2} A$

$$
\begin{aligned}
& =\left(\frac{\cos ^{2} B}{\cos ^{2} A}+\frac{\cos ^{2} B}{\sin ^{2} A}\right) \cos ^{2} A \\
& =\frac{\left(\sin ^{2} A \cos ^{2} B+\cos ^{2} A \cos ^{2} B\right)}{\cos ^{2} A \sin ^{2} A} \times \cos ^{2} A \\
& =\frac{\cos ^{2} B\left(\sin ^{2} A+\cos ^{2} A\right)}{\sin ^{2} A} \\
& =\frac{\cos ^{2} B}{\sin ^{2} A}
\end{aligned}
$$

$$
=n^{2}=\text { R.H.S. } \quad \text { Hence Proved. }
$$

29. Prove that :

$$
\frac{\sec A-1}{\sec A+1}=\left(\frac{\sin A}{1+\cos A}\right)^{2}=(\cot A-\operatorname{cosec} A)^{2}
$$

Solution : L.H.S. $=\frac{\sec A-1}{\sec A+1}$

$$
\begin{aligned}
& =\frac{\frac{1}{\cos A}-1}{\frac{1}{\cos A}+1}=\frac{\frac{1-\cos A}{\cos A}}{\frac{1+\cos A}{\cos A}} \\
& =\frac{1-\cos A}{1+\cos A} \\
& =\frac{(1-\cos A)(1+\cos A)}{(1+\cos A)(1+\cos A)}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{1-\cos ^{2} A}{(1+\cos A)^{2}} & =\left[\frac{\sin A(1-\cos A)}{1-\cos ^{2} A}\right]^{2} \\
=\frac{\sin ^{2} A}{(1+\cos A)^{2}} & =\left[\frac{\sin A(1-\cos A)}{\sin ^{2} A}\right]^{2} \\
=\left(\frac{\sin A}{1+\cos A}\right)^{2} & =\left[\frac{1-\cos A}{\sin A}\right]^{2} \\
\text { Hence Proved. } & =(\operatorname{cosec} A-\cot A)^{2} \\
{\left[\left(\frac{\sin A}{1+\cos A}\right) \times \frac{(1-\cos A)}{(1-\cos A)}\right]} & \\
=(-1)^{2}[\cot A-\operatorname{cosec} A]^{2} \\
& \\
=[\cot A-\operatorname{cosec} A]^{2}=\text { R.H.S. } \\
\text { Hence Proved. }
\end{array}
$$

And, $\left(\frac{\sin A}{1+\cos A}\right)^{2}=\left[\left(\frac{\sin A}{1+\cos A}\right) \times \frac{(1-\cos A)}{(1-\cos A)}\right]$
30. Following table shows marks (out of 100) of students in a class test :

Marks	No. of Students
More than or equal to 0	80
More than or equal to 10	77
More than or equal to 20	72
More than or equal to 30	65
More than or equal to 40	55
More than or equal to 50	43
More than or equal to 60	28
More than or equal to 70	16
More than or equal to 80	10
More than or equal to 90	8
More than or equal to 100	0

Draw a 'more than type' ogive. From the curve, find the median. Also, check the value of the median by actual calculation.
Solution :

More than type	C.I.	No. of Students	Frequency	c.f.
More than or equal to 0	$0-10$	80	3	3
More than or equal to 10	$10-20$	77	5	8
More than or equal to 20	$20-30$	72	7	15
More than or equal to 30	$30-40$	65	10	25
More than or equal to 40	$40-50$	55	12	37
More than or equal to 50	$50-60$	43	15	52
More than or equal to 60	$60-70$	28	12	64
More than or equal to 70	$70-80$	16	06	70
More than or equal to 80	$80-90$	10	02	72
More than or equal to 90	$90-100$	8	08	80
More than or equal to 100	$100-110$	0	00	

Median will be 52
Median by actual calculation :

$$
\begin{aligned}
N & =80 \text { (even) } \\
& =\frac{80}{2} \\
& =40
\end{aligned}
$$

So modal class will be $50-60$
So, $l=50, h=10, f=15, c$. .f. $=37$,

$$
\begin{aligned}
\text { Median } & =l+\left[h \times \frac{\left(\frac{N}{2}-c . f .\right)}{f}\right] \\
& =50+\left[10 \frac{(40-37)}{15}\right] \\
& =50+10 \times \frac{3}{15} \\
& =50+2 \\
& =52 \quad \text { Hence Verified. }
\end{aligned}
$$

31. From the following data find the median age of 100 residents of a colony who took part in Swachch Bharat Abhiyan :

Age (in yrs.) More than or equal to	No. of Residents
0	50
10	46
20	40
30	20
40	10
50	3

[4]
Solution : First convert the given table into C.I. Table.

C.I.	Frequency	c.f.
$0-10$	4	4
$10-20$	6	10
$20-30$	20	30
$30-40$	10	40
$40-50$	7	47
$50-60$	3	50
$\frac{N}{2}=\frac{50}{2}=25$		

Median $=l=\left[h \frac{\left(\frac{N}{2}-c . f .\right)}{f}\right]$
$=20+\left[10 \frac{(25-10)}{20}\right]$
$=20+\frac{15}{2}=27.5 \quad$ Ans.

Mathematics 2016 (Outside Delhi) Term II

SECTION - A

1. In fig. $1, P Q$ is a tangent at a point C to a circle with centre O. If $A B$ is a diameter and $\angle C A B=30^{\circ}$, find $\angle P C A$.

Figure 1

Solution: Given, $\angle C A B=30^{\circ}$ and $P Q$ is a tangent at a point C to a circle with centre O. Since, $A B$ is a diameter.
$\therefore \quad \angle A C B=90^{\circ}$
Join OC.

$$
\angle C A O=\angle A C O=30^{\circ}
$$

($O A=O C$)
and, $\angle P C O=90^{\circ}$ (Tangent is perpendicular to the radius through the point of contact)

$$
\therefore \quad \begin{aligned}
\angle P C A & =\angle P C O-\angle A C O \\
& =90^{\circ}-30^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

2. For what value of k will $k+9,2 k-1$ and $2 k+7$ are the consecutive terms of an A.P.?

Solution : We have, $k+9,2 k-1$ and $2 k+7$ as consecutive terms of an A.P
Then, $2(2 k-1)=k+9+2 k+7$ [if a, b and c are in A.P. then $2 b=a+c$]

$$
\begin{aligned}
4 k-2 & =3 k+16 \\
k & =18
\end{aligned}
$$

Ans.
3. A ladder, leaning against a wall, makes an angle of 60° with the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder.
[1]
Solution : Let $A B$ be the ladder leaning against a wall $A C$.

Then, $\quad \cos 60^{\circ}=\frac{B C}{A B}$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{2}=\frac{2 \cdot 5}{A B} \\
\Rightarrow & A B=2.5 \times 2=5 \mathrm{~m}
\end{array}
$$

\therefore Length of ladder is 5 m .
Ans.
4. A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen.
Solution : Total number of possible outcomes $=52$
Let E be the event of getting neither a red card nor a queen
\therefore Number of favourable outcomes $=52-28$ $=24$
$P($ getting neither a red card nor a queen $)=$ $P(E)$

$$
=\frac{24}{52}=\frac{6}{13}
$$

Ans.

SECTION - B

5. If -5 is a root of the quadratic equation $2 x^{2}+p x-$ $15=0$ and the quadratic equation $p\left(x^{2}+x\right)+$ $k=0$ has equal roots, find the value of k. [2] Solution : Given, -5 is a root of

$$
2 x^{2}+p x-15=0
$$

then, $f(-5)=2(-5)^{2}+p(-5)-15=0$
$\Rightarrow \quad 50-5 p-15=0$
$\Rightarrow \quad 35-5 p=0$
$\Rightarrow \quad 5 p=35$
$\therefore \quad p=7$
Now, putting the value of p, in, $p\left(x^{2}+x\right)+k$ $=0$
we get $7 x^{2}+7 x+k=0$
Now, $D=b^{2}-4 a c=0$
(\because the equation has the equal roots)
then,
$49-28 k=0$
$\Rightarrow \quad 28 k=49$
$\therefore \quad k=\frac{49}{28}=\frac{7}{4}$
Ans.
6. Let P and Q be the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$ such that P is nearer to A. Find the coordinates of P and Q.
Solution : Since, P and Q are the points of trisection of $A B$ then, P divides $A B$ in $1: 2$.

$$
\begin{gathered}
\frac{\mathrm{P}}{\mathrm{~A}(2,-2)} \mathrm{Q} \\
\text { Coordinates of } P=\left(\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+2(-2)}{1+2}\right) \\
=\left(\frac{-3}{3}, \frac{0}{3}\right)=(-1,0)
\end{gathered}
$$

And, Q is the mid-point of $P B$
\therefore Coordinates of $Q=\left(\frac{-1+(-7)}{2}, \frac{0+4}{2}\right)$

$$
=(-4,2)
$$

So,

$$
P \equiv(-1,0), Q \equiv(-4,2)
$$

Ans.
7. In Fig. 2, a quadrilateral $A B C D$ is drawn to circumscribe a circle, with centre O, in such a way that the sides $A B, B C, C D$ and $D A$ touch the circle at the points P, Q, R and S respectively. Prove that

Solution : We have, $A B, B C, C D$ and $D A$ are the tangents touching the circle at P, Q, R and S, respectively.
Now, $A P=A S, B P=B Q, C R=C Q$ and $D R=D S$.

On adding we get,
$A P+B P+C R+D R=A S+B Q+C Q+D S$
$\Rightarrow \quad A B+C D=A D+B C$
Hence Proved.
8. Prove that the points $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled isosceles triangle.
Solution : Let $A(3,0), B(6,4)$ and $C(-1,3)$ be the vertices of a triangle $A B C$.

Length of $A B=\sqrt{(6-3)^{2}+(4-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{(3)^{2}+(4)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5 \text { units }
\end{aligned}
$$

Length of $B C=\sqrt{(-1-6)^{2}+(3-4)^{2}}$

$$
\begin{aligned}
& =\sqrt{(7)^{2}+(-1)^{2}} \\
& =\sqrt{49+1}=\sqrt{50}=5 \sqrt{2} \text { units. }
\end{aligned}
$$

And, Length of $A C=\sqrt{(-1-3)^{2}+(3-0)^{2}}$

$$
=\sqrt{(-4)^{2}+(3)^{2}}
$$

$$
=\sqrt{16+9}=\sqrt{25}
$$

$$
=5 \text { units }
$$

$$
A B=A C
$$

And, $\quad(A B)^{2}+(A C)^{2}=(B C)^{2}$
Hence, $\triangle A B C$ is a isosceles, right angled triangle.

Hence Proved.
9. The $4^{\text {th }}$ term of an A.P. is zero. Prove that the $25^{\text {th }}$ term of the A.P. is three times its $11^{\text {th }}$ term.
Solution : We know that,

$$
T_{n}=a+(n-1) d
$$

$$
\begin{array}{rlrl}
\text { Given, } & & T_{4} & =a+(4-1) d=0 \\
\Rightarrow & & a+3 d & =0 \\
\Rightarrow & & a & =-3 d \\
& & T_{25} & =a+(25-1) d \\
& & =a+24 d \\
& =(-3 d)+24 d \\
& =21 d \\
\text { And, } \quad & & T_{11} & =a+(11-1) d \\
& & & =a+10 d \\
\text { Then, } \quad & & 3 T_{11} & =3(a+10 d) \\
& & =3 a+30 d \\
& & & =3(-3 d)+30 d \\
& & & =30 d-9 d=21 d=T_{25} \\
\therefore \quad & & 3 T_{11} & =T_{25} \quad \text { Hence Proved. }
\end{array}
$$

10. In Fig. 3, from an external point P, two tangents $P T$ and $P S$ are drawn to a circle with centre O and radius r. If $O P=2 r$, show that $\angle O T S=\angle O S T=30^{\circ}$.

Figure 3

Solution : We have,

Let

$$
O P=2 r
$$

$$
\angle T O P=\theta
$$

In \triangle OTP,

$$
\cos \theta=\frac{O T}{O P}=\frac{r}{2 r}=\frac{1}{2}
$$

$$
\because
$$

Hence,

$$
\angle T O S=2 \theta=2 \times 60^{\circ}=120^{\circ}
$$

In $\triangle T O S$,

$$
\begin{array}{rlrl}
\angle T O S+\angle O T S+\angle O S T & =180^{\circ} \\
\Rightarrow \quad 120^{\circ}+2 \angle O T S & =180^{\circ} \\
\Rightarrow & (\because \angle O T S=\angle O S T) \\
\Rightarrow & \angle O T S & =180^{\circ}-120^{\circ} \\
\Rightarrow & \angle O T S & =30^{\circ} \\
\text { Hence, } & \angle O T S & =\angle O S T=30^{\circ}
\end{array}
$$

SECTION - C

11. In fig. $4, O$ is the centre of a circle such that diameter $A B=13 \mathrm{~cm}$ and $A C=12 \mathrm{~cm} . B C$ is joined. Find the area of the shaded region. (Take $\pi=3.14$)

Figure 4
Solution : Given, $A B$ is a diameter of length 13 cm and $A C=12 \mathrm{~cm}$.

Then, by pythagoras theorem,

$$
\begin{array}{ll}
& (B C)^{2}=(A B)^{2}-(A C)^{2} \\
\Rightarrow & (B C)^{2}=(13)^{2}-(12)^{2} \\
\Rightarrow & B C=\sqrt{169-144} \\
\Rightarrow & B C=\sqrt{25} \\
\therefore & B C=5 \mathrm{~cm}
\end{array}
$$

Now, Area of shaded region

$$
\begin{aligned}
& =\text { Area of semi-circle }- \text { Area of } \triangle A B C \\
& =\frac{\pi r^{2}}{2}-\frac{1}{2} \times B C \times A C \\
& =\frac{1}{2} \times 3.14 \times\left(\frac{13}{2}\right)^{2}-\frac{1}{2} \times 5 \times 12 \\
& =\frac{1.57 \times 169}{4}-30 \\
& =66.33-30 \\
& =36.33 \mathrm{~cm}^{2}
\end{aligned}
$$

So, area of shaded region is $36.33 \mathrm{~cm}^{2}$ Ans.
12. In fig. 5, a tent is in the shape of a cylinder surmounted by a conical top of same diameter. If the height and diameter of cylindrical part are 2.1 m and 3 m respectively and the slant height of conical part is 2.8 m , find the cost of canvas needed to make the tent if the canvas is available at the rate of $₹ 500 /$ sq. metre. (Use $\pi=\frac{22}{7}$)

Figure 5
Solution : We have, height (h) and diameter (d) of cylinder as 2.1 m and 3 m respectively.

And, slant height of conical part is 2.8 m
Area of Canvas needed

$$
\begin{aligned}
& =\text { C.S.A. of }(\text { cylinder }+ \text { cone }) \\
& =2 \pi r h+\pi r l \\
& =2 \times \frac{22}{7} \times \frac{3}{2} \times 2 \cdot 1+\frac{22}{7} \times \frac{3}{2} \times 2 \cdot 8 \\
& =\frac{22}{7}(6 \cdot 3+4 \cdot 2) \\
& =\frac{22}{7} \times 10 \cdot 5=33 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore Cost of canvas needed at the rate of ₹ $500 / \mathrm{m}^{2}$

$$
=₹(33 \times 500)=₹ 16,500 \quad \text { Ans. }
$$

13. If the point $P(x, y)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$. Prove that $b x=a y$.
Solution : Since, P is equidistant from points A and B.

$$
\begin{array}{l|ll}
& \mathrm{A} & \text { (a+b,a-b) } \\
\because & \mathrm{P}(x, y) & \\
\text { or } & P A=P B & (a-b, a+b) \\
& & (P A)^{2}=(P B)^{2}
\end{array}
$$

$$
\Rightarrow(a+b-x)^{2}+(b-a-y)^{2}
$$

$$
=(a-b-x)^{2}+(a+b-y)^{2}
$$

$$
\Rightarrow(a+b)^{2}+x^{2}-2 a x-2 b x+(b-a)^{2}
$$

$$
+y^{2}-2 b y+2 a y
$$

$$
=(a-b)^{2}+x^{2}-2 a x+2 b x
$$

$$
+(a+b)^{2}+y^{2}-2 a y-2 b y
$$

$$
\Rightarrow \quad-2 b x+2 a y=2 b x-2 a y
$$

$$
\Rightarrow \quad 4 a y=4 b x
$$

$$
\Rightarrow \quad a y=b x
$$

$$
\text { or } \quad b x=a y
$$

14. In fig. 6 , find the area of the shaded region, enclosed between two concentric circles of radii 7 cm and 14 cm , where $\angle A O C=40^{\circ}$. (Use $\pi=\frac{22}{7}$)

Figure 6
Solution : Given, $r=7 \mathrm{~cm}$ and $R=14 \mathrm{~cm}$.
Area of shaded region $=\pi\left(R^{2}-r^{2}\right) \frac{\theta}{360^{\circ}}$

$$
\begin{aligned}
& =\frac{22}{7}\left(14^{2}-7^{2}\right) \times \frac{\left(360^{\circ}-40^{\circ}\right)}{360^{\circ}} \\
& =\frac{22}{7} \times 7 \times 21 \times \frac{320^{\circ}}{360^{\circ}} \\
& =410.67 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
15. If the ratio of the sum of first n terms of two A.P.'s is $(7 n+1):(4 n+27)$, find the ratio of their $m^{\text {th }}$ terms.
Solution : Let the sum of first n terms of two A.P's be S_{n} and S_{n} '.
then, $\quad \frac{S_{n}}{S_{n}^{\prime}}=\frac{\frac{n}{2}\{2 a+(n-1) d\}}{\frac{n}{2}\left\{2 a^{\prime}+(n-1) d^{\prime}\right\}}$

$$
=\frac{7 n+1}{4 n+27}
$$

$$
\begin{equation*}
\Rightarrow \frac{a+\left(\frac{n-1}{2}\right) d}{a^{\prime}+\left(\frac{n-1}{2}\right) d^{\prime}}=\frac{7 n+1}{4 n+27} \tag{i}
\end{equation*}
$$

Also, let $m^{\text {th }}$ term of two A.P's be T_{m} and $T_{m}{ }^{\prime}$

$$
\frac{T_{m}}{T_{m}{ }^{\prime}}=\frac{a+(m-1) d}{a^{\prime}+(m-1) d^{\prime}}
$$

Replacing $\frac{n-1}{2}$ by $m-1$ in (i), we get

$$
\frac{a+(m-1) d}{a^{\prime}+(m-1) d^{\prime}}=\frac{7(2 m-1)+1}{4(2 m-1)+27}
$$

$[\because n-1=2(m-1) \Rightarrow n=2 m-2+1=2 m-1]$
$\therefore \quad \frac{T_{m}}{T_{m}{ }^{\prime}}=\frac{14 m-7+1}{8 m-4+27}=\frac{14 m-6}{8 m+23}$
\therefore Ratio of $m^{\text {th }}$ term of two A.P's is $14 m-6$: $8 m+23$

Ans.
16. Solve for $x: \frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}$

$$
\begin{equation*}
=\frac{2}{3}, x \neq 1,2,3 \tag{3}
\end{equation*}
$$

Solution: We have,

$$
\begin{aligned}
& \frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}=\frac{2}{3}, x \neq 1,2,3 \\
& 3(x-3)+3(x-1)=2(x-1)(x-2)(x-3) \\
& 3 x-9+3 x-3=2(x-1)(x-2)(x-3) \\
& 6 x-12=2(x-1)(x-2)(x-3) \\
& 6(x-2)=2(x-1)(x-2)(x-3) \\
& 3=(x-1)(x-3) \\
& 3=x^{2}-3 x-x+3 \\
& x^{2}-4 x=0 \\
& x(x-4)=0
\end{aligned}
$$

$$
x=0 \text { or } 4
$$

Ans.
17. A conical vessel, with base radius 5 cm and height 24 cm , is full of water. This water is emptied into a cylindrical vessel of base radius 10 cm . Find the height to which the water will rise in the cylindrical vessel. (Use $\pi=\frac{22}{7}$)

Solution : Given, radius (r) and height (h) of conical vessel is 5 cm and 24 cm respectively. Volume of water in conical vessel $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 24 \\
& =\frac{13200}{21} \mathrm{~cm}^{3}
\end{aligned}
$$

Since water is emptied into a cylindrical vessel.
\therefore Volume of water in conical vessel

$$
=\text { Volume of water in cylindrical vessel }
$$

$$
\frac{13200}{21}=\pi R^{2} H
$$

$$
\frac{13200}{21}=\frac{22}{7} \times 10 \times 10 \times H
$$

$$
\begin{aligned}
& H
\end{aligned} \begin{aligned}
& 13200 \times 7 \\
& \therefore \quad
\end{aligned} \quad H=2 \mathrm{~cm}
$$

\therefore Height of water rise in cylindrical vessel is 2 cm .

Ans.
18. A sphere of diameter 12 cm , is dropped in a right circular cylindrical vessel, partly filled with water. If the sphere is completely submerged in water, the water level in the cylindrical vessel rises by $\frac{32}{9} \mathrm{~cm}$. Find the diameter of the cylindrical vessel.
[3]
Solution : Given,

$$
\text { diameter of sphere }=12 \mathrm{~cm}
$$

then, radius of sphere $(r)=\frac{12}{2}=6 \mathrm{~cm}$

$$
\begin{aligned}
\text { Volume of sphere } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times \pi \times(6)^{3} \mathrm{~cm}^{3}
\end{aligned}
$$

Now, sphere is completely submerged in water and rise in water in cylindrical vessel is $3 \frac{5}{9} \mathrm{~cm}$.

Volume of sphere $=$ Volume of cylindrical vessel

$$
\begin{aligned}
\frac{4}{3} \pi \times(6)^{3} & =\pi r^{2} \times \frac{32}{9} \\
r^{2} & =\frac{4 \times 6 \times 6 \times 6 \times 9}{3 \times 32} \\
r & =\sqrt{81} \\
\therefore \quad r & =9 \mathrm{~cm}
\end{aligned}
$$

\therefore Diameter of the cylindrical vessel is 18 cm .
Ans.
19. A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of hill as 30°. Find the distance of the hill from the ship and the height of the hill.

Solution : Let $A B$ be the height of water level and $C D$ be the height of hill

Then,
In $\triangle A B C$,

$$
\begin{array}{ll}
& \tan 30^{\circ}=\frac{10}{y} \\
\Rightarrow & y=10 \sqrt{3} \tag{i}\\
\text { In } \triangle A D E, &
\end{array}
$$

$$
\tan 60^{\circ}=\frac{x}{y}
$$

$$
\begin{equation*}
\Rightarrow \quad y=\frac{x}{\sqrt{3}} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\begin{aligned}
\frac{x}{\sqrt{3}} & =10 \sqrt{3} \\
x & =10 \times 3=30 \mathrm{~m}
\end{aligned}
$$

\therefore Distance of the hill from this ship is $10 \sqrt{3} \mathrm{~m}$ and the height of the hill is $30+10=40 \mathrm{~m}$.

Ans.
20. Three different coins are tossed together. Find the probability of getting
(i) exactly two heads,
(ii) at least two heads (iii) at least two tails.

Solution : Set of possible outcomes
$=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H$, TTT\}.
(i) Let E_{1} be the event of getting exactly two heads.
$\therefore \quad$ Favourable outcomes $=\{H H T, H T H$, THH\}

No. of favourable outcomes $=3$

$$
\therefore \quad P\left(E_{1}\right)=\frac{3}{8} \quad \text { Ans. }
$$

(ii) Let E_{2} be the event of getting atleast two heads.
\therefore Favourable outcomes $=\{H H T, H T H$, THH, HHH\}

No. of favourable outcomes $=4$

$$
\therefore \quad P\left(E_{2}\right)=\frac{4}{8}=\frac{1}{2} \quad \text { Ans. }
$$

(ii) Let E_{3} be the event of getting atleast two tails.
\therefore Favourable outcomes

$$
=\{H T T, T H T, T T H, T T T\}
$$

No. of favourable outcomes $=4$

$$
\therefore \quad P\left(E_{3}\right)=\frac{4}{8}=\frac{1}{2}
$$

Ans.

SECTION - D

21. Due to heavy floods in a state, thousands were rendered homeless. 50 schools collectively offered to the state government to provide place and the canvas for 1500 tents to be fixed by the government and decided to share the whole expenditure equally. The lower part of each tent is cylindrical of base radius 2.8 m and height 3.5 m , with conical upper part of same base radius but of height 2.1 m. If the canvas used to make the tents costs ₹ 120 per sq. m, find the amount shared by each school to set up the tents. What value is generated by the above problem?
(Use $\pi=\frac{22}{7}$)
[4]
Solution : Radius of the base of cylinder (r) $=2.8 \mathrm{~m}$
Radius of the base of the cone $(r)=2.8 \mathrm{~m}$
Height of the cylinder $(h)=3.5 \mathrm{~m}$
Height of the cone $(H)=2.1 \mathrm{~m}$.
Slant height of conical part $(l)=\sqrt{r^{2}+H^{2}}$

$$
\begin{aligned}
& =\sqrt{(2 \cdot 8)^{2}+(2 \cdot 1)^{2}} \\
& =\sqrt{7 \cdot 84+4 \cdot 41} \\
& =\sqrt{12 \cdot 25} \\
& =3 \cdot 5 \mathrm{~m}
\end{aligned}
$$

Area of canvas used to make tent

$$
\begin{aligned}
& \quad=\text { CSA of cylinder }+ \text { CSA of cone } \\
& =2 \times \pi \times 2 \cdot 8 \times 3 \cdot 5+\pi \times 2 \cdot 8 \times 3 \cdot 5 \\
& =61 \cdot 6+30 \cdot 8 \\
& \quad=92 \cdot 4 \mathrm{~m}^{2} \\
& \text { Cost of } 1500 \text { tents at } ₹ 120 \text { per sq. } \mathrm{m} \\
& \quad=1500 \times 120 \times 92 \cdot 4 \\
& =₹ 16,6,32,000
\end{aligned}
$$

Share of each school to set up the tents

$$
\begin{aligned}
& =\frac{16632000}{50} \\
& =₹ 3,32,640
\end{aligned}
$$

Ans.
22. Prove that the lengths of the tangents drawn from an external point to a circle are equal.

Solution : Given, Two tangents $A M$ and $A N$ are drawn from point A to a circle with centre O.

To Prove : $A M=A N$
Construction : Join $O M, O N$ and $O A$.
Proof: Since, $A M$ is a tangent and $O M$ is a radius.
$\begin{array}{ll}\therefore & O M \perp A M \\ \text { Similarly, } & O N \perp A N\end{array}$
Now, in $\triangle O M A$ and $\triangle O N A$,

$$
\begin{array}{rlr}
O A & =O A \quad \text { (Common) } \\
O M & =O N \text { (Radii of the circle) } \\
\angle O M A & =\angle O N A=90^{\circ} \\
\therefore \quad \triangle O M A & \cong \triangle O N A
\end{array}
$$

(By R.H.S. congruencey)
Hence, $\quad A M=A N \quad$ Hence Proved.
23. Draw a circle of radius 4 cm . Draw two tangents to the circle inclined at an angle of 60° to each other.

Solution : Steps of construction :
(i) Draw a circle with O as centre and radius 4 cm .
(ii) Draw any diameter $A O B$ of this circle.
(iii) Construct $\angle B O C=60^{\circ}$ such thatradius $O C$ meets the circle at C.

Page 93 of 164
Website: www.ssstrategies.com or www.newtongate.in
Phone No: 7595947870/9163220583 Email :ssstrategies.com@gmail.com
Address: 482 Ashoke Road, P.O. Garia , Kolkata - 700084
(iv) Draw $A M \perp A B$ and $C N \perp O C$.

Let $A M$ and $C N$ intersect each other at P.
Then, $P A$ and $P C$ are the required tangents to the given circle and inclined at an angle of 60° to each other.
24. In Fig. 7, two equal circles, with centres O and O^{\prime}, touch each other at $X . O O$ ' produced meets the circle with centre O^{\prime} at $A . A C$ is tangent to the circle with centre O, at the point $C . O^{\prime} D$ is perpendicular $A C$. Find the value of $\frac{D O^{\prime}}{C O}$.[4]

Figure 7
Solution : Given, $A C$ is tangent to the circle with centre O and $O^{\prime} D$ is perpendicular to $A C$.
then,

$$
\angle A C O=90^{\circ}
$$

Also,

$$
\begin{aligned}
\angle A D O^{\prime} & =90^{\circ} \\
\angle C A O & =\angle D A O^{\prime}
\end{aligned}
$$

(\because Common angle)

$$
\left.\begin{array}{rlrl}
\therefore & \Delta A O^{\prime} D & \sim \Delta A O C \\
\Rightarrow & \frac{A O^{\prime}}{A O} & =\frac{D O^{\prime}}{C O} \\
\therefore & \frac{A O^{\prime}}{3 \cdot A O^{\prime}}= & \frac{D O}{C O} \\
& & \left(\because \quad A X=2 A O^{\prime}\right. \\
& & \text { and } O X=A O^{\prime}
\end{array}\right)
$$

$$
\Rightarrow \quad \frac{D O^{\prime}}{C O}=\frac{1}{3}
$$

Ans.
25. Solve for x :

$$
\begin{equation*}
\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}, x \neq-1,-2,-4 \tag{4}
\end{equation*}
$$

Solution : We have,

$$
\begin{gathered}
\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}, x \neq-1,-2,-4 \\
\Rightarrow \quad(x+2)(x+4)+2(x+1)(x+4) \\
=4(x+1)(x+2) \\
\Rightarrow x^{2}+2 x+4 x+8+2\left(x^{2}+x+4 x+4\right) \\
=4\left(x^{2}+x+2 x+2\right) \\
\Rightarrow x^{2}+6 x+8+2 x^{2}+10 x+8=4 x^{2}+12 x+8
\end{gathered}
$$

$$
\begin{array}{lc}
\Rightarrow & 3 x^{2}+16 x+16=4 x^{2}+12 x+8 \\
\Rightarrow & x^{2}-4 x-8=0 \\
\Rightarrow & x=\frac{4 \pm \sqrt{16+32}}{2} \\
\Rightarrow & x=\frac{4 \pm \sqrt{48}}{2}=2 \pm 4 \sqrt{2} \\
\therefore & x=2 \pm 2 \sqrt{3} \quad \text { Ans. }
\end{array}
$$

26. The angle of elevation of the top Q of a vertical tower $P Q$ from a point X on the ground is 60°. From a point $Y, 40 \mathrm{~m}$ vertically above X, the angle of elevation of the top Q of tower is 45°. Find the height of the tower $P Q$ and the distance $P X$. (Use $\sqrt{3}=1.73$) [4]

Solution : We have, $P Q$ as a vertical tower

In $\triangle Y Z Q$

$$
\begin{array}{rlrl}
& & \tan 45^{\circ} & =\frac{Q Z}{Y Z} \\
\Rightarrow & \frac{Q Z}{Y Z} & =1 \\
\Rightarrow & & Q Z & =Y Z \tag{i}
\end{array}
$$

And, in $\triangle X P Q$,

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{Q P}{X P} \\
& \Rightarrow \quad \sqrt{3}=\frac{Q Z+40}{X P} \\
& \Rightarrow \quad \sqrt{3}=\frac{Q Z+40}{Y Z} \quad(\because X P=Y Z) \\
& \Rightarrow \quad \sqrt{3} Q Z=Q Z+40 \quad[\text { Using (i)] } \\
& \Rightarrow \quad \sqrt{3} Q Z-Q Z=40 \\
& \Rightarrow \quad Q Z(\sqrt{3}-1)=40 \\
& \Rightarrow \quad Q Z=\frac{40}{\sqrt{3}-1}=\frac{40}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =20(\sqrt{3}+1) \\
& =20(2 \cdot 73) \\
& =54 \cdot 60 \mathrm{~m} \\
& \therefore \quad P X=54.6 \mathrm{~m}
\end{aligned}
$$

And $P Q=(54 \cdot 6+40) \mathrm{m}=94 \cdot 6 \mathrm{~m} . \quad$ Ans.
27. The houses in a row are numbered consecutively from 1 to 49 . Show that there exists a value of X such that sum of numbers of houses preceeding the house numbered X is equal to sum of the numbers of houses following X.
Solution : Given, the houses in a row numbered consecutively from 1 to 49 .
Now, sum of numbers preceeding the number X

$$
=\frac{X(X-1)}{2}
$$

And, sum of numbers following the number X

$$
\begin{aligned}
& =\frac{49(50)}{2}-\frac{X(X-1)}{2}-X \\
& =\frac{2450-X^{2}+X-2 X}{2} \\
& =\frac{2450-X^{2}-X}{2}
\end{aligned}
$$

According to the given condition,
Sum of no's preceeding $X=$ Sum of no's following X

$$
\begin{array}{rlrl}
& & \frac{X(X-1)}{2} & =\frac{2450-X^{2}-X}{2} \\
\Rightarrow & X^{2}-X & =2450-X^{2}-X \\
\Rightarrow & 2 X^{2} & =2450 \\
\Rightarrow & X^{2} & =1225 \\
\therefore & X & =35
\end{array}
$$

Hence, at $X=35$, sum of no. of houses preceeding the house no. X is equal to sum of the no. of houses following X.

Ans.
28. In fig. 8 , the vertices of $\triangle A B C$ are $A(4,6)$, $B(1,5)$ and $C(7,2)$. A line-segment $D E$ is drawn to intersect the sides $A B$ and $A C$ at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{3}$.
Calculate the area of $\triangle A D E$ and compare it with area of $\triangle A B C$.

Figure 8

Solution : We have, the vertices of $\triangle A B C$ as $A(4,6), B(1,5)$ and $C(7,2)$.

And $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{3}$
Then, coordinates of D are

$$
\begin{array}{r}
\left(\frac{1(1)+2(4)}{1+2}, \frac{1(5)+2(6)}{1+2}\right) \\
\left(\frac{1+8}{3}, \frac{5+12}{3}\right) \text { i.e, } D\left(3, \frac{17}{3}\right)
\end{array}
$$

and coordinates of E are
$\left(\frac{1(7)+2(4)}{1+2}, \frac{1(2)+2(6)}{1+2}\right)$
$\left(\frac{7+8}{3}, \frac{2+12}{3}\right)$ i.e, $E\left(5, \frac{14}{3}\right)$
Now, Area of $\triangle A D E$

$$
\begin{aligned}
& =\frac{1}{2}\left[4\left(\frac{17}{3}-\frac{14}{3}\right)+3\left(\frac{14}{3}-6\right)+5\left(6-\frac{17}{3}\right)\right] \\
& =\frac{1}{2}\left[4(1)+3\left(-\frac{4}{3}\right)+5\left(\frac{1}{3}\right)\right] \\
& =\frac{5}{6} \text { units }
\end{aligned}
$$

and Area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{2}[4(5-2)+1(2-6)+7(6-5)] \\
& =\frac{1}{2}[4(3)+1(-4)+7(1)] \\
& =\frac{15}{2} \text { units. } \\
\therefore & \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{5 / 6}{15 / 2}=\frac{1}{9}
\end{aligned}
$$

i.e, $\operatorname{ar}(\triangle A D E): \operatorname{ar}(\triangle A B C)=1: 9 \quad$ Ans.
29. A number x is selected at random from the numbers $1,2,3$ and 4 . Another number y is selected at random from the numbers $1,4,9$
and 16. Find the probability that product of x and y is less than 16. [4]
Solution : Let x be $1,2,3$ or 4
and y be $1,4,9$ or 16 .
Now, $x y=\{1,4,9,16,2,8,18,32,3,12,27$,

$$
48,4,16,36,64\}
$$

Total number of possible outcomes $=16$
Number of outcomes whose product is less than $16=8$
i.e, $\{1,4,9,2,8,3,12,4\}$
\therefore Required probability $=\frac{18}{16}=\frac{1}{2}$
Ans.
30. In Fig. 9, is shown a sector $O A P$ of a circle with centre O, containing $\angle \theta . A B$ is perpendicular to the radius $O A$ and meets $O P$ produced at B. Prove that the perimeter of shaded region is

$$
\begin{equation*}
r\left[\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1\right] \tag{4}
\end{equation*}
$$

Figure 9
Solution : Given, the radius of circle with centre O is r.
$\angle P O A=\theta$.
then, length of the arc $\overparen{P A}=\frac{2 \pi r \theta}{360^{\circ}}=\frac{\pi r \theta}{180^{\circ}}$
And $\quad \tan \theta=\frac{A B}{r}$
$\begin{array}{lrl}\Rightarrow & A B & =r \tan \theta \\ & \text { And } & \sec \theta\end{array}$
$\Rightarrow \quad O B=r \sec \theta$
Now, $\quad P B=O B-O P$

$$
=r \sec \theta-r
$$

\therefore Perimeter of shaded region

$$
\begin{aligned}
& =A B+P B+\overparen{P A} \\
& =r \tan \theta+r \sec \theta-r+\frac{\pi r \theta}{180^{\circ}} \\
& =r\left[\tan \theta+\sec \theta+\frac{\pi \theta}{180^{\circ}}-1\right]
\end{aligned}
$$

Hence Proved.
31. A motor boat whose speed is $24 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream. [4] Solution : Let the speed of the stream be $x \mathrm{~km} / \mathrm{hr}$. Then, speed upstream

$$
=(24-x) \mathrm{km} / \mathrm{hr}
$$

and speed downstream $=(24+x) \mathrm{km} / \mathrm{hr}$.
Time taken to cover 32 km upstream $=\frac{32}{24-x}$ hrs.
Time taken to cover 32 km downstream

$$
\begin{aligned}
& =\frac{32}{24+x} \mathrm{hrs} . \\
& \therefore \text { Time difference }=\frac{32}{24-x}-\frac{32}{24+x}=1 \\
& \Rightarrow 32[(24+x)-(24-x)]=(24-x)(24+x) \\
& \Rightarrow \quad 32(24+x-24+x)=576-x^{2} \\
& \Rightarrow \quad 64 x=576-x^{2} \\
& \Rightarrow \quad x^{2}+64 x-576=0 \\
& \Rightarrow \quad x^{2}+72 x-8 x-576=0 \\
& \Rightarrow \quad x(x+72)-8(x+72)=0 \\
& \Rightarrow \quad(x+72)(x-8)=0 \\
& \Rightarrow \quad x=8 \text { or }-72 \\
& \therefore \quad x=8
\end{aligned}
$$

(As speed can't be negative)
\therefore Speed of the stream is $8 \mathrm{~km} / \mathrm{h}$.
Ans.

Mathematics 2016 (Outside Delhi) Term II

Note : Except for the following questions, all the remaining questions have been asked in previous set.

SECTION - B

10. Solve for x : $\sqrt{2 x+9}+x=13$
[2]
Solution: We have, $\sqrt{2 x+9}+x=13$.
$\Rightarrow \quad \sqrt{2 x+9}=13-x$

On squaring both sides,

$$
\begin{array}{rlrl}
& & (\sqrt{2 x+9})^{2} & =(13-x)^{2} \\
& & 2 x+9 & =169+x^{2}-26 x \\
\Rightarrow & x^{2}-28 x+160 & =0 \\
\Rightarrow & x^{2}-20 x-8 x+160 & =0 \\
\Rightarrow & x(x-20)-8(x-20) & =0
\end{array}
$$

$$
\begin{array}{lrlr}
\Rightarrow \quad(x-8)(x-20) & =0 & \Rightarrow & (b+c)^{2}-4 a(b+c)+(2 a)^{2}
\end{array}=0
$$

SECTION - C

18. The digits of a positive number of three digits are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.

Solution : Let the three digits of a positive number be

$$
\begin{array}{cc}
& a-d, a, a+d \\
\therefore a-d+a+a+d=3 a=15 \\
\Rightarrow \quad a=5
\end{array}
$$

Original number $=100(a-d)+10(a)+a+d$

$$
\begin{aligned}
& =100 a-100 d+10 a+a+d \\
& =111 a-99 d
\end{aligned}
$$

And, number obtained by reversing the digits

$$
\begin{aligned}
& =100(a+d)+10(a)+a-d \\
& =100 a+100 d+10 a+a-d \\
& =111 a+99 d
\end{aligned}
$$

According to the given condition,

$$
\begin{array}{rlrl}
(111 a-99 d)-(111 a+99 d) & =594 \\
\Rightarrow & -198 d & =594 \\
\therefore & d & =-3
\end{array}
$$

\therefore Original number is $111(5)-99(-3)$ i.e, 852
Ans.
19. If the roots of the quadratic equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, prove that $2 a=b+c$.
Solution : By comparing the given equation with $a x^{2}+b x+c=0$
$A=a-b, B=b-c, C=c-a$
Since the roots of the given quadratic equation are equal.
then,

$$
(b-c)^{2}-4(c-a)(a-b)=0
$$

$\left[\because B^{2}-4 A C=0\right]$
$\Rightarrow \quad b^{2}+c^{2}-2 b c-4\left(a c-a^{2}-b c+a b\right)=0$
$\Rightarrow b^{2}+c^{2}-2 b c-4 a c+4 a^{2}+4 b c-4 a b=0$
$\Rightarrow \quad\left(b^{2}+c^{2}+2 b c\right)-4 a(b+c)+4 a^{2}=0$

Hence Proved.
20. From a pack of 52 playing cards, Jacks, Queens and Kings of red colour are removed. From the remaining, a card is drawn at random. Find the probability that drawn card is :
(i) a black King (ii) a card of red colour (iii) a card of black colour.
Solution : Since, Jacks, Queens and Kings of red colour are removed. Then,
Total number of possible outcomes $=52-6=$ 46
(i) Let E_{1} be the event of getting a black king \therefore Favourable outcomes
$=$ king of spade and king of club. No. of favourable outcomes $=2$

$$
P\left(E_{1}\right)=\frac{2}{46}=\frac{1}{23} \quad \text { Ans. }
$$

(ii) Let E_{2} be the event of getting a card of red colour
\therefore Favourable outcomes $=10$ cards of heart and 10 cards of diamond.
No. of favourable outcomes $=20$

$$
\therefore \quad P\left(E_{2}\right)=\frac{20}{46}=\frac{10}{23}
$$

Ans.
(iii) Let E_{3} be the event of getting a card of black colour
\therefore Favourable outcomes $=13$ cards of spade and 13 cards of club.
No. of favourable outcomes $=26$

$$
\therefore \quad P\left(E_{3}\right)=\frac{26}{46}=\frac{13}{23} \text {. }
$$

Ans.

SECTION - D

28. Draw an isosceles $\triangle A B C$ in which $B C=5.5$ cm and altitude $A L=3 \mathrm{~cm}$. Then construct another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.
Solution : Steps of construction :
(i) Draw a line segment $B C=5.5 \mathrm{~cm}$.
(ii) Draw a perpendicular bisector of $B C$ intersecting $B C$ at L such that $A L=3 \mathrm{~cm}$.

(iii) Join $A B$ and $A C$.

Thus, $\triangle A B C$ is obtained.
(iv) Below $B C$, make an acute angle $\angle C B X$.
(v) Along $B X$, mark off four points B_{1}, B_{2}, B_{3}, B_{4}
such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
(vi) Join $B_{4} C$.
(vii) From $B_{3^{\prime}}$ draw $B_{3} D \| B_{4} C$, meeting $B C$ at D.
(viii) From D, draw $D E \| C A$, meeting $A B$ at E.
Then, $\triangle E B D$ is the required triangle each of whose sides is $\frac{3}{4}$ of the corresponding side of $\triangle A B C$.
29. Prove that tangent drawn at any point of a circle is perpendicular to the radius through the point of contact.
Solution : Given, a tangent $A B$ at point P of the circle with centre O.
To prove : $O P \perp A B$.
Construction : Join $O Q$, where Q is a point (other than P) on $A B$.
Proof : Since Q is a point on the tangent $A B$ (other than P).
$\therefore Q$ lies outside the circle.
Let $O Q$ intersect the circle at R.

$$
\begin{array}{ll}
\Rightarrow & O R<O Q \\
\text { But, } & O P=O R
\end{array}
$$

(Radii of the circle)

Thus, $O P$ is the shortest distance than any other line segment joining O to any point of $A B$.
But, we know that the shortest distance between a point and a line is the perpendicular distance
$\therefore \quad O P \perp A B$ Hence Proved.
30. As observed from the top of a light house, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, changes from 30° to 60°. Find the distance travelled by the ship during the period of observation. (Use $\sqrt{3}=1.73$)

Solution : Let $C D$ be a light house of length 100 m and $A \& B$ be the positions of ship sailing towards it.

Then, in $\triangle C B D$,

$$
\begin{array}{rlrl}
\tan 60^{\circ} & =\frac{C D}{B C} \\
\Rightarrow & \sqrt{3} & =\frac{100}{B C} \\
\Rightarrow & B C=\frac{100}{\sqrt{3}} & =\frac{100 \sqrt{3}}{3}
\end{array}
$$

And, in $\triangle C A D$,

$$
\begin{aligned}
& \tan 30^{\circ} & =\frac{C D}{A C} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{100}{A C} \\
\Rightarrow & A C & =100 \sqrt{3}
\end{aligned}
$$

\therefore Distance travelled by the ship $(A B)$

$$
\begin{aligned}
& =A C-B C \\
& =100 \sqrt{3}-\frac{100 \sqrt{3}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& =100 \sqrt{3}\left(\frac{3-1}{3}\right) \\
& =\frac{200 \times 193}{3} \\
& =115.33 \mathrm{~m}
\end{aligned}
$$

Ans.
31. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metre more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m . Find the length and breadth of the rectangular park.
Solution: Let the length of the rectangular park be $x \mathrm{~m}$ then, breadth be $(x-3) \mathrm{m}$.
\therefore Area of rectangular park $=x(x-3) \mathrm{m}^{2}$

Area of isosceles triangular park

$$
\begin{aligned}
& =\frac{1}{2}(x-3) \times 12 \mathrm{~m}^{2} \\
& =6(x-3) \mathrm{m}^{2}
\end{aligned}
$$

Acoording to the given condition,

$$
\left.\begin{array}{rlrl}
& & x(x-3)-6(x-3) & =4 \\
\Rightarrow & & x^{2}-3 x-6 x+18 & =4 \\
\Rightarrow & & x^{2}-9 x+14 & =0 \\
\Rightarrow & & x^{2}-7 x-2 x+14 & =0 \\
\Rightarrow & x(x-7)-2(x-7) & =0 \\
\Rightarrow & & (x-2)(x-7) & =0 \\
\Rightarrow & & x & =2 \text { or } 7 \\
& \therefore & & x
\end{array}\right)=7 \mathrm{~m}
$$

(As breadth can't be negative)
and

$$
x-3=(7-3) \mathrm{m}=4 \mathrm{~m}
$$

Hence, length and breadth of the rectangular park is 7 m and 4 m respectively.

Ans.

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. Solve for x : $\sqrt{6 x+7}-(2 x-7)=0$
[2]
Solution : We have, $\sqrt{6 x+7}-(2 x-7)=0$

$$
\sqrt{6 x+7}=(2 x-7)
$$

On squaring both sides,

$$
\begin{array}{rlrl}
& & (\sqrt{6 x+7})^{2} & =(2 x-7)^{2} \\
\Rightarrow & & 6 x+7 & =4 x^{2}+49-28 x \\
\Rightarrow & & 4 x^{2}+42-34 x & =0 \\
\Rightarrow & 2 x^{2}-17 x+21 & =0 \\
\Rightarrow & 2 x^{2}-14 x-3 x+21 & =0 \\
\Rightarrow & 2 x(x-7)-3(x-7) & =0 \\
\Rightarrow & & (2 x-3)(x-7) & =0 \\
\Rightarrow & & x & =\frac{3}{2} \text { or } 7
\end{array}
$$

$\therefore x=7$ (as $x=3 / 2$ doesn't satisfy the given equation)

Ans.

SECTION - C

18. There are 100 cards in a bag on which numbers from 1 to 100 are written. A card is taken out from the bag at random. Find the
probability that the number on the selected card (i) is divisible by 9 and is a perfect square (ii) is a prime number greater than 80.

Solution : Number of possible outcomes $=100$
(i)Let E_{1} be the event of getting a number divisible by 9 and is a perfect square.
\therefore Favourable outcomes $=\{9,36,81\}$
Number of favourable outcomes $=3$

$$
\therefore \quad P\left(E_{1}\right)=\frac{3}{100}
$$

Ans.
(ii) $\operatorname{Let} E_{2}$ betheeventofgettingaprimenumber greater than 80.
\therefore Favourable outcomes $=\{83,89,97\}$
Number of favourable outcomes $=3$
$\therefore \quad P\left(E_{2}\right)=\frac{3}{100} \quad$ Ans.
19. Three consecutive natural numbers are such that the square of the middle number exceeds the difference of the squares of the other two by 60 . Find the numbers.
[3]
Solution : Let the three consecutive natural numbers be $x, x+1$ and $x+2$.
According to the given condition,

$$
(x+1)^{2}-\left[(x+2)^{2}-x^{2}\right]=60
$$

$$
\begin{aligned}
& \Rightarrow x^{2}+1+2 x-[(x+2-x)(x+2+x)]=60 \\
& \Rightarrow \quad x^{2}+2 x+1-[2(2+2 x)]=60 \\
& \Rightarrow \quad x^{2}+2 x+1-4-4 x=60 \\
& \Rightarrow \quad x^{2}-2 x-63=0 \\
& \Rightarrow \quad x^{2}-9 x+7 x-63=0 \\
& \Rightarrow \quad x(x-9)+7(x-9)=0 \\
& \Rightarrow \quad(x+7)(x-9)=0 \\
& \therefore \\
& \therefore \quad x=9
\end{aligned}
$$

(neglect $x=-7$)
\therefore Numbers are 9, 10, 11 .
Ans.
20. The sums of first n terms of three arithmetic progressionsare S_{1}, S_{2} and S_{3} respectively. The first term of each A.P. is 1 and their common differences are 1,2 and 3 respectively. Prove that $S_{1}+S_{3}=2 S_{2}$.
Solution : Given, first term of each A.P. $(a)=1$ and their common differences are 1,2 and 3 .

$$
\begin{aligned}
\therefore \quad S_{1} & =\frac{n}{2}\left[2 a+(n-1) d_{1}\right] \\
& =\frac{n}{2}|2+(n-1) 1|=\frac{n}{2}(n+1) \\
S_{2} & =\frac{n}{2}\left|2 a+(n-1) d_{2}\right| \\
& =\frac{n}{2}(2+(n-1) 2)=\frac{n}{2}(2 n)=n^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{3} & =\frac{n}{2}\left[2 a+(n-1) d_{3}\right] \\
& =\frac{n}{2}|2+(n-1) 3|=\frac{n}{2}(3 n-1)
\end{aligned}
$$

Now, $\quad S_{1}+S_{3}=\frac{n}{2}(n+1)+\frac{n}{2}(3 n-1)$

$$
\begin{aligned}
& =\frac{n}{2}(n+1+3 n-1)=4 n \times \frac{n}{2} \\
& =2 n^{2}=2 S_{2}
\end{aligned}
$$

$\therefore \quad S_{1}+S_{3}=2 S_{2} \quad$ Hence Proved.
SECTION - D
28. Two pipes running together can fill a tank in $11 \frac{1}{9}$ minutes. If one pipe takes 5 minutes more than the other to fill the tank separately, find the time in which each pipe would fill the tank separately.

Solution : Let the time taken by the one tap to fill the tank be x minutes.
then, other pipe takes $(x+5)$ minutes to fill the tank.

According to the question,

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x+5}=\frac{1}{100 / 9} \\
& \Rightarrow \quad \frac{x+5+x}{x(x+5)}=\frac{9}{100} \\
& \Rightarrow \quad 100(5+2 x)=9 x(x+5) \\
& \Rightarrow \quad 500+200 x=9 x^{2}+45 x \\
& \Rightarrow 9 x^{2}+45 x-200 x-500=0 \\
& \Rightarrow \quad 9 x^{2}-155 x-500=0 \\
& \Rightarrow 9 x^{2}-180 x+25 x-500=0 \\
& \Rightarrow 9 x(x-20)+25(x-20)=0 \\
& \Rightarrow \quad(9 x+25)(x-20)=0 \\
& \Rightarrow \quad x=20 \text { or }-\frac{25}{9} \text { (Neglect) } \\
& x=20
\end{aligned}
$$

\therefore Time in which each pipe would fill the tank separately are 20 mins and 25 mins, respectively.

Ans.
29. From a point on the ground, the angle of elevation of the top of a tower is observed to be 60°. From a point 40 m vertically above the first point of observation, the angle of elevation of the top of the tower is 30°. Find the height of the tower and its horizontal distance from the point of observation. [4]
Solution : We have, $P Q$ as a vertical tower.
Now, in $\triangle Y Z Q$

$$
\begin{array}{rlrl}
& & \tan 30^{\circ} & =\frac{Q Z}{Y Z} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{Q Z}{Y Z} \\
\Rightarrow & Y Z & =Q Z \sqrt{3} \tag{i}
\end{array}
$$

And, in $\triangle X P Q$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{Q P}{X P} \\
\Rightarrow & & \sqrt{3} & =\frac{Q Z+40}{X P} \\
\Rightarrow & Y Z \sqrt{3} & =Q Z+40 \\
& (\because X P=Y Z) \\
\Rightarrow & Q Z \sqrt{3}(\sqrt{3}) & =Q Z+40 \\
\Rightarrow & & & (\text { using equation (i) }) \\
\Rightarrow & & Q Q Z & =Q Z+40 \\
\Rightarrow & & Q Z & =40 \\
\therefore & & \text { Height of tower } & =(40+20) \mathrm{m}=60 \mathrm{~m} \\
& & & =20 \sqrt{3} \mathrm{~m}
\end{array}
$$

30. Draw a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$, and 7 cm . Then draw another triangle whose sides are $\frac{4}{5}$ of the corresponding sides of first triangle.
Solution : Steps of construction :
(i) Draw a line segment $B C=6 \mathrm{~cm}$.
(ii) With B as centre and radius equal to 5 cm , draw an arc.

(iii) With C as centre and radius equal to 7 cm , draw an arc.
(iv) Mark the point where the two arcs intersect as A. Join $A B$ and $A C$.
Thus, $\triangle A B C$ is obtained.
(v) Below $B C$, make an acute $\angle C B X$.
(vi) Along $B X$, markofffive points $B_{1}, B_{2}, B_{3}, B_{4}$, B_{5} such that
$B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}$.
(vii) Join $B_{5} C$.
(viii) From B_{4}, draw $B_{4} D \| B_{5} C$, meeting $B C$ at D.
(ix) From D, draw $D E \| C A$, meeting $A B$ at E. Then, $\triangle E B D$ is the required triangle each of whose sides is $\frac{4}{5}$ of the corresponding side of $\triangle A B C$.
31. A number x is selected at random from the numbers $1,4,9,16$ and another number y is selected at random from the numbers $1,2,3$, 4. Find the probability that the value of $x y$ is more than 16.
Solution : Let x be 1, 4, 9, 16 and y be 1, 2, 3, 4 .
Now, $x y=\{1,2,3,4,4,8,12,16,9,18,27,36,16,32$, $48,64\}$
Total number of possible outcomes $=16$
Number of outcomes where product is more than $16=6$
i.e., $\{18,27,36,32,48,64\}$
\therefore Required probability $=\frac{6}{16}=\frac{3}{8}$
Ans.

SECTION - A

1. From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. If $\angle P A B=50^{\circ}$, then find $\angle A O B$.
Solution : Since, tangents from an external point are equal.
i.e., $\quad A P=B P$

Given, $\angle P A B=50^{\circ}$
$\therefore \quad \angle P B A=50^{\circ}$

In $\triangle A P B$,

$$
\angle A P B=180^{\circ}-\left(50^{\circ}+50^{\circ}\right)=80^{\circ}
$$

$\therefore \quad \angle A O B=180^{\circ}-80^{\circ}=100$
2. In Fig. $1, A B$ is a 6 m high pole and $C D$ is a ladder inclined at an angle of 60° to the horizontal and reaches up to a point D of pole. If $A D=2.54 \mathrm{~m}$, find the length of the ladder. (use $\sqrt{3}=1.73$)

Fig. 1
Solution : Given, $A B=6 \mathrm{~m}$ and $A D 2.54 \mathrm{~m}$.
$\therefore D B=(6-2.54) \mathrm{m}=3.46 \mathrm{~m}$
In $\triangle D B C$,

$$
\begin{array}{rlrl}
& & \sin 60^{\circ} & =\frac{D B}{D C} \\
\Rightarrow & \frac{\sqrt{3}}{2} & =\frac{3 \cdot 46}{D C} \\
\Rightarrow & D C & =\frac{3 \cdot 46 \times 2}{1.732}=3.995 \mathrm{~m} \approx 4 \mathrm{~m}
\end{array}
$$

\therefore The length of the ladder is 4 m .
Ans.
3. Find the 9th term from the end (towards the first term) of the A.P. 5, 9, 13,, 185.

Solution : Given, A.P. is $5,9,13, \ldots . ., 185$
$l=185$ and $d=5-9=9-13=-4$
then,

$$
\begin{aligned}
l_{9} & =l+(n-1) d \\
& =185+(9-1)(-4) \\
& =185+8(-4) \\
l_{9} & =153 \quad \text { Ans. }
\end{aligned}
$$

4. Cards marked with number $3,4,5, \ldots . ., 50$ are placed in a box and mixed thoroughly. A card is drawn at random from the box. Find the probability that the selected card bears a perfect square number.
Solution: Total outcomes $=3,4,5, \ldots \ldots, 50$

$$
\begin{aligned}
\text { Total no. of outcomes } & =48 \\
\text { Possible outcomes } & =4,9,16,25,36,49 .
\end{aligned}
$$

Let E be the event of getting a perfect square number
No. of possible outcomes $=6$

$$
\therefore \quad P(E)=\frac{6}{48}=\frac{1}{8} \quad \text { Ans. }
$$

SECTION - B

5. If $x=\frac{2}{3}$ and $x=-3$ are roots of the quadratic equation $a x^{2}+7 x+b=0$, find the values of a and b.

Solution : The given polynomial is,

$$
\begin{align*}
p(x) & =a x^{2}+7 x+b \\
\therefore \quad p\left(\frac{2}{3}\right) & =a\left(\frac{2}{3}\right)^{2}+7\left(\frac{2}{3}\right)+b=0 \\
& =\frac{4 a}{9}+\frac{14}{3}+b=0 \tag{i}
\end{align*}
$$

and, $\quad p(-3)=a(-3)^{2}+7(-3)+b=0$
$\Rightarrow 9 a-21+b=0$
Solving equation (i) and (ii), we get

$$
\begin{array}{r}
4 a+42+9 b=0 \\
81 a-189+9 b=0 \\
+- \\
-77 a+231=0 \\
a=\frac{231}{77}=3
\end{array}
$$

Putting $a=3$ in equation (ii), we get

$$
\begin{array}{rlrl}
& & 9(3)-21+b & =0 \\
\Rightarrow & & b=-6 \\
\therefore & & a=3 \text { and } b=-6 \quad \text { Ans. }
\end{array}
$$

6. Find the ratio in which y-axis divides the line segment joining the points $A(5,-6)$ and $B(-1,-4)$. Also find the coordinates of the point of division.

Solution : Let the required ratio be $k: 1$ and point on y-axis be $(0, y)$

$$
\therefore \quad A P: P B=k: 1
$$

Then, by section formula

$$
\begin{array}{rlrl}
& & \frac{5-k}{k+1} & =0 \\
\Rightarrow & & 5-k & =0 \\
\Rightarrow & k & =5
\end{array}
$$

Hence, required ratio is $5: 1$

$$
\therefore \quad y=\frac{(-4)(5)+(-6)(1)}{5+1}
$$

$\therefore \quad y=\frac{-26}{6}=-\frac{13}{3}$
Hence, point on y-axis is $\left(0,-\frac{13}{3}\right)$
Ans.
7. In Fig. 2, a circle is inscribed in a $\triangle A B C$, such that it touches the sides $A B, B C$ and $C A$ at points D, E and F respectively. If the lengths of sides $A B, B C$ and $C A$ are 12 cm , 8 cm and 10 cm respectively, find the lengths of $A D, B E$ and $C F$.

Fig. 2
Solution : Given, $A B=12 \mathrm{~cm} ; B C=8 \mathrm{~cm}$ and $C A=10 \mathrm{~cm}$
Let

$$
\begin{aligned}
A D & =A F \\
D B & =B E=12-x \\
C F & =C E=10-x
\end{aligned}
$$

$$
\therefore \quad D B=B E=12-x
$$

and,
Now,

$$
B C=B E+E C
$$

$$
\Rightarrow \quad 8=12-x+10-x
$$

$$
\Rightarrow \quad 8=22-2 x
$$

$$
\Rightarrow \quad 2 x=14
$$

$$
\Rightarrow \quad x=7 \mathrm{~cm}
$$

$\therefore A D=7 \mathrm{~cm}, B E=5 \mathrm{~cm}$ and $C F=3 \mathrm{~cm}$
Ans.
8. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5)$ and $R(-3,6)$, find the coordinates of P.
Solution : Let the coordinates of point P be $(2 y, y)$
Since, P is equidistant from Q and R

$$
\begin{aligned}
& \therefore \quad P Q=P R \\
& \begin{array}{r}
\Rightarrow \sqrt{(2 y-2)^{2}+(y+5)^{2}} \\
=\sqrt{(2 y+3)^{2}+(y-6)^{2}} \\
\Rightarrow(2 y-2)^{2}+(y+5)^{2}=(2 y+3)^{2}+(y-6)^{2} \\
\Rightarrow 4 y^{2}+4-8 y+y^{2}+25+10 y \\
\quad=4 y^{2}+9+12 y+y^{2}+36-12 y
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & 2 y+29 & =45 \\
\Rightarrow & 2 y & =45-29 \\
\Rightarrow & y & =\frac{16}{2}=8
\end{aligned}
$$

Hence, the co-ordinates of point P are $(16,8)$.

Ans.
9. How many terms of the A.P. $18,16,14, \ldots$. be taken so that their sum is zero ?
Solution : Given, A.P. is $18,16,14, \ldots$.
We have, $a=18, d=16-18=14-16=-2$
Now, $S_{n}=0$
Therefore,

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]=0
$$

$$
\begin{aligned}
\Rightarrow & \frac{n}{2}[2 \times 18+(n-1)(-2)] & =0 \\
\Rightarrow & 36-2 n+2 & =0 \\
\Rightarrow & 2 n & =38 \\
\therefore & n & =19
\end{aligned}
$$

Hence, the no. of terms are 19.
Ans.
10. In Fig. 3, $A P$ and $B P$ are tangents to a circle with centre O, such that $A P=5 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord $A B$.

Fig. 3
Solution : Given, $A P$ and $B P$ are tangents to a circle with centre O.

$$
\begin{array}{lrl}
\therefore & A P & =B P \\
\text { Now, } & \angle A P B=60^{\circ} & \text { (Given) } \\
\therefore & \angle P A B & =\angle P B A=60^{\circ} \\
& & \\
& & (\because A P=B P)
\end{array}
$$

Thus, $\triangle A P B$ is an equilateral triangle.
Hence, the length of chord $A B$ is equal to the length of AP i.e. 5 cm .

Ans.

SECTION - C

11. In Fig. 4, $A B C D$ is a square of side 14 cm . Semi-circles are drawn with each side of square as diameter. Find the area of the shaded region. (use $\pi=\frac{22}{7}$)

Fig. 4
Solution : Given, a square $A B C D$ of side 14 cm
Then, Area of square $=(\text { side })^{2}$

$$
=(14)^{2}=196 \mathrm{~cm}^{2}
$$

2 [Area of semi-circle] $=\pi r^{2}$

$$
=\frac{22}{7} \times \frac{14}{2} \times \frac{14}{2}=154 \mathrm{~cm}^{2}
$$

Now, Area of shaded region
$=2$ [Area of square -2 (Area of semi-circle)]
$=2[196-154]=2 \times 42=84 \mathrm{~cm}^{2}$
Ans.
12. In Fig. 5, is a decorative block, made up of two solids - a cube and a hemisphere. The base of the block is a cube of side 6 cm and the hemisphere fixed on the top has a diameter of 3.5 cm . Find the total surface area of the block. (use $\pi=\frac{22}{7}$)
[3]

Fig. 5
Solution: Given, side of a cube $=6 \mathrm{~cm}$ and the diameter of hemisphere $=3.5 \mathrm{~cm}$ Now, total surface area of decorative block $=$

Total surface area of cube - Surface area of base of hemisphere + CSA of hemisphere

$$
\begin{aligned}
& =(6)^{3}-\frac{22}{7} \times \frac{3 \cdot 5}{2} \times \frac{3 \cdot 5}{2}+2 \times \\
& \frac{22}{7} \times \frac{3 \cdot 5}{2} \times \frac{3 \cdot 5}{2} \\
& =216-\frac{22 \times 7}{16}+\frac{22 \times 7}{8}
\end{aligned}
$$

$$
=216+\frac{154}{16}
$$

$$
=225.625 \mathrm{~cm}^{2}
$$

Ans.
13. In Fig. 6, $A B C$ is a triangle coordinates of whose vertex A are $(0,-1) . D$ and E, respectively are the mid-points of the sides $A B$ and $A C$ and their coordinates are $(1,0)$ and $(0,1)$ respectively. If F is the midpoint of $B C$, find the areas of $\triangle A B C$ and $\triangle D E F$.

Fig. 6
Solution : Given, the coordinates of vertex $A(0,-1)$ and, mid points $D(1,0)$ and $E(0,1)$ respectively.
Since, D is the mid-point of $A B$
Let, coordinates of B are (x, y)
then, $\left(\frac{x+0}{2}, \frac{y-1}{2}\right)=(1,0)$
which gives $B(2,1)$
Similarly, E is the mid-point of $A C$
Let, coordinates of C are $\left(x^{\prime}, y^{\prime}\right)$
then, $\left(\frac{x^{\prime}+0}{2}, \frac{y^{\prime}-1}{2}\right)=(0,1)$
which gives $C(0,3)$
Now, Area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{2}|[0(1-3)+2(3+1)+0(-1-1)]| \\
& =4 \text { sq. units. Ans. }
\end{aligned}
$$

Now, F is the mid-point of $B C$.
\Rightarrow Coordinates of F are $\left(\frac{2+0}{2}, \frac{1+3}{2}\right)=(1,2)$
$\therefore \quad$ Area of $\left.\triangle D E F=\frac{1}{2} \right\rvert\,[1(1-2)+0(2-0)$ $+1(0-1)]$
$=\frac{|-2|}{2}=1$ sq. unit Ans.
14. In Fig. 7, are shown two arcs $P A Q$ and $P B Q$. Arc $P A Q$ is a part of circle with centre O and radius $O P$ while arc $P B Q$ is a semi-circle drawn on $P Q$ as diameter with centre M. If $O P=P Q=10 \mathrm{~cm}$ show that area of shaded region is $25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{cm}^{2}$.

Fig. 7
Solution: Given, $O P=P Q=10 \mathrm{~cm}$
Since, $O P$ and $O Q$ are radius of circle with centre O.
$\therefore \triangle O P Q$ is equilateral.
$\Rightarrow \angle P O Q=60^{\circ}$
Now, Area of segment PAQM

$$
\begin{aligned}
& =(\text { Area of sector } O P A Q O \\
& \quad \quad \quad-\text { Area of } \triangle P O Q) \\
& =\frac{\pi r^{2} \theta}{360^{\circ}}-\frac{1}{2} r^{2} \sin i \\
& =\frac{\pi \times(10)^{2} \times 60^{\circ}}{360^{\circ}}-\frac{1}{2}(10)^{2} \sin 60^{\circ} \\
& =\left(\frac{100 \pi}{6}-\frac{100 \sqrt{3}}{4}\right) \mathrm{cm}^{2}
\end{aligned}
$$

and, area of semi-circle $P B Q=\frac{\pi r^{2}}{2}=\frac{\pi}{2}(5)^{2}$

$$
=\frac{25}{2} \pi \mathrm{~cm}^{2}
$$

\therefore Area of shaded region $=$ Area of semicircle - Area of segment PAQM

$$
\begin{aligned}
& =\frac{25}{2} \pi-\left(\frac{100 \pi}{6}-\frac{100 \sqrt{3}}{4}\right) \\
& =\frac{25}{2} \pi-\frac{50 \pi}{3}+25 \sqrt{3} \\
& =\frac{75 \pi-100 \pi}{6}+25 \sqrt{3}
\end{aligned}
$$

$$
=\frac{-25 \pi}{6}+25 \sqrt{3}
$$

$$
=25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{cm}^{2 .} \quad \text { Hence Proved. }
$$

15. If the sum of first 7 terms of an A.P. is 49 and that of its first 17 terms is 289 , find the sum of first n terms of the A.P.
Solution : Given, sum of first 7 terms of an A.P. $\left(S_{7}\right)=49$
and sum of first 17 terms of an A.P. $\left(S_{17}\right)=289$
i.e., $\quad S_{7}=\frac{7}{2}[2 a+(7-1) d]=49$
$\Rightarrow \quad 2 a+6 d=14$
And, $\quad S_{17}=\frac{17}{2}[2 a+(17-1) d]=289$
$\Rightarrow \quad 2 a+16 d=34$
Solving equations (i) and (ii), we get

$$
\left.\Rightarrow \begin{array}{rl}
2 a+16 d=34 \tag{ii}\\
2 a+6 d & =14 \\
-\quad-\quad-
\end{array}\right)
$$

Putting $d=2$ in eq. (i), we get

$$
a=1
$$

Hence, sum of first n term of A.P.,

$$
\begin{array}{ll}
& S_{n}=\frac{n}{2}[2(1)+(n-1) 2] \\
\Rightarrow & S_{n}=\frac{n}{2}[2+(n-1) 2] \\
\Rightarrow \quad & S_{n}=n^{2} \quad \text { Ans. }
\end{array}
$$

16. Solve for x :
$\frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x+3)}=0, x \neq 3,-3 / 2$

Solution: We have,

$$
\begin{array}{rlrl}
& \frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x+3)}=0, x \neq \mathbf{3 ,}-\mathbf{3} / \mathbf{2} \\
\Rightarrow & 2 x(2 x+3)+(x-3)+(3 x+9) & =0 \\
\Rightarrow & 4 x^{2}+6 x+x-3+3 x+9 & =0 \\
\Rightarrow & 4 x^{2}+10 x+6 & =0 \\
\Rightarrow & 2 x^{2}+5 x+3 & =0 \\
\Rightarrow & & 2 x^{2}+2 x+3 x+3 & =0 \\
\Rightarrow & & 2 x(x+1)+3(x+1) & =0 \\
\Rightarrow & & (2 x+3)(x+1) & =0
\end{array}
$$

$$
\begin{aligned}
\Rightarrow & x \\
\therefore & x
\end{aligned}=-1, \frac{-3}{2}, \quad[\because \text { Given } x \neq-3 / 2] \text { Ans. }
$$

17. A well of diameter 4 m is dug 21 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 3 m to form an embankment. Find the height of the embankment.
[3]
Solution : Given, diameter and height of cylindrical well are 4 m and 21 m , respectively.
Now, the earth has been taken out to spread evenly all around.
Then, volume of earth dug out

$$
=\frac{22}{7} \times \frac{3}{4} \times \frac{1}{3} \times 21
$$

$$
=264 \mathrm{~m}^{3}
$$

And the volume of embankment of width 3 m which forms a shape of circular ring

$$
\begin{aligned}
& =\pi\left[(5)^{2}-(2)^{2}\right] \times h \\
{[\because \text { Outer radius }} & =2+3=5 \mathrm{~cm}] \\
& =\frac{22}{7}(25-4) \times h \\
& =66 h \mathrm{~m}^{3}
\end{aligned}
$$

\because Volume of earth dug out $=$ Volume of embankment

$$
\begin{aligned}
264 & =66 h \\
h & =\frac{264}{66}=4 \mathrm{~m}^{3}
\end{aligned}
$$

Hence, the height of the embankment is 4 m .

Ans.
18. The sum of the radius of base and height of a solid right circular cylinder is 37 cm . If the total surface area of the solid cylinder is $1628 \mathrm{sq} . \mathrm{cm}$, find the volume of the cylinder. (use $\pi=\frac{22}{7}$)

Solution : Let the radius of base and height of a solid cylinder be r and h, respectively.
Now, we have, $r+h=37 \mathrm{~cm}$
and, T.S.A. of solid cylinder

$$
\begin{array}{rlrl}
& & =2 \pi r(r+h)=1628 \mathrm{~cm}^{2} \\
\Rightarrow & 2 \pi r(37) & =1628 \\
\Rightarrow & & r & =\frac{1628}{37 \times 2 \times \frac{22}{7}} \\
& \therefore & & r
\end{array}
$$

\therefore Volume of the cylinder $=\pi r^{2} h$

$$
=\frac{22}{7} \times 7 \times 7 \times 30
$$

[Using equation (i), $h=30$]

$$
=4620 \mathrm{~cm}^{3}
$$

Ans.
19. The angles of depression of the top and bottom of a 50 m high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building. (use $\sqrt{3}=1.73$)
Solution : Let $A B$ and $C D$ be the tower and high building, respectively
Given,

$$
\begin{aligned}
& C D=50 \mathrm{~m} \\
& A B=h \mathrm{~m}
\end{aligned}
$$

Let,
Then, in $\triangle A D E$,

$$
\begin{align*}
\tan 45^{\circ}=\frac{A E}{D E} \\
\Rightarrow \quad 1=\frac{h-50}{D E} \\
\sim \tag{i}
\end{align*}
$$

and, in $\triangle A C B$,

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{A B}{C B} \\
\Rightarrow \quad \sqrt{3} & =\frac{h}{C B}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad C B=\frac{h}{\sqrt{3}} \tag{ii}
\end{equation*}
$$

Now, $C B=D E$
then, from eq. (i) and (ii), we get

$$
\begin{array}{rlrl}
& h-50 & =\frac{h}{\sqrt{3}} \\
\Rightarrow & & h-\frac{h}{\sqrt{3}} & =50 \\
\Rightarrow & & \frac{(\sqrt{3}-1)}{\sqrt{3}} h & =50 \\
\Rightarrow & h=\frac{50 \sqrt{3}}{\sqrt{3}-1}=\frac{50 \sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
\Rightarrow & & h & =\frac{50 \sqrt{3}(\sqrt{3}+1)}{3-1} \\
\Rightarrow & & h & =\frac{150+50 \sqrt{3}}{2} \\
\Rightarrow & & h & =75+25 \sqrt{3} \\
\Rightarrow & & h & =75+25(1.73) \\
& & & =118.25 \mathrm{~m}
\end{array}
$$

Hence, the height of the tower is 118.25 m and the horizontal distance between the tower and the building is 68.25 m . Ans.
20. In a single throw of a pair of different dice, what is the probability of getting (i) a prime number on each dice? (ii) a total of 9 or 11 ?

Solution : Total outcomes $=$
$\{(1,1),(1,2)(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$

No. of outcomes $=36$
(i) Let E_{1} be the event of getting a prime number on each dice.
Favourable outcomes $=\{(2,2),(2,3),(2,5)$, $(3,2),(3,3),(3,5),(5,2),(5,3),(5,5)\}$
\Rightarrow No. of favourable outcomes $=9$

$$
\therefore \quad P\left(E_{1}\right)=\frac{9}{36}=\frac{1}{4}
$$

Ans.
(ii) Let E_{2} be the event of getting a total of 9 or 11 .

Favourable outcomes

$$
=\{(3,6),(4,5),(5,4),(6,3),(5,6),(6,5)\}
$$

$$
\begin{aligned}
& \Rightarrow \text { No. of favourable outcomes }=6 \\
& \therefore \quad P\left(E_{2}\right)=\frac{6}{36}=\frac{1}{6} \quad \text { Ans. }
\end{aligned}
$$

SECTION - D

21. A passenger, while boarding the plane, slipped from the stairs and got hurt. The pilot took the passenger in the emergency clinic at the airport for treatment. Due to this, the plane got delayed by half an hour. To reach the destination 1500 km away in time, so that the passengers could catch the connecting flight, the speed of the plane was increased by $250 \mathrm{~km} /$ hour than the usual speed. Find the usual speed of the plane.
What value is depicted in this question? [4] Solution : Let the usual speed of the plane be $x \mathrm{~km} / \mathrm{h}$.
\therefore Time taken by plane to reach 1500 km away $=\frac{1500}{x}$ and the time taken by plane to reach

1500 km with increased speed $=\frac{1500}{x+250}$
Now, $\frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2}$
(Given)

$$
\begin{aligned}
& \Rightarrow \quad 1500 \frac{(x+250-x)}{x(x+250)}=\frac{1}{2} \\
& \Rightarrow \quad 3000 \times 250=x^{2}+250 x \\
& \Rightarrow \quad x^{2}+250 x-750000=0 \\
& \Rightarrow \quad x^{2}+1000 x-750 x-750000=0 \\
& \Rightarrow \quad x(x+1000)-750(x+1000)=0 \\
& \Rightarrow \quad(x+1000)(x-750)=0 \\
& \Rightarrow \quad x=-1000 \text { or } x=750
\end{aligned}
$$

(As speed can't be negative)
$\therefore \quad x=750$
\therefore Speed of plane is $750 \mathrm{~km} / \mathrm{h}$.
Ans.
Vlaue: It shows his responsibility towards mankind and his work.
22. Prove that the lengths of tangents drawn from an external point to a circle are equal.

Solution : Given, Two tangents $A M$ and $A N$ are drawn from a point A to the circle with centre O.

To prove : $A M=A N$
Construction : Join OM, ON and OA.
Proof: Since $A M$ is a tangent at M and $O M$ is radius
$\therefore \quad O M \perp A M$
Similarly, $\quad O N \perp A N$
Now, in $\triangle O M A$ and $\triangle O N A$,

$$
O M=O N
$$

(Radii of the circle)

$$
\begin{array}{rlrl}
O A & =O A \quad \text { (Common) } \\
& & \angle O M A & =\angle O N A=90^{\circ} \\
\therefore & & \triangle O M A & \cong \triangle O N A
\end{array}
$$

(By RHS congruence)
Hence,

$$
A M=A N
$$

(By C.P.C.T.)

Hence Proved.

23. Draw two concentric circles of radii 3 cm and 5 cm . Construct a tangent to smaller circle from a point on the larger circle. Also measure its length.
[4]
Solution : Steps of construction :
(i) Draw two concentric circles of radii 3 cm and 5 cm
(ii) Mark a point P on larger circle such that $\mathrm{OP}=5 \mathrm{~cm}$
(iii) Join $O P$ and bisect it at M.

(iv) Draw a circle with M as centre and radius equal to $M P$ to intersect the given circle at the points T and T^{\prime}.
(v) Join $P T$ and $P T^{\prime}$.

Then, $P T$ and $P T^{\prime}$ are the required tangents.
24. In Fig. 8, O is the centre of a circle of radius $5 \mathrm{~cm} . T$ is a point such that $O T=13 \mathrm{~cm}$ and $O T$ intersects circle at E. If $A B$ is a tangent to the circle at E, find the length of $A B$, where $T P$ and $T Q$ are two tangents to the circle. [4]

Fig. 8
Solution : Given, a circle with centre of radius 5 cm
and
$O T=13 \mathrm{~cm}$
Since, $P T$ is a tangent at P and $O P$ is a radius through P

$$
\begin{array}{l|l}
\therefore & O P \perp P T \\
\text { In } \triangle O P T, &
\end{array}
$$

$$
\begin{aligned}
& & (P T)^{2} & =(O T)^{2}-(O P)^{2} \\
\Rightarrow & & P T & =\sqrt{(13)^{2}-(5)^{2}} \\
\Rightarrow & & P T & =\sqrt{(169-25}=\sqrt{144}
\end{aligned}
$$

$$
\Rightarrow \quad P T=12 \mathrm{~cm}
$$

And, $T E=O T-O E=(13-5) \mathrm{cm}=8 \mathrm{~cm}$
$\begin{array}{ll}\text { Now, } & P A=A E \\ \text { Let } & P A=A E=x\end{array}$
Then, in $\triangle A E T$,
25. Find x in terms of a, b and c :

$$
\begin{equation*}
\frac{a}{x-a}+\frac{b}{x-b}=\frac{2 c}{x-c}, x \neq a, b, c \tag{4}
\end{equation*}
$$

Solution: We have,

$$
\begin{gathered}
\frac{a}{x-a}+\frac{b}{x-b}=\frac{2 c}{x-c}, x \neq a, b, c \\
\Rightarrow a(x-b)(x-c)+b(x-a)(x-c) \\
=2 c(x-a)(x-b) \\
\Rightarrow a\left(x^{2}-b x-c x+b c\right)+b\left(x^{2}-a x-c x+a c\right) \\
\quad=2 c\left(x^{2}-a x-b x+a b\right)
\end{gathered}
$$

$$
\begin{aligned}
& (A T)^{2}=(A E)^{2}+(E T)^{2} \\
& \Rightarrow \quad(12-x)^{2}=(x)^{2}+(8)^{2} \\
& \Rightarrow \quad 144+x^{2}-24 x=x^{2}+64 \\
& \Rightarrow \quad 24 x=80 \\
& \Rightarrow \quad A E=x=3.33 \mathrm{~cm} \\
& \therefore \quad A B=2 A E=2 \times 3.33 \\
& =6.66 \mathrm{~cm} \quad \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a x^{2}-a b x-a c x+a b c+b x^{2}-a b x-b c x+a b c \\
& =2 c x^{2}-2 a c x-2 b c x+2 a b c \\
& \Rightarrow a x^{2}+b x^{2}-2 a b x-a c x-b c x+2 a b c \\
& =2 c x^{2}-2 a c x-2 b c x+2 a b c \\
& \Rightarrow a x^{2}+b x^{2}-2 c x^{2}-2 a b x-a c x-b c x+2 a c x \\
& +2 b c x=0 \\
& \Rightarrow \quad(a+b-2 c) x^{2}+(-2 a b+a c+b c) x=0 \\
& \Rightarrow \quad x[(a+b-2 c) x+(a c+b c-2 a b)]=0 \\
& \therefore \quad x=0,-\frac{(a c+b c-2 a b)}{a+b-2 c} \\
& \text { Ans. }
\end{aligned}
$$

26. A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Find the speed of flying of the bird.
(Take $\sqrt{3}=1.732$)
Solution : Let B be the initial position of bird sitting on top of tree of length 80 m .

After 2 sec , the position of bird becomes C.
Let the distance travel by bird from B to C is $x \mathrm{~m}$.

Now, in $\triangle A B O$

$$
\begin{align*}
\tan 45^{\circ} & =\frac{A B}{A O}=\frac{80}{y} \\
\Rightarrow \quad y & =80 \mathrm{~m} \tag{i}
\end{align*}
$$

And, in $\triangle D C O$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{C D}{D O}=\frac{80}{x+y} \\
\Rightarrow \quad \frac{1}{\sqrt{3}} & =\frac{80}{x+80}
\end{aligned}
$$

[Using equation (i)]

$$
\begin{aligned}
\Rightarrow & x+80 & =80 \sqrt{3} \\
\Rightarrow & x & =80(\sqrt{3-1})
\end{aligned}
$$

$$
\begin{aligned}
& =80 \times 0.732 \\
x & =58.56 \mathrm{~m}
\end{aligned}
$$

Hence, speed of flying of the bird $=\frac{58 \cdot 56}{2}$

$$
\begin{aligned}
& \left(\because \text { Speed }=\frac{\text { Distance }}{\text { Time }}\right) \\
= & 29.28 \mathrm{~m} / \mathrm{s} \quad \text { Ans. }
\end{aligned}
$$

27. A thief runs with a uniform speed of $100 \mathrm{~m} / \mathrm{minute}$. After one minute a policeman runs after the thief to catch him. He goes with a speed of $100 \mathrm{~m} /$ minute in the first minute and increases his speed by 10 m/minute every succeeding minute. After how many minutes the policeman will catch the thief.
Solution : Let total time be n minutes
Since policeman runs after 1 minute so he will catch the thief in $(n-1)$ minutes.
Total distance covered by thief

$$
\begin{aligned}
& =100 \mathrm{~m} / \text { minute } \times n \text { minute } \\
& =(100 n) \mathrm{m}
\end{aligned}
$$

Now, total distance covered by the policeman

$$
=(100) \mathrm{m}+(100+10) \mathrm{m}+(100+10+10) \mathrm{m}
$$

$$
+\ldots . .+(n-1) \text { terms }
$$

$$
\text { i.e., } 100+110+120+\ldots . .+(n-1) \text { terms }
$$

$$
\therefore S_{n-1}=\frac{n-1}{2}[2 \times 100+(n-2) 10]
$$

$$
\Rightarrow \quad \frac{n-1}{2}[200+(n-2) 10]=100 n
$$

$$
\Rightarrow \quad(n-1)(200+10 n-20)=200 n
$$

$$
\Rightarrow 200 n-200+10 n^{2}-10 n+20-20 n=200 n
$$

$$
\Rightarrow \quad 10 n^{2}-30 n-180=0
$$

$$
\Rightarrow \quad n^{2}-3 n-18=0
$$

$$
\Rightarrow \quad n^{2}-(6-3) n-18=0
$$

$$
\Rightarrow \quad n^{2}-6 n+3 n-18=0
$$

$$
\Rightarrow \quad n(n-6)+3(n-6)=0
$$

$$
\Rightarrow \quad(n+3)(n-6)=0
$$

$\therefore \quad n=6$ or $n=-3$ (Neglect)
Hence, policeman will catch the thief in (6-1) i.e., 5 minute.

Ans.
28. Prove that the area of a triangle with vertices $(t, t-2),(t+2, t+2)$ and $(t+3, t)$ is independent of t.
Solution : Given, the vertices of a triangle $(t, t-2),(t+2, t+2)$ and $(t+3, t)$
\therefore Area of the triangle

$$
\begin{aligned}
& \left.=\frac{1}{2} \right\rvert\,[t(t+2-t)+(t+2)(t-t+2) \\
& \quad \quad+(t+3)(t-2-t-2)] \mid \\
& =\frac{1}{2}|(2 t+2 t+4-4 t-12)| \\
& =\frac{1}{2}|-8|=4 \text { sq. units }
\end{aligned}
$$

which is independent of t Hence Proved.
29. A game of chance consists of spinning an arrow on a circular board, divided into 8 equal parts, which comes to rest pointing at one of the numbers $1,2,3, \ldots, 8$ (Fig. 9), which are equally likely outcomes. What is the probability that the arrow will point at (i) an odd number (ii) a number greater than 3 (iii) a number less than 9

Fig. 9
Solution : Total no. of outcomes $=8$
(i) Let E_{1} be the event of getting an odd number
\therefore Favourable outcomes $=1,3,5,7$
\Rightarrow No. of favourable outcomes $=4$

$$
\therefore \quad P\left(E_{1}\right)=\frac{4}{8}=\frac{1}{2}
$$

Ans.
(ii) Let E_{2} be the event of getting a number greater than 3 .
\therefore Favourable outcomes $=4,5,6,7,8$
\Rightarrow No. of favourable outcomes $=5$

$$
\therefore \quad P\left(E_{2}\right)=\frac{5}{8}
$$

Ans.
(iii) Let E_{3} be the event of getting a number less than 9.
\therefore Favourable outcomes $=1,2,3,4,5,6,7,8$
\Rightarrow No. of favourable outcomes $=8$

$$
\therefore \quad P\left(E_{3}\right)=\frac{8}{8}=1
$$

Ans.
30. An elastic belt is placed around the rim of a pulley of radius 5 cm . (Fig. 10) From one point C on the belt, the elastic belt is pulled directly away from the centre O of the pulley until it is at $P, 10 \mathrm{~cm}$ from the point O. Find the length of the belt that is still in contact with the pulley. Also find the shaded area.
(use $\pi=3.14$ and $\sqrt{3}=1.73$)
[4]

Fig. 10
Solution : Given, a circular pulley of radius 5 cm with centre O.

$$
\begin{array}{ll}
\therefore \\
\text { and } & A O=O B=O C=5 \mathrm{~cm} \\
O P=10 \mathrm{~cm}
\end{array}
$$

Now, in right $\triangle A O P$,

$$
\begin{aligned}
& \cos i & =\frac{A O}{O P}=\frac{5}{10}=\frac{1}{2} \\
\therefore & i & =\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}
\end{aligned}
$$

$\therefore \angle A O B=2 i=120^{\circ}$
\Rightarrow Reflex $\angle A O B=360^{\circ}-120^{\circ}=240^{\circ}$
Length of major arc $\overparen{A B}=\frac{2 \pi r}{360^{\circ}}$ reflex $\angle A O B$

$$
\begin{aligned}
& =\frac{2 \times 3.14 \times 5 \times 240^{\circ}}{360^{\circ}} \\
& =20.93 \mathrm{~cm}
\end{aligned}
$$

Hence, length of the belt that is still in contact with pulley $=20.93 \mathrm{~cm}$
Now, by pythagoras theorem,

$$
\begin{aligned}
& (A P)^{2}=(O P)^{2}-(A O)^{2} \\
& \Rightarrow \quad(A P)^{2}=(10)^{2}-(5)^{2} \\
& \Rightarrow \quad A P=\sqrt{100-25} \\
& =\sqrt{75}=5 \sqrt{3} \mathrm{~cm} \\
& \therefore \quad \text { Area of } \triangle A O P=\frac{1}{2} \times 5 \times 25 \sqrt{3} \\
& =\frac{25 \sqrt{3}}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Also, \quad Area of $\triangle B O P=$ Area of $\triangle A O P$
and, Area of quad. $A O B P=2$ (Area of $\triangle A O P$)

$$
\begin{aligned}
& \qquad \begin{aligned}
&=2 \times \frac{25 \sqrt{3}}{2}=25 \sqrt{3} \mathrm{~cm}^{2} \\
&=43 \cdot 25 \mathrm{~cm}^{2}
\end{aligned} \\
& \text { Area of sector } A C B O=\frac{\pi r^{2} \angle A O B}{360^{\circ}} \\
& =\frac{3 \cdot 14 \times 5 \times 5 \times 120}{360^{\circ}} \\
& =26 \cdot 16 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of shaded region $=$ Area of quad. $A O B P$ - Area of sector $A C B O$

$$
\begin{aligned}
& =(43 \cdot 25-26 \cdot 16) \mathrm{cm}^{2} \\
& =17 \cdot 09 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

31. A bucket open at the top is in the form of frustum of a cone with a capacity of 12308.8 cm^{3}. The radii of the top and bottom circular ends are 20 cm and 12 cm , respectively. Find the height of the bucket and the area of metal sheet used in making the bucket.
(use $\pi=3.14$)
Solution : Given, the radii of top and bottom circular ends are 20 cm and 12 cm respectively.

And, volume of frustum (bucket) $=12308 \cdot 8 \mathrm{~cm}^{3}$

$$
\begin{array}{lr}
\Rightarrow & \frac{\pi h}{3}\left[R^{2}+r^{2}+R r\right]=12308 \cdot 8 \\
\Rightarrow & \frac{3 \cdot 14 \times h}{3}[400+144+240]=12308 \cdot 8
\end{array}
$$

$$
\therefore \quad \text { Height }(h)=\frac{12308 \cdot 8 \times 3}{3 \cdot 14 \times 784}
$$

$$
=\frac{36926 \cdot 4}{2461 \cdot 76}
$$

$$
=15 \mathrm{~cm}
$$

Slant height of the bucket (l)

$$
\begin{aligned}
& =\sqrt{h^{2}+(R-r)^{2}} \\
& =\sqrt{(15)^{2}+(20-12)^{2}} \\
& =\sqrt{225+64}=\sqrt{289} \\
& =17 \mathrm{~cm}
\end{aligned}
$$

Area of metal sheet used in making the bucket

$$
\begin{aligned}
& =\text { Curved surface area of frustum } \\
& \quad \quad \quad+\text { Base area } \\
& =\pi l(R+r)+\pi r^{2} \\
& =3 \cdot 14 \times 17 \times(20+12)+3.14 \times 12 \times 12 \\
& =3.14 \times 17 \times 32+3.14 \times 144 \\
& =3.14(544+144) \\
& =3.14 \times 688 \\
& =2160.32 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

Mathematics 2016 (Delhi) Term II

Note : Except for the following questions, all the remaining questions have been asked in previous set.

SECTION - B

10. How many terms of the A.P. 27, 24, 21, ... should be taken so that their sum is zero?[2]
Solution : Given, A.P. is $27,24,21, \ldots$
We have, $a=27, d=24-27=21-24=-3$
Now, $S_{n}=0$

Therefore, $S_{n}=\frac{n}{2}[2 a+(n-1) d]=0$
$\Rightarrow \frac{n}{2}[2(27)+(n-1)(-3)]=0$
$\Rightarrow \quad 54-3 n+3=0$
$\Rightarrow \quad 57-3 n=0$
$\Rightarrow \quad 3 n=57$
$\therefore \quad n=19$
Hence, the no. of terms are 19.

Ans.

SECTION - C

18. Solve for x :

$$
\begin{equation*}
\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2} ; x \neq 1,-2,2 \tag{3}
\end{equation*}
$$

Solution : We have,

$$
\begin{aligned}
& \frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2} ; x \neq 1,-2,2 \\
& \Rightarrow \frac{(x+1)(x+2)+(x-2)(x-1)}{(x-1)(x+2)} \\
& =\frac{4(x-2)-(2 x+3)}{x-2} \\
& \Rightarrow(x-2)\left[x^{2}+x+2 x+2+x^{2}-2 x-x+2\right] \\
& =[4 x-8-2 x-3]\left(x^{2}+x-2\right) \\
& \Rightarrow(x-2)\left(2 x^{2}+4\right)=(2 x-11)\left(x^{2}+x-2\right) \\
& \Rightarrow \quad 2 x^{3}+4 x-4 x^{2}-8=2 x^{3}+2 x^{2}-4 x \\
& -11 x^{2}-11 x+22 \\
& \Rightarrow \quad 4 x-4 x^{2}-8=-9 x^{2}-15 x+22 \\
& \Rightarrow \quad 5 x^{2}+19 x-30=0 \\
& \Rightarrow \quad 5 x^{2}+25 x-6 x-30=0 \\
& \Rightarrow 5 x(x+5)-6(x+5)=0 \\
& \Rightarrow \quad(5 x-6)(x+5)=0 \\
& \Rightarrow \quad x=-5, \frac{5}{6} \\
& \therefore \quad x=-5 \text { or } x=\frac{5}{6}
\end{aligned}
$$

Ans.
19. Two different dice are thrown together. Find the probability of :
(i) getting a number greater than 3 on each die
(ii) getting a total of 6 or 7 of the numbers on two dice
Solution : Total outcomes =
$\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3)(6,4),(6,5),(6,6)\}$
\Rightarrow Total no. of outcomes $=36$
(i) Let E_{1} be the event of getting a number greater than 3 on each die.
Favourable outcomes $=\{(4,4),(4,5),(4,6)$, $(5,4),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
\Rightarrow No. of favourable outcomes $=9$

$$
\therefore \quad P\left(E_{1}\right)=\frac{9}{96}=\frac{1}{4}
$$

Ans.
(ii) Let E_{2} be the event of getting a total of 6 or 7 of the numbers on two dice.
Favourableoutcomes $=\{(1,5),(2,4),(3,3),(4,2)$, $(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$ \Rightarrow No. of favourable outcomes $=11$

$$
\therefore \quad P\left(E_{2}\right)=\frac{11}{36}
$$

Ans.
20. A right circular cone of radius 3 cm , has a curved surface area of $47.1 \mathrm{~cm}^{2}$. Find the volume of the cone. (use $\pi=3.14$)
Solution : Given, radius of right circular cone $=3 \mathrm{~cm}$
and, curved surface area $=47 \cdot 1 \mathrm{~cm}^{2}$

$$
\begin{array}{rlrl}
\therefore & & \pi r l & =47 \cdot 1 \\
\Rightarrow & & l & =\frac{47 \cdot 1}{3 \cdot 14 \times 3}=5 \mathrm{~cm} \\
& \text { and } & & h \\
& & =\sqrt{l^{2}-r^{2}} \\
& & =\sqrt{(5)^{2}-(3)^{2}} \\
& & =\sqrt{25-9}=4 \mathrm{~cm}
\end{array}
$$

Now, Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \times 3.14 \times 3 \times 3 \times 4
$$

$$
=37.68 \mathrm{~cm}^{3}
$$

Ans.

SECTION — D

28. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are 60° and 30° respectively. Find the height of the tower.[4] Solution : Let length of tower is h In $\triangle A B D$,

$$
\begin{equation*}
\tan 60^{\circ}=\frac{h}{4} \tag{i}
\end{equation*}
$$

In $\triangle A B C$,

$$
\begin{align*}
\tan 30^{\circ} & =\frac{h}{9} \\
\Rightarrow & \cot \left(90^{\circ}-30^{\circ}\right)
\end{align*}=\frac{h}{9}
$$

Multiplying equation (i) and (ii), we get

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} \cdot \cot 60^{\circ} & =\frac{h}{4} \times \frac{h}{9} \\
\Rightarrow & 1 & =\frac{h^{2}}{36} \\
\therefore & & h & =6 \mathrm{~m}
\end{array}
$$

Ans.
Note : In this question, it has not been specified whether two points from tower are taken in same or opposite side we have taken these points on the same side of tower.
29. Construct a triangle $A B C$ in which $B C=6 \mathrm{~cm}$, $A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle A B C$.
Solution : Steps of construction :
(i) Draw a line segment $B C=6 \mathrm{~cm}$.
(ii) Construct $\angle X B C=60^{\circ}$
(iii) With B as centre and radius equal to 5 cm draw an arc which intersect $X B$ at A.
(iv) Join $A C$. Thus, $\triangle A B C$ is obtained.
(v) Draw D on $B C$ such that

$$
\begin{aligned}
B D & =\frac{3}{4} B C=\left(\frac{3}{4} \times 6\right) \mathrm{cm} \\
& =\frac{9}{2} \mathrm{~cm}=4.5 \mathrm{~cm}
\end{aligned}
$$

(vi) $\operatorname{Draw} D E \| C A$, cutting $B A$ at E.

Then, $\triangle B D E$ is the required triangle similar to $\triangle A B C$ such that each side of $\triangle B D E$ is $\frac{3}{4}$ times the corresponding side of $\triangle A B C$.
30. The perimeter of a right triangle is 60 cm . Its hypotenuse is 25 cm . Find the area of the triangle.
Solution: Given, the perimeter of right triangle $=60 \mathrm{~cm}$
and hypotenuse $=25 \mathrm{~cm}$

$$
\begin{array}{ll}
\therefore & A B+B C+C A=60 \mathrm{~cm} \\
\Rightarrow & A B+B C+25=60 \\
\therefore & A B+B C=35 \tag{i}
\end{array}
$$

Now, by pythagoras theorem,

$$
\begin{array}{rlrl}
(A C)^{2} & =(A B)^{2}+(B C)^{2} \\
\Rightarrow & (25)^{2} & =(A B)^{2}+(B C)^{2} \\
\therefore \quad A B^{2}+B C^{2} & =625 \tag{ii}
\end{array}
$$

we, know that, $(a+b)^{2}=a^{2}+b^{2}+2 a b$ then, $\quad(A B+B C)^{2}=(A B)^{2}+(B C)^{2}$

$$
+2 A B \cdot B C
$$

$$
(35)^{2}=625+2 A B \cdot B C
$$

$$
\Rightarrow \quad 2 A B \cdot B C=1225-625
$$

$$
\Rightarrow \quad 2 A B \cdot B C=600
$$

$$
\therefore \quad A B \cdot B C=300
$$

$$
\therefore \quad \text { Area of } \triangle A B C=\frac{1}{2} \times A B \times B C
$$

$$
=\frac{1}{2} \times 300
$$

$$
=150 \mathrm{~cm}^{2} \quad \text { Ans. }
$$

31. A thief, after committing a theft, runs at a uniform speed of $50 \mathrm{~m} /$ minute. After 2 minutes, a policeman runs to catch him. He goes 60 m in first minute and increases his speed by $5 \mathrm{~m} /$ minute every succeeding minute. After how many minute, the policeman will catch the thief?
Solution : Let total time be n minutes
Since policeman runs after two minutes he will catch the thief in $(n-2)$ minutes.
Total distance covered by thief

$$
=50 \mathrm{~m} / \mathrm{min} \times n \mathrm{~min}=(50 n) \mathrm{m}
$$

Now, total distance covered by the policeman

$$
=(60)+(60+5)+(60+5+5)
$$

$+\ldots . .+(n-2)$ terms
i.e., $60+65+70+\ldots . .+(n-2)$ terms
$\therefore S_{n-2}=\frac{n-2}{2}[2 \times 60+(n-3) 5]$
$\Rightarrow \quad \frac{n-2}{2}[120+(n-3) 5]=50 n$
$\Rightarrow \quad n-2(120+5 n-15)=100 n$
$\Rightarrow 120 n-240+5 n^{2}-10 n-15 n+30=100 n$

$$
\begin{array}{rr}
\Rightarrow & 5 n^{2}-5 n-210=0 \\
\Rightarrow & n^{2}-n-42=0 \\
\Rightarrow & n^{2}-(7-6) n-42=0 \\
\Rightarrow & n^{2}-7 n+6 n-42=0 \\
\Rightarrow & n(n-7)+6(n-7)=0 \\
\Rightarrow & (n+6)(n-7)=0 \\
\Rightarrow & n=7 \text { or } n=-6 \text { (neglect) }
\end{array}
$$

Hence, policeman will catch the thief in (7-2) i.e., 5 minute.

Ans.

Mathematics 2016 (Delhi) Term II

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. How many terms of the A.P. $65,60,55$, ,... be taken so that their sum is zero?
Solution : Given, A.P. is $65,60,55, \ldots$.
We have, $a=65, d=60-65=55-60=-5$
Now, $S_{n}=0$
Therefore, $S_{n}=\frac{n}{2}[2 a+(n-1) d]=0$

$$
\begin{aligned}
\Rightarrow & {[2(65)+(n-1)(-5)] } & =0 \\
\Rightarrow & 130-5 n+5 & =0 \\
\Rightarrow & 135-5 n & =0 \\
\Rightarrow & 5 n & =135 \\
\therefore & n & =27
\end{aligned}
$$

Hence, the no. of terms are 27.
Ans.

SECTION - C

18. A box consists of 100 shirts of which 88 are good, 8 have minor defects and 4 have major defects. Ramesh, a shopkeeper will buy only those shirts which are good but 'Kewal' another shopkeeper will not buy shirts with major defects. A shirt is taken out of the box at random. What is the probability that
(i) Ramesh will buy the selected shirt?
(ii) 'Kewal' will buy the selected shirt?

Solution : Let E_{1} be the event of selecting good shirts by Ramesh and E_{2} be the event of selecting the shirts with no major defects by 'Kewal'.
Total no. of shirts in a box $=100$
(i) \because Number of good shirts $=88$

$$
\therefore \quad P\left(E_{1}\right)=\frac{88}{100}=\frac{22}{25} \quad \text { Ans. }
$$

(ii) \because Number of shirts with no major defect

$$
=100-4=96
$$

$$
P\left(E_{2}\right)=\frac{96}{100}=\frac{24}{25} \quad \text { Ans. }
$$

19. Solve the following quadratic equation for x :

$$
\begin{equation*}
x^{2}+\left(\frac{a}{a+b}+\frac{a+b}{a}\right) x+1=0 \tag{3}
\end{equation*}
$$

Solution : We have,

$$
\begin{aligned}
& x^{2}+\left(\frac{a}{a+b}+\frac{a+b}{a}\right) x+1=0 \\
\Rightarrow \quad & x^{2}+\frac{a}{a+b} x+\frac{a+b}{a} x+1=0
\end{aligned}
$$

$$
\Rightarrow x\left(x+\frac{a}{a+b}\right)+\frac{a+b}{a}\left(x+\frac{a}{a+b}\right)=0
$$

$$
\Rightarrow \quad\left(x+\frac{a+b}{a}\right)\left(x+\frac{a}{a+b}\right)=0
$$

$$
\Rightarrow \quad x=-\frac{a}{a+b},-\frac{(a+b)}{a}
$$

$$
\therefore \quad x=-\frac{a}{a+b} \text { or } x=-\frac{(a+b)}{a}
$$

Ans.
20. A toy is in the form of a cone of base radius 3.5 cm mounted on a hemisphere of base diameter 7 cm . If the total height of the toy is 15.5 cm , find the total surface area of the toy. (Use $\pi=\frac{22}{7}$)

Solution : Given, the base radius of cone, $r=3.5 \mathrm{~cm}$
Total height of cone, $(h+r)=15.5 \mathrm{~cm}$ and base diameter of hemisphere $=7 \mathrm{~cm}$
Now, $h=(15 \cdot 5-3 \cdot 5) \mathrm{cm}=12 \mathrm{~cm}$

So, slant height, $\quad l=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{(12)^{2}+(3 \cdot 5)^{2}} \\
& =\sqrt{144+12 \cdot 25} \\
& =12 \cdot 5 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Total Surface Area $=\pi r l+2 \pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 3.5 \times 12.5+2 \times \frac{22}{7} \times 3.5 \times 3.5 \\
& =\frac{22}{7} \times 3.5(12.5+2 \times 3.5) \\
& =11(19 \cdot 5) \\
& =214.5 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

SECTION - D

28. The sum of three numbers in A.P. is 12 and sum of their cubes is 288 . Find the numbers.

Solution : Let the three numbers in A.P. be $a-d, a, a+d$.
Now,

$$
\begin{array}{rlrl}
\text { Now, } & a-d+a+a+d & =12 \\
\Rightarrow & 3 a & =12 \\
\therefore & & a & =4
\end{array}
$$

Also, $(4-d)^{3}+4^{3}+(4+d)^{3}=288$
$\Rightarrow 64-48 d+12 d^{2}-d^{3}+64+64+48 d+12 d^{2}+d^{3}$

$$
=288
$$

$\Rightarrow \quad 192+24 d^{2}=288$
$\Rightarrow \quad 24 d^{2}=288-192$
$\Rightarrow \quad d^{2}=\frac{96}{24}=4$
$\therefore \quad d= \pm 2$
\therefore The numbers are $2,4,6$ or $6,4,2$.
Ans.
29. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Solution : Given, a circle with centre O and a tangent $A B$ at a point M on circle.
To prove: $O M \perp A B$.
Construction : Take point N (other than M) on $A B$. Join ON.
Proof : Since N is a point on the tangent $A B$ other than P

$\therefore N$ lies outside the circle.
Let $O N$ passes through point P.
Then,

$$
\begin{align*}
& O P<O N \tag{i}\\
& O M=O P \quad \text { (Radii) } \tag{ii}\\
& O M<O N
\end{align*}
$$

But,
[From equation (i) and (ii)]
Thus, $O M$ is the shortest distance between the point O and the line $A B$.
But, it is known that the shortest distance between a point and a line is the perpendicular distance
$\therefore \quad O M \perp A B \quad$ Hence Proved.
30. The time taken by a person to cover 150 km was $2 \frac{1}{2}$ hours more than the time taken is return journey. If he returned at a speed of $10 \mathrm{~km} /$ hour more than the speed while going, find the speed per hour in each direction. [4] Solution : Let the speed while going be $x \mathrm{~km} / \mathrm{h}$
Time taken by a person to cover 150 km

$$
=\frac{150}{x} \text { hours }
$$

Time taken by a person in return journey

$$
=\frac{150}{x+10} \text { hours }
$$

Now, according to the given condition,

$$
\frac{150}{x}-\frac{150}{x+10}=\frac{5}{2}
$$

$$
\begin{array}{rlrl}
\Rightarrow & & \frac{150(x+10-x)}{x(x+10)} & =\frac{5}{2} \\
\Rightarrow & & 300 \times 10 & =5 x(x+10) \\
\Rightarrow & & 3000 & =5 x^{2}+50 x \\
\Rightarrow & 5 x^{2}+50 x-3000 & =0 \\
\Rightarrow & & x^{2}+10 x-600 & =0 \\
\Rightarrow & x^{2}+30 x-20 x-600 & =0 \\
\Rightarrow & x(x+30)-20(x+30) & =0 \\
\Rightarrow & & (x-20)(x+30) & =0 \\
\Rightarrow & & x & =20 \\
\text { or } & & x & =-30 \text { (neglect) }
\end{array}
$$

Hence, the speed while going is $20 \mathrm{~km} / \mathrm{h}$ and the speed while returning is $30 \mathrm{~km} / \mathrm{h}$ Ans.
31. Draw a triangle $A B C$ with $B C=7 \mathrm{~cm}$, $\angle B=45^{\circ}$ and $\angle A=105^{\circ}$. Then construct a triangle whose sides are $\frac{4}{5}$ times the corresponding sides of $\triangle A B C$.
Solution :

$$
\angle B=45^{\circ} \text { and } \angle A=105^{\circ}
$$

\because Sum of angles of triangle is 180°
$\therefore \quad \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \quad 105^{\circ}+45^{\circ}+\angle C=180^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & \angle C=180^{\circ}-\left(105^{\circ}+45^{\circ}\right) \\
\Rightarrow & \angle C=30^{\circ}
\end{array}
$$

Steps of construction :
(i) Draw a line segment $B C=7 \mathrm{~cm}$
(ii) Construct $\angle B=45^{\circ}$ and $\angle C=30^{\circ}$
(iii) A is the intersecting point of ray through B and C.
Thus, $\triangle A B C$ is obtained.
(iv) Draw D on $B C$ such that

$$
\begin{aligned}
B D & =\frac{4}{5} B C=\left(\frac{4}{5} \times 7\right) \mathrm{cm} \\
& =\frac{28}{5} \mathrm{~cm}=5.6 \mathrm{~cm}
\end{aligned}
$$

(v) Draw $D E \| C A$, cutting $B A$ at E.

Then, $\triangle B D E$ is the required triangle similar to $\triangle A B C$ such that each side of $\triangle B D E$ is $\frac{4}{5}$ times the corresponding side of $\triangle A B C$.

Time allowed : 3 Hours

SECTION - A

1. In $\triangle D E W, A B \| E W$. If $A D=4 \mathrm{~cm}, D E=$ 12 cm and $D W=24 \mathrm{~cm}$, then find the value of $D B$.

Solution : Let $B D=x \mathrm{~cm}$,
$D W=24 \mathrm{~cm}$,
Then, $B W=(24-x) \mathrm{cm}, A E=12-4=8 \mathrm{~cm}$
In $\triangle D E W, A B \| E W$
$\therefore \quad \frac{A D}{A E}=\frac{B D}{B W} \quad$ [Thales' Theorem]

$\therefore \quad D B=8 \mathrm{~cm}$
Ans.
2. If $\triangle A B C$ is right angled at B, what is the value of $\sin (A+C)$.
Solution: $\quad \angle B=90^{\circ}$
[Given]

We know that in $\triangle A B C$,

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

[Angle sum property of a triangle]

3. If $\sqrt{3} \sin \theta=\cos \theta$, find the value of

$$
\begin{equation*}
\frac{3 \cos ^{2} \theta+2 \cos \theta}{3 \cos \theta+2} \tag{1}
\end{equation*}
$$

Solution : $\sqrt{3} \sin \theta=\cos \theta \quad$ [Given]

$$
\begin{array}{ll}
\Rightarrow & \frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}} \text { or } \tan \theta=\frac{1}{\sqrt{3}} \\
\Rightarrow & \tan \theta=\tan 30^{\circ} \Rightarrow \theta=30^{\circ}
\end{array}
$$

Now,

$$
\begin{aligned}
\frac{3 \cos ^{2} \theta+2 \cos \theta}{3 \cos \theta+2} & =\frac{\cos \theta(3 \cos \theta+2)}{(3 \cos \theta+2)} \\
& =\cos \theta
\end{aligned}
$$

Put

$$
\theta=30^{\circ}
$$

$$
\Rightarrow \quad \cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

Ans.
4. From the following frequency distribution, find the median class :

Cost of Living Index	Number of weeks
$1400-1550$	8
$1550-1700$	15
$1700-1850$	21
$1850-2000$	8

Solution :

Cost of Living Index	No. of Weeks (f)	c.f.
$1400-1550$	8	8
$1550-1700$	15	23
$1700-1850$	21	44
$1850-2000$	8	52
	$\Sigma f=52$	

$$
\begin{aligned}
& \Rightarrow \angle A+\angle C+90^{\circ}=180^{\circ} \\
& \Rightarrow \quad \angle A+\angle C=180^{\circ}-90^{\circ} \\
& =90^{\circ} \\
& \therefore \quad \sin (A+C)=\sin 90^{\circ}=1
\end{aligned}
$$

Here,
$n=52$
$\Rightarrow \quad \frac{n}{2}=\frac{52}{2}=26$,
26 will lie in the class interval 1700-1850.
\therefore Median class is 1700-1850.
Ans.

SECTION - B

5. Show that $3 \sqrt{7}$ is an irrational number.

Solution : Let us assume, to the contrary, that $3 \sqrt{7}$ is rational.
That is, we can find co-prime a and $b(b \neq 0)$ such that $3 \sqrt{7}=\frac{a}{b}$
Rearranging, we get $\sqrt{7}=\frac{a}{3 b}$
Since $3, a$ and b are integers, $\frac{a}{3 b}$ can be written in the form of $\frac{p}{q}$, so $\frac{a}{3 b}$ is rational,
and so $\sqrt{7}$ is rational.

But this contradicts the fact that $\sqrt{7}$ is irrational. So, we conclude that $3 \sqrt{7}$ is irrational.

Hence Proved.
6. Explain why $(17 \times 5 \times 11 \times 3 \times 2+2 \times 11)$ is a composite number?
Solution: $17 \times 5 \times 11 \times 3 \times 2+2 \times 11$

$$
\begin{align*}
& =17 \times 5 \times 3 \times 22+22 \tag{i}\\
& =22(17 \times 5 \times 3+1) \\
& =22(255+1)=2 \times 11 \times 256
\end{align*}
$$

Equation (i) is divisible by 2,11 and 256 , which means it has more than 2 prime factors.
$\therefore(17 \times 5 \times 11 \times 3 \times 2+2 \times 11)$ is a composite number.

Ans.
7. Find whether the following pair of linear equations is consistent or inconsistent :

$$
\begin{align*}
& 3 x+2 y=8 \\
& 6 x-4 y=9 \tag{2}
\end{align*}
$$

Solution : Here, $\frac{a_{1}}{a_{2}}=\frac{3}{6}=\frac{1}{2}, \frac{b_{1}}{b_{2}}=\frac{2}{-4}=\frac{-1}{2}$

$$
\frac{1}{2} \neq \frac{-1}{2}
$$

Since $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, which will give a unique solution.

Hence, given pair of linear equations is consistent.

Ans.
8. X and Y are points on the sides $A B$ and $A C$, respectively of a triangle $A B C$ such that $\frac{A X}{A B}, A Y=2 \mathrm{~cm}$ and $Y C=6 \mathrm{~cm}$. Find whether $X Y \| B C$ or not.
Solution: $\frac{A X}{A B}=\frac{1}{4}$
i.e., $\quad A X=1 K, \mathrm{AB}=4 K$
(K- constant)
$\therefore \quad B X=A B-A X$

$$
=4 K-1 K=3 K
$$

Now, $\quad \frac{A X}{X B}=\frac{1 K}{3 K}=\frac{1}{3}$
and,

$$
\frac{A Y}{Y C}=\frac{2}{6}=\frac{1}{3}
$$

$$
\frac{A X}{X B}=\frac{A Y}{Y C}
$$

$\therefore \quad X Y \| B C$

(By converse of Thales' theorem) Ans.
9. Prove the following identity :

$$
\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}=1-\sin \theta \cdot \cos \theta
$$

Solution :

$$
\begin{aligned}
& \text { L.H.S. }=\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta} \\
& =\frac{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cdot \cos \theta .\right)}{(\sin \theta+\cos \theta)} \\
& \quad\left[\because a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)\right] \\
& =1-\sin \theta \cdot \cos \theta=\text { R.H.S. }
\end{aligned}
$$

$$
\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right] \text { Hence Proved. }
$$

10. Show that the mode of the series obtained by combining the two series S_{1} and S_{2} given below is different from that of S_{1} and S_{2} taken separately :

$$
\begin{align*}
& \bar{S}_{1}: 3,5,8,8,9,12,13,9,9 \\
& S_{2}: 7,4,7,8,7,8,13 \tag{2}
\end{align*}
$$

Solution : Mode of S_{1} series $=9$

$$
\text { Mode of } S_{2} \text { series }=7
$$

After combining S_{1} and S_{2}, the new series will be
$=3,5,8,8,9,12,13,9,9,7,4,7,8,7,8,13$.
Mode of combined series $=8$ (maximum times)

Mode of $\left(S_{1}, S_{2}\right)$ is different from mode of S_{1} and mode of S_{2} separately.

Hence Proved.

SECTION - C

11. The length, breadth and height of a room are $8 \mathrm{~m} 50 \mathrm{~cm}, 6 \mathrm{~m} 25 \mathrm{~cm}$ and 4 m 75 cm respectively. Find the length of the longest rod that can measure the dimensions of the room exactly.
Solution : To find the length of the longest rod that can measure the dimensions of the room exactly, we have to find HCF.
Length, $L=8 \mathrm{~m} 50 \mathrm{~cm}=850 \mathrm{~cm}$

$$
=2^{1} \times 5^{2} \times 17
$$

Breadth, $B=6 \mathrm{~m} 25 \mathrm{~cm}=625 \mathrm{~cm}=5^{4}$
Height, $H=4 \mathrm{~m} 75 \mathrm{~cm}=475 \mathrm{~cm}=5^{2} \times 19$
\therefore HCE of L, B and H is $5^{2}=25 \mathrm{~cm}$
\therefore Length of the longest rod $=25 \mathrm{~cm}$ Ans.
12. Solve by elimination :

$$
\begin{align*}
3 x-y & =7 \\
2 x+5 y+1 & =0 \tag{3}\\
3 x-y & =7 \tag{ii}\\
2 x+5 y & =-1
\end{align*}
$$

$$
\text { Solution : } \quad 3 x-y=7
$$

Multiplying equation (i) by 5 and solving it with equation (ii), we get

$$
\begin{array}{rlrl}
2 x+5 y & =-1 \\
15 x-5 y & =35 \\
\hline 17 x & =34 \\
\Rightarrow \quad & \quad x & =\frac{34}{17}=2
\end{array}
$$

Putting the value of x in (i), we have

$$
\begin{array}{rlrl}
& & 3(2)-y & =7 \\
\Rightarrow & 6-y & =7 \Rightarrow-y=7-6 \\
\Rightarrow & & y & =-1 \\
& \therefore & x=2, y=-1
\end{array}
$$

Ans.
13. Find a quadratic polynomial, the sum and product of whose zeroes are 0 and $-\frac{3}{5}$ respectively. Hence find the zeroes. [3]

Solution : Quadratic polynomial
$=x^{2}-$ (Sum of zeroes) $x+$ Product of zeroes
$=x^{2}-(0) x+\left(\frac{-3}{5}\right)=x^{2}-\frac{3}{5}$
$=(x)^{2}-\left(\sqrt{\frac{3}{5}}\right)^{2}$
$=\left(x-\sqrt{\frac{3}{5}}\right)\left(x+\sqrt{\frac{3}{5}}\right)$

$$
\left[\begin{array}{l}
\text { By applying } \\
\left(a^{2}-b^{2}\right)=(a+b)(a-b)
\end{array}\right]
$$

Zeroes are, $x-\sqrt{\frac{3}{5}}=0$ or $x+\sqrt{\frac{3}{5}}=0$

$$
\begin{array}{ll}
\Rightarrow & x=\sqrt{\frac{3}{5}} \quad \text { or } \quad x=-\sqrt{\frac{3}{5}} \\
\Rightarrow & x=\sqrt{\frac{3}{5} \times \frac{5}{5}} \quad \text { or } \quad x=-\sqrt{\frac{3}{5} \times \frac{5}{5}} \\
\therefore & x=\frac{\sqrt{15}}{5} \quad \text { or } \quad x=\frac{-\sqrt{15}}{5}
\end{array}
$$

Ans.
14. The sum of the digits of a two digit number is 8 and the difference between the number and that formed by reversing the digits is 18 . Find the number.
Solution : Let unit digit $=x$
Tens digit $=y$
So, original number $=$ unit digit $+10 \times$ tens digit

$$
1=x+10 y
$$

According to question,

$$
\text { Sum of digits }=8
$$

So, $\quad x+y=8$
On reversing the digits, unit digit $=y$
Tens digit $=x$
so, \quad New number $=10 x+y$
According to question,

$$
\text { Difference }=18
$$

$\Rightarrow x+10 y-(10 x+y)=18$
$\Rightarrow x+10 y-10 x-y=18$

$$
\begin{array}{lc}
\Rightarrow & 9 y-9 x=18 \\
\Rightarrow & y-x=2 \tag{ii}
\end{array}
$$

By adding eq. (i) and (ii),

$$
\begin{aligned}
2 y & =10 \\
\Rightarrow \quad y & =\frac{10}{2} \Rightarrow y=5
\end{aligned}
$$

Put the value of y in eq. (i),

$$
\begin{aligned}
& & x+y & =8 \\
\Rightarrow & & x+5 & =8 \\
\Rightarrow & & x & =8-5 \\
\Rightarrow & & x & =3
\end{aligned}
$$

\therefore Original number $=10 y+x$

$$
=10 \times 5+3
$$

$$
=50+3
$$

$$
=53
$$

Ans.
15. In given figure, $E B \perp A C, B G \perp A E$ and $C F \perp A E$.
[3]
Prove that :
(i) $\triangle A B G \sim \triangle D C B$
(ii) $\frac{B C}{B D}=\frac{B E}{B A}$

Solution :

Given : $E B \perp A C, B G \perp A E$ and $C F \perp A E$
To prove : (i) $\triangle A B G \sim \triangle D C B$
(ii) $\quad \frac{B C}{B D}=\frac{B E}{B A}$

Proof: (i) In $\triangle A B G$ and $\triangle D C B, B G \| C F$ as corresponding angles are equal.

$$
\begin{array}{ll}
\angle 2=\angle 5 & \quad\left[\text { Each } 90^{\circ}\right] \\
\angle 6=\angle 4 &
\end{array}
$$

[Corresponding angles]
$\therefore \quad \triangle A B G \sim \triangle D C B$ Hence Proved.
[By AA similarity]
$\therefore \quad \angle 1=\angle 3$
[C.P.C.T]
(ii) In $\triangle A B E$ and $\triangle D B C$,
$\angle 1=\angle 3$
$\angle A B E=\angle 5$
[Each is $90^{\circ}, E B \perp A C$ (Given)]

$$
\triangle A B E \sim \triangle D B C
$$

[By AA similarity]
In similar triangles, corresponding sides are proportional

$$
\therefore \quad \frac{B C}{B D}=\frac{B E}{B A} \quad \text { Hence Proved }
$$

16. In triangle $A B C$, if $A P \perp B C$ and $A C^{2}=B C^{2}-A B^{2}$, then prove that

$$
\begin{equation*}
P A^{2}=P B \times C P \tag{3}
\end{equation*}
$$

Solution : $A C^{2}=B C^{2}-A B^{2} \quad$ [Given]

$$
\begin{aligned}
& \Rightarrow & A C^{2}+A B^{2} & =B C^{2} \\
& \therefore & \angle B A C & =90^{\circ}
\end{aligned}
$$

[By converse of Pythagoras' theorem]

$\triangle A P B \sim \triangle C P A$
If a perpendicular is drawn from the vertex of the right angle of a triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other

$$
\Rightarrow \quad \frac{A P}{C P}=\frac{P B}{P A}
$$

[In similar triangle, corresponding sides are proportional]

$$
\Rightarrow \quad P A^{2}=P B . C P \text { Hence Proved }
$$

17. If $\sin \theta=\frac{12}{13}, 0^{\circ}<\theta<90^{\circ}$, find the value of :

$$
\begin{equation*}
\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cdot \cos \theta} \times \frac{1}{\tan ^{2} \theta} \tag{3}
\end{equation*}
$$

Solution : Given, $\sin \theta=\frac{12}{13}$

$$
\Rightarrow \quad \frac{P}{H}=\frac{12}{13}
$$

Let, $P=12 K, H=13 K$

$$
P^{2}+B^{2}=H^{2}
$$

[Pythagoras theorem]

$$
\begin{aligned}
&(12 K)^{2}+B^{2}=(13 K)^{2} \\
& 144 K^{2}+B^{2}=169 K^{2} \\
& B^{2}=169 K^{2}-144 K^{2} \\
&=25 K^{2} \\
& \therefore \quad B=5 K \\
& \therefore \quad \cos \theta=\frac{B}{H}=\frac{5 K}{13 K}=\frac{5}{13} \\
& \text { and } \quad \tan \theta=\frac{P}{B}=\frac{12 K}{5 K}=\frac{12}{5} \\
& \text { Now, } \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cdot \cos \theta} \times \frac{1}{\tan ^{2} \theta}
\end{aligned}
$$

On solving,

$$
\begin{aligned}
& =\frac{\left(\frac{12}{13}\right)^{2}-\left(\frac{5}{13}\right)^{2}}{2\left(\frac{12}{13}\right)\left(\frac{5}{13}\right)} \times \frac{1}{\left(\frac{12}{5}\right)^{2}} \\
& =\frac{\frac{144-25}{169}}{\frac{120}{169}} \times \frac{25}{144} \\
& =\frac{119}{120} \times \frac{25}{144}=\frac{595}{3456} \quad \text { Ans. }
\end{aligned}
$$

18. If $\sec \theta+\tan \theta=p$, prove that

$$
\begin{equation*}
\sin \theta=\frac{p^{2}-1}{p^{2}+1} \tag{3}
\end{equation*}
$$

Solution :

$$
\left.\begin{array}{c}
\text { R.H.S. }=\frac{p^{2}-1}{p^{2}+1} \\
=\frac{(\sec \theta+\tan \theta)^{2}-1}{(\sec \theta+\tan \theta)^{2}+1} \\
=\frac{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta-1}{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta+1} \\
\quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
=\frac{\left(\sec ^{2} \theta-1\right)+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\left(1+\tan ^{2} \theta\right)+2 \sec \theta \tan \theta} \\
=\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\sec ^{2} \theta+2 \sec \theta \tan \theta} \\
\quad\left[\because \sec { }^{2} \theta-1=\tan ^{2} \theta\right. \\
\Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta
\end{array}\right] .
$$

$$
\begin{aligned}
& =\frac{2 \tan ^{2} \theta+2 \sec \theta \tan \theta}{2 \sec ^{2} \theta+2 \sec \theta \tan \theta} \\
& =\frac{2 \tan \theta(\tan \theta+\sec \theta)}{2 \sec \theta(\sec \theta+\tan \theta)}=\frac{\tan \theta}{\sec \theta} \\
& =\frac{\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}} \\
& =\sin \theta=\text { L.H.S. }
\end{aligned}
$$

Hence Proved.
19. Find the mean of the following distribution by Assumed Mean Method :

Class Interval	Frequency
$10-20$	8
$20-30$	7
$30-40$	12
$40-50$	23
$50-60$	11
$60-70$	13
$70-80$	8
$80-90$	6
$90-100$	12

[3]
Solution :

Class Interval	Frequency $\left(f_{i}\right)$	x_{i}	$d_{i}=$ $x_{i}-55$	$f_{i} d_{i}$
$10-20$	8	15	-40	-320
$20-30$	7	25	-30	-210
$30-40$	12	35	-20	-240
$40-50$	23	45	-10	-230
$50-60$	11	55	0	0
$60-70$	13	65	10	130
$70-80$	8	75	20	160
$80-90$	6	85	30	180
$90-100$	12	95	40	480
	$\Sigma f_{i}=100$			$\Sigma f_{i} d_{i}=-50$

Let $\mathrm{A}=55$

$$
\begin{aligned}
\text { Mean } & =\mathrm{A}+\frac{\sum f_{i} d_{i}}{\sum f_{i}}=55+\left(\frac{-50}{100}\right) \\
& =55-\frac{50}{100}=55-0 \cdot 5=54 \cdot 5
\end{aligned}
$$

20. The average score of boys in the examination of a school is 71 and that of the girls is 73. The average score of the school in the examination is $71 \cdot 8$. Find the ratio of number of boys in the number of girls who appeared in the examination.

Solution :

Let the number of boys $=n_{1}$
and \quad number of girls $=n_{2}$

$$
\text { Average boys' score }=71=\overline{X_{1}}(\text { Let })
$$

Average girls' score $=73=\overline{X_{2}}$ (Let)
Combined mean $=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}}$

$$
\begin{aligned}
& \quad 71 \cdot 8=\frac{n_{1}(71)+n_{2}(73)}{n_{1}+n_{2}} \\
& \Rightarrow \quad 71 n_{1}+73 n_{2}=71 \cdot 8 n_{1}+71 \cdot 8 n_{2} \\
& \Rightarrow 71 n_{1}-71 \cdot 8 n_{1}=71 \cdot 8 n_{2}-73 n_{2} \\
& \Rightarrow \quad-0 \cdot 8 n_{1}=-1 \cdot 2 n_{2} \\
& \Rightarrow \quad \quad \frac{n_{1}}{n_{2}}=\frac{1 \cdot 2}{0 \cdot 8} \Rightarrow \frac{n_{1}}{n_{2}}=\frac{3}{2} \\
& \Rightarrow \quad n_{1}: n_{2}=3: 2
\end{aligned}
$$

\therefore No. of boys : No. of girls $=3: 2$. Ans.

SECTION - D

21. Find HCF of numbers 134791, 6341 and 6339 by Euclid's division algorithm. [4] Solution : First we find HCF of 6339 and 6341 by Euclid's division method

	$6 3 3 9 \longdiv { 6 3 4 1 (1 }$
	$2 \longdiv { 6 3 3 9 } 3 1 6 9$
	6
	3
	2
	13
	12
	19
	18
	$1 \longdiv { 2 }$
	2
	0
	$6341>6339$
\Rightarrow	$6341=6339 \times 1+2$
Also,	$6339=2 \times 3169+1$
	$2=1 \times 2+0$

$2 \longdiv { 6 3 3 9 (3 1 6 9 }$

19
$1 \longdiv { 2 } (2$

2
0

$$
\begin{aligned}
\Rightarrow & 6341 & =6339 \times 1+2 \\
\text { Also, } & 6339 & =2 \times 3169+1 \\
& 2 & =1 \times 2+0
\end{aligned}
$$

\therefore HCF of 6341 and 6339 is 1.
Now, we find the HCF of 134791 and 1

$$
134791=1 \times 134791+0
$$

\therefore HCF of 134791 and 1 is 1 .
Hence, HCF of given three numbers is 1 .
Ans.
22. Draw the graph of the following pair of linear equations :

$$
x+3 y=6 \text { and } 2 x-3 y=2
$$

Find the ratio of the areas of the two triangles formed by first line, $x=0, y=0$ and second line, $x=0, y=0$.
Solution :

First Line

$$
x+3 y=6
$$

$$
\Rightarrow \quad x=6-3 y \quad \Rightarrow \quad 2 x=12+3 y
$$

$$
\Rightarrow \quad x=\frac{12+3 y}{2}
$$

x	6	3	0
y	0	1	2

$(6,0),(3,1),(0,2)$

x	6	3	0
y	0	-2	-4

$(6,0),(3,-2),(0,-4)$

Area of triangle
$=\frac{1}{2} \times$ base \times corresponding altitude

$$
\begin{array}{lrl}
\therefore & \frac{\text { Area of } \triangle A O B}{\text { Area of } \triangle A O C}=\frac{1 / 2 \times O A \times O B}{1 / 2 \times O A \times O C} \\
\Rightarrow & \frac{O B}{O C}=\frac{2}{4}=\frac{1}{2}
\end{array}
$$

\therefore Required ratio $=1: 2$
Ans.
23. If the polynomial $\left(x^{4}+2 x^{3}+8 x^{2}+12 x+\right.$ 18) is divided by another polynomial $\left(x^{2}+5\right)$, the remainder comes out to be $(p x+q)$, find the values of p and q.

Solution :

$$
\begin{aligned}
& x ^ { 2 } + 5 \longdiv { x ^ { 4 } + 2 x ^ { 3 } + 8 x ^ { 2 } + 1 2 x + 1 8 } \\
& +x^{4} \quad+5 x^{2} \\
& -\quad-\quad-\quad 2 x^{3}+3 x^{2}+12 x+18 \\
& +2 x^{3}+10 x \\
& -\frac{-}{3 x^{2}+2 x+18} \\
& +3 x^{2}+15 \\
& -\quad-\quad 2 x+3 \\
& \text { Remainder }=2 x+3 \\
& p x+q=2 x+3 \\
& p=2, q=3
\end{aligned}
$$

Ans.
24. What must be subtracted from $p(x)=8 x^{4}$ $+14 x^{3}-2 x^{2}+8 x-12$ so that $4 x^{2}+3 x-2$ is factor of $p(x)$? This quesiton was given to group of students for working together.

Do you think teacher should promote group work ?
Solution : For this,

$$
\begin{array}{r}
4 x ^ { 2 } + 3 x - 2 \longdiv { 8 x ^ { 2 } + 2 x - 1 } \begin{array} { r }
{ 8 x ^ { 3 } - 2 x ^ { 2 } + 8 x - 1 2 } \\
{ + 8 x ^ { 4 } + 6 x ^ { 3 } - 4 x ^ { 2 } } \\
{ - \quad - \quad + } \\
{ \hline \begin{array} { l }
{ 8 x ^ { 3 } + 2 x ^ { 2 } + 8 x - 1 2 }
\end{array} } \\
{ + 8 x ^ { 3 } + 6 x ^ { 2 } - 4 x }
\end{array} \\
-\quad+4 x^{2}+12 x-12 \\
-4 x^{2}-3 x+2 \\
+\quad+\quad- \\
+15 x-14
\end{array}
$$

Polynomial to be subtracted is $(15 x-14)$.
Ans.
25. Prove "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio". [4]

Solution : Given, In $\triangle A B C, D E \| B C$

To prove : $\frac{A D}{D B}=\frac{A E}{E C}$
Construction : Draw $E M \perp A B$ and $D N \perp A C$. Join B to E and C to D.

Proof: In $\triangle A D E$ and $\triangle B D E$,

$$
\begin{align*}
\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)} & =\frac{\frac{1}{2} \times A D \times E M}{\frac{1}{2} \times D B \times E M} \\
& =\frac{A D}{D B} \tag{i}
\end{align*}
$$

[Area of $\Delta=\frac{1}{2} \times$ base \times corresponding altitude]

In $\triangle A D E$ and $\triangle C D E$

$$
\begin{align*}
\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle C D E)} & =\frac{\frac{1}{2} \times A E \times D N}{\frac{1}{2} \times E C \times D N} \\
& =\frac{A E}{E C} \tag{ii}
\end{align*}
$$

Since,

$$
D E \| B C
$$

[Given]

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle B D E)=\operatorname{ar}(\triangle C D E) \tag{iii}
\end{equation*}
$$

[triangles on the same base and between the same parallel sides are equal in area]

From eq. (i), (ii) and (iii),

$$
\frac{A D}{D B}=\frac{A E}{E C} \quad \text { Hence Proved. }
$$

26. In the given figure, $A D=3 \mathrm{~cm}, A E=5 \mathrm{~cm}$, $B D=4 \mathrm{~cm}, C E=4 \mathrm{~cm}, C F=2 \mathrm{~cm}, B F=2.5$ cm , then find the pair of parallel lines and hence their lengths.

Solution : $\frac{E C}{E A}=\frac{C F}{F B}$ and $\frac{C F}{F B}=\frac{2}{2.5}=\frac{4}{5}$

$$
\Rightarrow \quad \frac{E C}{E A}=\frac{C F}{F B}
$$

In $\triangle A B C, E F \| A B$
[Converse of Thales' theorem]

$$
\text { Also, } \begin{aligned}
\frac{C E}{C A} & =\frac{4}{4+5}=\frac{4}{9} \\
\frac{C F}{C B} & =\frac{2}{2+2.5}=\frac{2}{4.5}=\frac{4}{9} \\
\frac{E C}{E A} & =\frac{C F}{C B}
\end{aligned}
$$

$$
\angle E C F=\angle A C B \quad[\text { Common }]
$$

$$
\triangle C F E \sim \triangle C B A \text { [SAS similarity] }
$$

$$
\Rightarrow \quad \frac{E F}{A B}=\frac{C E}{C A}
$$

[In similar Δ^{\prime} s, corresponding sides are proportional]

$$
\begin{array}{ll}
\Rightarrow & \frac{E F}{7}=\frac{4}{9} \\
& {[\because A B=3+4=7 \mathrm{~cm}]} \\
\therefore & E F=\frac{28}{9} \mathrm{~cm} \text { and } A B=7 \mathrm{~cm} \\
& \quad \text { Ans. }
\end{array}
$$

27. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$,
where $0<A+B<90^{\circ}, A>B$, find A and B. Also calculate $\tan A . \sin (A+B)+\cos A$. $\tan (A-B)$.
Solution : Given,

$$
\begin{align*}
& \tan (A+B)=\sqrt{3}, \tan (A-B)=\frac{1}{\sqrt{3}} \\
& \Rightarrow \quad \tan (A+B)=\tan 60^{\circ} \\
& \Rightarrow \quad(A+B)=60^{\circ} \tag{i}\\
& \text { And, } \tan (A-B)=\tan 30^{\circ} \\
& \Rightarrow \quad(A-B)=30^{\circ} \tag{ii}
\end{align*}
$$

On adding eq. (i) \& (ii), we get

$$
\begin{aligned}
A+B & =60^{\circ} \\
A-B & =30^{\circ} \\
2 A & =90^{\circ} \quad \text { [By adding] } \\
\Rightarrow \quad A & =\frac{90^{\circ}}{2}=45^{\circ}
\end{aligned}
$$

From eq. (i), $A+B=60^{\circ}$

$$
\begin{aligned}
\Rightarrow & 45^{\circ}+B & =60^{\circ} \\
\Rightarrow & B & =15^{\circ} \\
\therefore & A & =45^{\circ}, B=15^{\circ}
\end{aligned}
$$

Now, $\tan A \cdot \sin (A+B)+\cos A \cdot \tan (A-B)$

$$
\begin{aligned}
& =\tan 45^{\circ} \cdot \sin \left(60^{\circ}\right)+\cos 45^{\circ} \cdot \tan \left(30^{\circ}\right) \\
& =1 \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{3}} \\
& =\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \\
& =\frac{\sqrt{3}}{2}+\frac{\sqrt{6}}{6} \\
& =\frac{3 \sqrt{3}+\sqrt{6}}{6}
\end{aligned}
$$

28. Prove that :
$(1+\cot A+\tan A) .(\sin A-\cos A)$

$$
\begin{equation*}
=\frac{\sec ^{3} A-\operatorname{cosec}^{3} A}{\sec ^{2} A \cdot \operatorname{cosec}^{2} A} \tag{4}
\end{equation*}
$$

Solution :
L.H.S. $=(1+\cot A+\tan A)(\sin A-\cos A)$

$$
\begin{aligned}
& =\left(1+\frac{\cos A}{\sin A}+\frac{\sin A}{\cos A}\right)(\sin A-\cos A) \\
& =\left(\frac{\sin A \cos A+\cos ^{2} A+\sin ^{2} A}{\sin A \cdot \cos A}\right)
\end{aligned}
$$

$$
(\sin A-\cos A)
$$

$$
=\frac{\sin ^{3} A-\cos ^{3} A}{\sin A \cdot \cos A}
$$

$\left[\right.$ Using $\left.a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]$

$$
=\frac{\frac{\sin ^{3} A}{\sin ^{3} A \cdot \cos ^{3} A}-\frac{\cos ^{3} A}{\sin ^{3} A \cdot \cos ^{3} A}}{\frac{\sin A \cos A}{\sin ^{3} A \cdot \cos ^{3} A}}
$$

[Dividing Num. \& Denom. by $\sin ^{3} A \cdot \cos ^{3} A$]

$$
=\frac{\sec ^{3} A-\operatorname{cosec}^{3} A}{\sec ^{2} A \cdot \operatorname{cosec}^{2} A}=\text { R.H.S. }
$$

Hence Proved.
29. Prove the identity :

$$
\begin{equation*}
\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{1-2 \cos ^{2} A} \tag{4}
\end{equation*}
$$

Solution :

$$
\begin{aligned}
& \text { L.H.S. }=\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A} \\
& =\frac{(\sin A+\cos A)^{2}+(\sin A-\cos A)^{2}}{(\sin A-\cos A)(\sin A+\cos A)} \\
& =\frac{\sin ^{2} A+\cos ^{2} A+2 \sin A \cos A}{+\sin ^{2} A+\cos ^{2} A-2 \sin A \cos A} \\
& \sin ^{2} A-\cos ^{2} A
\end{aligned}
$$

$$
=\frac{1+1}{1-\cos ^{2} A-\cos ^{2} A}
$$

$$
\left[\begin{array}{ll}
\because & \sin ^{2} A+\cos ^{2} A=1 \\
\Rightarrow & \sin ^{2} A=1-\cos ^{2} A
\end{array}\right]
$$

$$
=\frac{2}{1-2 \cos ^{2} A}=\text { R.H.S. } \quad \text { Hence Proved. }
$$

30. The following table gives the daily income of 50 workers of a factory. Draw both types ("less than type" and " greater than type") ogives.

Daily Income (in ₹)	No. of Workers
$100-120$	12
$120-140$	14
$140-160$	8
$160-180$	6
$180-200$	10

Solution : Less than ogive		More than ogive	
$\begin{aligned} & \text { Daily In- } \\ & \text { come (in ₹) } \end{aligned}$	No. of workers (c.f.)	Daily Income (in ₹)	No. of workers (c.f.)
Less than 120	12	More than 100	50
Less than 140	26	More than 120	38
Less than 160	34	More than 140	24
Less than 180	40	More than 160	16
Less than 200	50	More than 180	10

(1200, 50)
31. In a class test, marks obtained by 120 students are given in the following frequency distribution. If it is given that mean is 59 , find the missing frequencies x and y.

Marks	No. of Students
$0-10$	1
$10-20$	3
$20-30$	7
$30-40$	10
$40-50$	15
$50-60$	x
$60-70$	9
$70-80$	27
$80-90$	18
$90-100$	y

Solution :

Marks	No. of students f_{i}	X_{i}	$\begin{gathered} d_{i}= \\ \frac{X_{i}-55}{10} \end{gathered}$	$f_{i} d_{i}$
0-10	1	5	-5	-5
10-20	3	15	-4	-12
20-30	7	25	-3	-21
30-40	10	35	-2	-20
40-50	15	45	-1	-15
50-60	x	$\mathrm{A}=55$	0	0
60-70	9	65	1	9
70-80	27	75	2	54
80-90	18	85	3	54
90-100	y	95	4	$4 y$
	$\begin{gathered} \Sigma f_{i}= \\ 90+x+y \end{gathered}$			$\begin{gathered} \hline \Sigma f_{i} d_{i}= \\ 44+4 y \end{gathered}$

$\therefore \quad 90+x+y=120$

$$
\begin{equation*}
x=120-90-y=30-y . . \tag{i}
\end{equation*}
$$

$\Rightarrow \quad 59=55+\left(\frac{44+4 y}{120} \times 10\right)$
[$\mathrm{A}=55, h=10, \Sigma f_{i}=120$]
$\Rightarrow \quad 59-55=\frac{4(11+y)}{12}$
$\Rightarrow \quad 4 \times 3=11+y$
$\Rightarrow \quad y=12-11=1$
From eq. (i), $x=30-1=29$
$\therefore \quad x=29, y=1$
Ans.
SECTION - A

1. If the quadratic equation $p x^{2}-2 \sqrt{5} p x+15=0$, has two equal roots then find the value of p.
[1]
Solution : The given quadratic equation is,

$$
p x^{2}-2 \sqrt{5} p x+15=0
$$

This is of the form

$$
a x^{2}+b x+c=0
$$

Where, $a=p, b=-2 \sqrt{5} p, c=15$
we have,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-2 \sqrt{5} p)^{2}-4 \times p \times 15 \\
& =20 p^{2}-60 p \\
& =20 p(p-3)
\end{aligned}
$$

For real and equal roots, we must have :

$$
\begin{array}{rlrl}
& & D & =0, \\
\Rightarrow & 20 p(p-3) & =0 \\
\Rightarrow & & p & =0, p=3
\end{array}
$$

$p=0$, is not possible as whole equation will be zero.

Hence, 3 is the required value of p. Ans.
2. In figure 1, a tower $A B$ is 20 m high and BC , its shadow on the ground, is $20 \sqrt{3} \mathrm{~m}$ long. Find the sun's altitude.
[1]

Figure 1
Solution : Given $A B$ is the tower and $B C$ is its shadow,

$$
\begin{array}{ll}
\therefore & \tan \theta=\frac{A B}{B C} \\
& {\left[\because \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}\right]} \\
& \tan \theta=\frac{20}{20 \sqrt{3}}=\frac{1}{\sqrt{3}}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad \tan \theta=\tan 30^{\circ} \\
& {\left[\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right] }
\end{aligned}
$$

$$
\Rightarrow \quad \theta=30^{\circ}
$$

Ans.
3. Two different dice are tossed together. Find the probability that the product of two numbers on the top of the dice is 6 .
[1]
Solution : When two dice are thrown simultaneously, all possible outcomes are :

$$
S=\left[\begin{array}{l}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right]
$$

Total number of all outcomes $=6 \times 6=36$
Favourable outcomes of getting the product as 6 are :
$(2,3),(3,2),(1,6),(6,1)$
Hence, Number of favourable outcomes getting product as 6 is 4 .
Probability that the product of the two numbers on the top of the die is 6

$$
\begin{aligned}
& =\frac{4}{36} \\
& =\frac{1}{9}
\end{aligned}
$$

Ans.
4. In figure $2, P Q$ is a chord of a circle with centre O and $P T$ is a tangent. If $\angle Q P T=60^{\circ}$, find $\angle P R Q$.
[1]

Figure 2
Solution : Given, O is the centre of the given circle
$\therefore O Q$ and $O P$ are the radius of circle.
$\because P T$ is a tangent

$$
\therefore \quad O P \perp P T
$$

So, $\quad \angle O P T=90^{\circ}$

$$
\begin{array}{lccc}
\therefore & \angle O P Q=90^{\circ}-\angle Q P T & \therefore & \angle O P R=\angle O Q R=90^{\circ} \\
\Rightarrow & \angle O P Q=90^{\circ}-60^{\circ} & \text { Now, in } \triangle \mathrm{OPR} \text { and } \triangle O Q R, \\
\Rightarrow & {\left[\text { Given, } \angle \mathrm{QPT}=60^{\circ}\right]} & & O P=O Q \\
\therefore & \angle O P Q=30^{\circ} & & \quad O R=O R \quad \text { [Common] } \\
\therefore & \angle O Q P=30^{\circ} & \angle O P R=\angle O Q R=90^{\circ} \\
\text { Now, in } \triangle O P Q & \angle O P Q \text { is isosceles triangle] } & & \\
& \angle P O Q+\angle O P Q+\angle O Q P=180^{\circ} & \therefore & \Delta O P R \cong \triangle O Q R
\end{array}
$$

$$
\begin{aligned}
& & \angle P O Q+\angle O P Q+\angle O Q P & =180^{\circ} \\
\Rightarrow & & \angle P O Q+30^{\circ}+30^{\circ} & =180^{\circ} \\
\Rightarrow & & \angle P O Q & =120^{\circ}
\end{aligned}
$$

$$
\text { reflex } \angle P O Q=360^{\circ}-120^{\circ}=240^{\circ}
$$

$$
\therefore \quad \angle P R Q=\frac{1}{2} \text { reflex } \angle P O Q
$$

$[\because$ The angle substended by an arc of a circle at the centre is double the angle substended by it at any point on the remaining part of the circle]

$$
\Rightarrow \quad \angle P R Q=\frac{1}{2} \times 240^{\circ}
$$

Hence, $\quad \angle P R Q=120^{\circ}$
Ans.
SECTION - B
5. In figure 3, two tangents $R Q$ and $R P$ are drawn from an external point R to the circle with centre O. If $\angle P R Q=120^{\circ}$, then prove that, $O R=P R+R Q$.

Figure 3
Solution : O is the centre of the circle and $\angle P R Q=120^{\circ}$
Construction : Join OP, OQ
To prove : $O P=P R+R Q$

Proof : We know that,
Tangent to a circle is perpendicular to the radius at the point of tangent i.e., $O P \perp R P$ and $O Q \perp R Q$.

So, $\quad P R=Q R^{\curvearrowright} \quad$ [By C.P.C.T.]
and

$$
\begin{aligned}
\angle O R P & =\angle O R Q \\
& =\frac{120^{\circ}}{2}=60^{\circ}
\end{aligned}
$$

Now, in $\triangle O P R$

$$
\begin{aligned}
& O P R \\
& \cos 60^{\circ}=\frac{P R}{O R}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{1}{2}=\frac{P R}{O R}
$$

$$
\begin{array}{ll}
\Rightarrow & O R=2 P R \\
\Rightarrow & O R=P R+P R \\
\Rightarrow & O R=P R+R Q \quad[\because P R=R Q] \\
\text { Hence, } & O R=P R+R Q .
\end{array}
$$

Hence Proved.
6. In figure 4, a triangle $A B C$ is drawn to circumscribe a circle of radius 3 cm , such that the segments $B D$ and $D C$ are respectively of lengths 6 cm and 9 cm . If the area of $\triangle A B C$ is $54 \mathrm{~cm}^{2}$, then find the lengths of sides $A B$ and $A C$.

Figure 4
Solution : Given, in $\triangle A B C$, circle touch the triangle at point D, F and E respectively and let the lengths of the segment $A F$ be x.

So, $\quad B F=B D=6 \mathrm{~cm}$
[Tangent from point B]
$C E=C D=9 \mathrm{~cm}$
[Tangent from point C]
and

$$
A E=A F=x \mathrm{~cm}
$$

[Tangent from point A]
Now, Area of $\triangle O B C=\frac{1}{2} \times B C \times O D$

$$
\begin{aligned}
& =\frac{1}{2} \times(6+9) \times 3 \\
& =\frac{45}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Area of } \triangle O C A=\frac{1}{2} \times A C \times O E
$$

$$
=\frac{1}{2} \times(9+x) \times 3
$$

$$
=\frac{3}{2}(9+x) \mathrm{cm}^{2}
$$

$$
\text { Area of } \triangle B O A=\frac{1}{2} \times A B \times O F
$$

$$
=\frac{1}{2} \times(6+x) \times 3
$$

$$
=\frac{3}{2}(6+x) \mathrm{cm}^{2}
$$

$$
\text { Area of } \triangle A B C=54 \mathrm{~cm}^{2} \quad \text { [Given] }
$$

$\because \quad$ Area of $\triangle A B C=$ Area of $\triangle O B C$

+ Area of $\triangle O C A$
+ Area of $\triangle B O A$

$$
\begin{aligned}
& 54=\frac{45}{2}+\frac{3}{2}(9+x)+\frac{3}{2}(6+x) \\
& \Rightarrow \quad 54 \times 2=45+27+3 x+18+3 x \\
& \Rightarrow 108-45-27-18=6 x \\
& \Rightarrow \quad 6 x=18 \\
& \Rightarrow \quad x=3 \\
& \text { So, } \quad A B=A F+F B=x+6 \\
& =3+6=9 \mathrm{~cm}
\end{aligned}
$$

and $A C=A E+E C=x+9$

$$
=3+9=12 \mathrm{~cm}
$$

Hence, lengths of $A B$ and $A C$ are 9 cm and 12 cm respectively.

Ans.
7. Solve the following quadratic equation for x :

$$
\begin{equation*}
4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0 \tag{2}
\end{equation*}
$$

Solution : The given equation is

$$
\begin{equation*}
4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0 \tag{i}
\end{equation*}
$$

Comparing equation (i) with quadratic equation

$$
A x^{2}+B x+C=0 \text {, we get }
$$

$$
A=4, B=4 b, C=-\left(a^{2}-b^{2}\right)
$$

By quadratic formula

$$
\begin{array}{rlrl}
& x & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
\Rightarrow & x & =\frac{-4 b \pm \sqrt{16 b^{2}+4 \times 4 \times\left(a^{2}-b^{2}\right)}}{2 \times 4} \\
\Rightarrow & x & =\frac{-4 b \pm \sqrt{16 b^{2}+16 a^{2}-16 b^{2}}}{8} \\
\Rightarrow & x & =\frac{-4 b \pm 4 a}{8} \\
& \Rightarrow & x & =\frac{-b \pm a}{2}
\end{array}
$$

Therefore, $\quad x=\frac{-b-a}{2} \Rightarrow-\left(\frac{a+b}{2}\right)$
or $\quad x=\frac{-b+a}{2} \Rightarrow \frac{a-b}{2}$
Hence, $x=-\left(\frac{a+b}{2}\right)$ and $x=\frac{a-b}{2}$.
Ans.
8. In an A.P., if $S_{5}+S_{7}=167$ and $S_{10}=235$, then find the A.P., where S_{n} denotes the sum of its first n terms.
Solution: Given, $\quad S_{5}+S_{7}=167$

$$
\begin{align*}
& \Rightarrow & \frac{5}{2}(2 a+4 d)+\frac{7}{2}(2 a+6 d) & =167 \\
& \Rightarrow & \frac{5}{2} \times 2(a+2 d)+\frac{7}{2} \times 2(a+3 d) & =167 \\
\Rightarrow & & 5 a+10 d+7 a+21 d & =167 \\
\Rightarrow & & 12 a+31 d & =167 \tag{i}\\
& \Rightarrow & \frac{10}{2}(2 a+9 d) & =235
\end{align*}
$$

$$
\begin{array}{lr}
\Rightarrow & 10 a+45 d=235 \\
\Rightarrow & 2 a+9 d=47 \tag{ii}
\end{array}
$$

On multiplying equation (ii) by 6 , we get :

$$
\begin{equation*}
12 a+54 d=282 \tag{iii}
\end{equation*}
$$

On subtracting equation (i) from (iii), we get :

$$
\begin{aligned}
& 12 a+54 d=282 \\
& 12 a+31 d=167 \\
&-\quad-\quad- \\
& \Rightarrow \quad 23 d=115 \\
& \Rightarrow \quad d=5
\end{aligned}
$$

Substituting value of d in equation (i), we get

$$
\begin{array}{rlrl}
& & 12 a+31 \times 5 & =167 \\
\Rightarrow & 12 a+155 & =167 \\
\Rightarrow & 12 a & =12 \\
\Rightarrow & a & =1
\end{array}
$$

Hence A.P. is $1,6,11 \ldots$.
Ans.
9. The points $A(4,7), B(p, 3)$ and $C(7,3)$ are the vertices of a right triangle, right-angled at B. Find the value of p.
[2]
Solution : The given points are $A(4,7)$, $B(p, 3)$ and $C(7,3)$.
Since A, B and C are the vertices of a right angled triangle
then,
$(A B)^{2}+(B C)^{2}=(A C)^{2}$
[By Pythagoras theorem]
$\Rightarrow\left[(p-4)^{2}+(3-7)^{2}\right]+\left[(7-p)^{2}+(3-3)^{2}\right]$
$=\left[(7-4)^{2}+(3-7)^{2}\right]$
$\Rightarrow(p-4)^{2}+(-4)^{2}+(7-p)^{2}=(3)^{2}+(-4)^{2}$
$\Rightarrow p^{2}+16-8 p+16+49+p^{2}-14 p=9+16$
$\Rightarrow \quad 2 p^{2}-22 p+56=0$
$\Rightarrow \quad p^{2}-11 p+28=0$
$\Rightarrow \quad p^{2}-7 p-4 p+28=0$
$\Rightarrow \quad p(p-7)-4(p-7)=0$
$p=4$ or 7

$$
p \neq 7
$$

(As B and C will coincide)
So,

$$
p=4 .
$$

Ans.
10. Find the relation between x and y if the points $\mathrm{A}(x, y), \mathrm{B}(-5,7)$ and $\mathrm{C}(-4,5)$ are collinear.

Solution : Given that the points $A(x, y)$, $B(-5,7)$ and $C(-4,5)$ are collinear.
So, the area formed by the vertices are 0 .
Therefore,

$$
\begin{array}{rlrl}
& \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] & =0 \\
\Rightarrow & \frac{1}{2}[x(7-5)-5(5-y)-4(y-7)] & =0 \\
\Rightarrow & & \frac{1}{2}[x(2)-5(5-y)-4(y-7)] & =0 \\
\Rightarrow & & 2 x-25+5 y-4 y+28 & =0 \\
\Rightarrow & & 2 x+y+3 & =0 \\
& & -2 x-3 & =y
\end{array}
$$

which is the required, relation between x and y i.e., $y=-2 x-3$.

Ans.

SECTION - C

11. The $14^{\text {th }}$ term of an AP is twice its $8^{\text {th }}$ term. If its $6^{\text {th }}$ term is -8 , then find the sum of its first 20 terms.
Solution : In the given AP, let first term $=a$ and common difference $=d$
Then, $\quad \mathrm{T}_{n}=a+(n-1) d$
$\begin{aligned} & & & \mathrm{T}_{14}\end{aligned}=a+(14-1) d=a+13 d \quad 10 \quad$ (Given)
Also, $\quad \mathrm{T}_{6}=a+(6-1) d$
$\Rightarrow \quad a+5 d=-8$
Putting the value of ' a ' from equation (i), we get

$$
\begin{aligned}
& -d+5 d=-8 \\
& \Rightarrow \quad 4 d=-8 \\
& d=-2
\end{aligned}
$$

Substituting $d=-2$ in equation (ii), we get

$$
\begin{aligned}
& & a+5(-2) & =-8 \\
\Rightarrow & & a & =10-8 \\
\therefore & & a & =2
\end{aligned}
$$

\therefore Sum of first 20 terms is

$$
\begin{aligned}
\mathrm{S}_{20} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{20}{2}[2 \times 2+(20-1)(-2)] \\
& =10[4-38] \quad \text { Ans. } \\
& =-340 \quad
\end{aligned}
$$

12. Solve for x :

$$
\Rightarrow \quad y=4500-1500=3000 \mathrm{~m}
$$

[Using equation (i)]
Solution: We have, $\sqrt{3} x^{2}-2 \sqrt{2} x-2 \sqrt{3}=0$

$$
\begin{array}{lr}
\Rightarrow & \sqrt{3} x^{2}-3 \sqrt{2} x+\sqrt{2} x-2 \sqrt{3}=0 \\
\Rightarrow & \sqrt{3} x(x-\sqrt{6})+\sqrt{2}(x-\sqrt{6})=0 \\
\Rightarrow & (\sqrt{3} x+\sqrt{2})(x-\sqrt{6})=0 \\
\Rightarrow & x=-\sqrt{\frac{2}{3}} \text { or } \sqrt{6} \text { Ans. }
\end{array}
$$

13. The angle of elevation of an aeroplane from point A on the ground is 60°. After flight of 15 seconds, the angle of elevation change to 30°. If the aeroplane is flying at a constant height of $1500 \sqrt{3} \mathrm{~m}$, find the speed of the plane in $\mathrm{km} / \mathrm{hr}$.
Solution :

Let $B C$ be the height at which the aeroplane flying.
Then,

$$
B C=1500 \sqrt{3} \mathrm{~m}
$$

In 15 seconds, the aeroplane moves from C to E and makes angle of elevation 30°.
Let $A B=x \mathrm{~m}, B D=y \mathrm{~m}$
So,

$$
A D=(x+y) \mathrm{m}
$$

In $\triangle A B C$,

$$
\tan 60^{\circ}=\frac{B C}{A B}
$$

$$
\Rightarrow \begin{aligned}
& \Rightarrow \sqrt{3}=\frac{1500 \sqrt{3}}{x} \\
& {\left[\because \tan 60^{\circ}=\sqrt{3}\right] }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad x=1500 \mathrm{~m} \tag{i}
\end{equation*}
$$

In $\triangle E A D$

$$
\begin{aligned}
& & \tan 30^{\circ} & =\frac{E D}{A D}\left[\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right] \\
& \Rightarrow & \frac{1}{\sqrt{3}} & =\frac{1500 \sqrt{3}}{x+y} \\
\Rightarrow & & x+y & =1500 \times 3
\end{aligned}
$$

Speed of aeroplane $=\frac{\text { Distance }}{\text { time }}=\frac{3000}{15}$

$$
=200 \mathrm{~m} / \mathrm{s} \text { or } 720 \mathrm{~km} / \mathrm{hr}
$$

Ans.
14. If the coordinates of points A and B are $(-2,-2)$ and $(2,-4)$ respectively find the coordinates of P such that $A P=\frac{3}{7} A B$, where P lies on the line segment $A B$.
[3]
Solution : Here $P(x, y)$ divides line segment $A B$

$$
\text { such that } A P=\frac{3}{7} A B
$$

$$
\begin{array}{lcc}
\mathrm{A}(-2,-2) & \mathrm{P}(x, y) & \mathrm{B}(2,-4)
\end{array}
$$

$$
\begin{aligned}
\Rightarrow & \frac{A P}{A B} & =\frac{3}{7} \\
\Rightarrow & \frac{A B}{A P} & =\frac{7}{3} \\
\Rightarrow & \frac{A B}{A P}-1 & =\frac{7}{3}-1 \\
\Rightarrow & \frac{A B-A P}{A P} & =\frac{4}{3} \\
\Rightarrow & \frac{B P}{A P} & =\frac{4}{3} \\
\Rightarrow & \frac{A P}{B P} & =\frac{3}{4}
\end{aligned}
$$

$\therefore P$ divides $A B$ in the ratio $3: 4(m: n)$
The coordinates of P are (x, y)
Therefore,

Therefore, co-ordinates of $P(x, y)$ are $\left(\frac{-2}{7}, \frac{-20}{7}\right)$

Ans.

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n}, y=\frac{m y_{2}+n y_{1}}{m+n} \\
& \Rightarrow \quad x=\frac{3 \times 2+4(-2)}{3+4}, y=\frac{3(-4)+4(-2)}{3+4} \\
& {[\because m: n=3: 4]} \\
& \Rightarrow \quad x=\frac{6-8}{7}, y=\frac{-12-8}{7} \\
& \Rightarrow \quad x=\frac{-2}{7}, \quad y=\frac{-20}{7}
\end{aligned}
$$

15. A probability of selecting a red ball at random from a jar that contains only red, blue and orange is $\frac{1}{4}$. The probability of selecting a blue ball at random from the same jar is $\frac{1}{3}$. If the jar contains 10 orange balls, find the total number of balls in the jar.
[3]
Solution : Given, a jar contains red, blue and orange balls.
Let the number of red balls $=x$
and the number of blue balls $=y$
Number of orange balls $=10$
Then, total number of balls

$$
=x+y+10
$$

Let P be the probability of selecting a red ball from the jar

$$
\begin{array}{rlrl}
& \mathrm{P} & =\frac{x}{x+y+10} \\
\text { But } & P(\text { a red ball }) & =\frac{1}{4} \quad & \text { (Given) } \\
& \therefore & \frac{1}{4} & =\frac{x}{x+y+10} \\
\Rightarrow & x+y+10 & =4 x \\
\Rightarrow & 3 x-y & =10 & \ldots \text { (i) } \tag{i}
\end{array}
$$

Similarly, $P($ a blue ball $)=\frac{y}{x+y+10}$
But $\quad P($ a blue ball $)=\frac{1}{3}$

$$
\begin{array}{rlrl}
& \therefore & \frac{1}{3} & =\frac{y}{x+y+10} \\
\Rightarrow & x+y+10 & =3 y \\
\Rightarrow & x-2 y & =-10 \tag{ii}
\end{array}
$$

On multiplying equation (ii) by 3 , we get

$$
\begin{equation*}
3 x-6 y=-30 \tag{iii}
\end{equation*}
$$

On subtracting equation (iii) from (i)

$$
\begin{aligned}
& 3 x-y=10 \\
& 3 x-6 y=-30 \\
&-\quad+\quad+ \\
& \hline 5 y=40
\end{aligned}
$$

$$
\Rightarrow \quad y=8
$$

On putting the value of y in (iii), we get

$$
\begin{aligned}
& \\
\Rightarrow \quad 3 x-6 \times 8 & =-30 \\
\Rightarrow \quad 3 x & =-30+48 \\
\therefore \quad x & =\frac{18}{3} \\
\therefore \quad x & =6 \\
& \text { Total number of balls }
\end{aligned}=x+y+10
$$

Hence, total number of balls in the jar is 24 .
Ans.
16. Find the area of the minor segment of a circle of radius 14 cm , when its central angle is 60°. Also find the area of the corresponding major segment.
[Use $\pi=\frac{22}{7}$]
Solution : Let $A C B$ be the given arc subtending an angle of 60° at the centre.
Here, $r=14 \mathrm{~cm}$ and $\theta=60^{\circ}$.

Area of the minor segment $A C B A$

$$
=(\text { Area of the sector } O A C B O)
$$

- (Area of $\triangle O A B)$

$$
\begin{aligned}
& =\frac{\pi r^{2} \theta}{360^{\circ}}-\frac{1}{2} r^{2} \sin \theta \\
& =\frac{22}{7} \times 14 \times 14 \times \frac{60^{\circ}}{360^{\circ}}-\frac{1}{2} \times 14 \times 14 \times \sin 60^{\circ} \\
& =\frac{308}{3}-7 \times 14 \times \frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
=\frac{308}{3}-49 \sqrt{3}
$$

$$
=17.89 \mathrm{~cm}^{2}
$$

Area of the major segment $B D A B$

$$
\begin{aligned}
& =\text { Area of circle }- \text { Area of minor segment } \\
& =\pi r^{2}-17.89
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{22}{7} \times 14 \times 14-17.89 \\
& =616-17.89 \\
& =598.11 \approx 598 \mathrm{~cm}^{2}
\end{aligned}
$$

17. Due to sudden floods, some welfare associations jointly requested the government to get 100 tents fixed immediately and offered to contribute 50% of the cost. If the lower part of each tent is of the form of a cylinder of diameter 4.2 m and height 4 m with the conical upper part of same diameter but of height 2.8 m and the canvas to be used costs ₹ 100 per sq. m . Find amount the associations will have to pay. What values are shown by these associations?
Solution : Diameter of the tent $(d)=4.2 \mathrm{~m}$
$\therefore \quad$ Radius of the tent $(r)=2.1 \mathrm{~m}$

$$
\left[\because r=\frac{d}{2}\right]
$$

Height of the cylindrical part of tent $(h)=$ 4 m
Height of conical part $(H)=2.8 \mathrm{~m}$
Slant height of conical part $(l)=\sqrt{H^{2}+r^{2}}$

$$
\begin{array}{ll}
\Rightarrow & l=\sqrt{(2.8)^{2}+(2.1)^{2}} \\
\Rightarrow & l=\sqrt{7.84+4.41} \\
\Rightarrow & l=\sqrt{12.25} \\
\therefore & l=3.5 \mathrm{~m}
\end{array}
$$

Curved surface area of the cylinder $=2 \pi r h$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 2.1 \times 4\left[\because \pi=\frac{22}{7}\right] \\
& =2 \times 22 \times 0.3 \times 4 \\
& =52.8 \mathrm{~m}^{2}
\end{aligned}
$$

Curved surface area of conical tent $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 2.1 \times 3.5 \\
& =22 \times 0.3 \times 3.5 \\
& =23.1 \mathrm{~m}^{2}
\end{aligned}
$$

Total area of cloth required for building one tent

$$
\begin{aligned}
& =\text { C.S.A. of cylinder }+ \\
& \quad \text { C.S.A. of conical tent } \\
& =(52.8+23.1) \mathrm{m}^{2} \\
& =75.9 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of building one tent $=75.9 \times 100$

$$
\text { = ₹ } 7590
$$

Total cost of 100 tents $=₹(7590 \times 100)$
= ₹ 7,59,000

Cost to be borne by the associations (50% of the cost)

$$
\begin{aligned}
& =\frac{759000 \times 50}{100} \\
& =₹ 3,79,500
\end{aligned}
$$

Hence, the association will have to pay ₹ 3,79 , 500

Values shown by associations are helping the flood victims and showing concern for humanity.

Ans.
18. A hemispherical bowl of internal diameter 36 cm contains liquid. This liquid is filled into 72 cylindrical bottles of diameter 6 cm . Find the height of each bottle, if 10% liquid is wasted in this transfer.
Solution : Internal diameter of hemispherical bowl $=36 \mathrm{~m}$
\therefore Radius of hemispherical bowl $(r)=18 \mathrm{~cm}$

$$
\begin{aligned}
\text { Volume of liquid } & =\frac{2}{3} \pi r^{3} \\
& =\frac{2}{3} \times \pi \times 18^{3}
\end{aligned}
$$

$\because \quad$ Diameter of bottle $=6 \mathrm{~cm}$
$\therefore \quad$ Radius of bottle $=3 \mathrm{~cm}$
Now, volume of a cylindrical bottle $=\pi R^{2} h$

$$
\begin{aligned}
& =\pi 3^{2} h \\
& =9 \pi h
\end{aligned}
$$

Volume of liquid to be transfer $=$ volume of liquid - 10% volume of liquid

$$
\begin{aligned}
& =\frac{2}{3} \pi 18^{3}-\frac{10}{100}\left(\frac{2}{3} \pi 18^{3}\right) \\
& =\frac{2}{3} \pi 18^{3}\left(1-\frac{10}{100}\right) \\
& =\frac{2}{3} \pi 18^{3} \times \frac{9}{10} \\
& =\pi \times 18^{3} \times \frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of cylindrical bottles } \\
&=\frac{\text { Volume of liquid to be transfered }}{\text { Volume of a bottle }} \\
& \Rightarrow 72=\frac{\pi \times 18 \times 18 \times 18 \times \frac{3}{5}}{9 \pi h} \\
& h=\frac{27}{5}=5.4 \mathrm{~cm}
\end{aligned}
$$

Hence, height of each bottle will be 5.4 cm .
Ans.
19. A cubical block of side 10 cm is surmounted by a hemisphere. What is the largest diameter that the hemisphere can have ? Find the cost of painting the total surface area of the solid so formed, at the rate of ₹ 5 per 100 sq . cm [Use $\pi=3.14$]
Solution : Side of the cubical block (a) = 10 cm

Longest diagonal of the cubical block $=a \sqrt{3}$

$$
=10 \sqrt{3} \mathrm{~cm}
$$

Since the cube is surmounted by a hemisphere, therefore the side of the cube should be equal to the diameter of the hemisphere.
\because Diameter of the sphere $=10 \mathrm{~cm}$
\therefore Radius of the sphere $(r)=5 \mathrm{~cm}$

$$
\left[\because \text { Radius }=\frac{\text { Diameter }}{2}\right]
$$

Total surface area of solid $=$ T.S.A of the cube + C.S.A. of hemisphere - Inner cross-section area of hemisphere

$$
\begin{aligned}
& =6 a^{2}+2 \pi r^{2}-\pi r^{2} \\
& =6 a^{2}+\pi r^{2} \\
& =6(10)^{2}+3.14(5)^{2} \\
& \quad[\because \pi=3.14] \\
& =600+25 \times 3.14 \\
& =600+78.5 \\
& =678.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Cost of painting per square metre is ₹ 5
Total cost for painting $=\frac{₹ 678.5}{100} \times 5$

$$
=₹ 33.92
$$

Hence, total cost for painting will be ₹ 33.92
Ans.
20. 504 cones each of diameter 3.5 cm and height 3 cm are melted and recast into a metallic sphere. Find the diameter of the sphere and hence find its surface area. $\pi=\frac{22}{7}$

Solution : Diameter of each cone

$$
(d)=3.5 \mathrm{~cm}
$$

Radius of each cone $(r)=\frac{3 \cdot 5}{2}=\frac{7}{4} \mathrm{~cm}$

$$
\left[\because r=\frac{d}{2}\right]
$$

Height of each cone $(h)=3 \mathrm{~cm}$
Volume of 504 cones $=504 \times$ Volume of one cone

$$
=504 \times \frac{1}{3} \pi r^{2} h
$$

$$
=504 \times \frac{1}{3} \times \frac{22}{7} \times \frac{7}{4} \times \frac{7}{4} \times 3
$$

Let radius of sphere be $R \mathrm{~cm}$
\therefore Volume of sphere $=$ Volume of 504 cones

$$
\begin{array}{rlrl}
& \frac{4}{3} \times \frac{22}{7} \times R^{3} & =504 \times \frac{1}{3} \times \frac{22}{7} \times \frac{7}{4} \times \frac{7}{4} \times 3 \\
\Rightarrow & R & =\sqrt[3]{\frac{3 \times 3 \times 7 \times 7 \times 7 \times 3}{2 \times 2 \times 2}} \\
& \therefore & R & =\frac{21}{2} \mathrm{~cm}
\end{array}
$$

Hence, diameter of sphere $=2 R=21 \mathrm{~cm}$.
Ans.
Now, surface area of sphere $=4 \pi R^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \\
& =63 \times 22 \\
& =1386 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, surface area of sphere is $1386 \mathrm{~cm}^{2}$.
Ans.

SECTION - D

21. The diagonal of a rectangular field is 16 m more than the shorter side. If the longer side is 14 m more than the shorter side, then find the lengths of the sides of the field. [4] Solution :

Let l be the length of the longer side and b be the length of the shorter side.
Given that the length of the diagonal of the rectangular field is 16 m more than shorter side.
Thus, \quad Diagonal $=16+b$
Since longer side is 14 m more than shorter side,

$$
\therefore \quad l=14+b
$$

We know

$$
\begin{aligned}
& (\text { Diagonal })^{2}=(\text { Length })^{2}+(\text { Breadth })^{2} \\
& \text { [By Pythagoras theorem] } \\
& (16+b)^{2}=(14+b)^{2}+b^{2} \\
& \Rightarrow \quad 256+b^{2}+32 b=196+b^{2}+28 b+b^{2} \\
& \Rightarrow \quad b^{2}-4 b-60=0 \\
& \Rightarrow \quad b^{2}-10 b+6 b-60=0 \\
& \Rightarrow b(b-10)+6(b-10)=0 \\
& \Rightarrow \quad(b+6)(b-10)=0 \\
& \Rightarrow \quad b=-6 \text { or }+10
\end{aligned}
$$

As breadth cannot be negative
$\therefore \quad$ Breadth $(b)=10 \mathrm{~m}$.
Now, length of rectangular field

$$
\begin{aligned}
& =(14+b) \mathrm{m} \\
& =(14+10) \mathrm{m} \\
& =24 \mathrm{~m}
\end{aligned}
$$

Thus, length of rectangular field is 24 cm and breadth is 10 m .

Ans.
22. Find the $60^{\text {th }}$ term of the A.P. $8,10,12 \ldots$. if it has a total of 60 terms and hence find the sum of its last 10 terms.
Solution : Consider the given A.P. $8,10,12, \ldots .$.
Hence the first term is 8
An the common difference

$$
\begin{aligned}
d & =10-8=2 \\
\text { or } \quad 12-10 & =2
\end{aligned}
$$

Therefore, $60^{\text {th }}$ term is

$$
\begin{array}{ll}
& \\
\Rightarrow & a_{60}=8+(60-1) 2 \\
\Rightarrow & a_{60}=8+59 \times 2 \\
& a_{60}=126
\end{array}
$$

We need to find the sum of last 10 terms
Since, sum of last 10 terms $=$ Sum of first 60 terms - Sum of first 50 terms.

$$
\begin{aligned}
\mathrm{S}_{10} & =\frac{60}{2}[2 \times 8+(60-1) 2]-\frac{50}{2}[2 \times 8+(50-1) 2] \\
& =\frac{60}{2} \times 2[8+59]-\frac{50}{2} \times 2[8+49]
\end{aligned}
$$

$$
\begin{aligned}
& =60 \times 67-50 \times 57 \\
& =4020-2850 \\
& =1170
\end{aligned}
$$

Hence, the sum of last 10 terms is 1170. Ans.
23. A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of $6 \mathrm{~km} / \mathrm{h}$ more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?
Solution : Let the average speed of the train be $x \mathrm{~km} / \mathrm{hr}$.
Then, new average speed of the train $=(x+6)$ km/hr
Time taken by train to cover $54 \mathrm{~km}=\frac{54}{x} \mathrm{hrs}$ And time taken by train to cover $63 \mathrm{~km}=$ $\frac{63}{(x+6)}$ hrs
According to the question,

$$
\left.\begin{array}{rlrl}
& & \left.\begin{array}{rlrl}
\frac{54}{x}+\frac{63}{x+6} & =3 \\
& & & \\
\Rightarrow & & \frac{54(x+6)+63 x}{x(x+6)} & =3 \\
\Rightarrow & & 54 x+324+63 x & =3 x(x+6) \\
\Rightarrow & & 324+117 x & =3 x^{2}+18 x \\
\Rightarrow & & 3 x^{2}-99 x-324 & =0 \\
\Rightarrow & & x^{2}-33 x-108 & =0 \\
\Rightarrow & & x^{2}-36 x+3 x-108 & =0 \\
\Rightarrow & & x(x-36)+3(x-36) & =0 \\
& \Rightarrow & & (x+3)(x-36)
\end{array}\right)=0 \\
& \therefore & & x
\end{array}\right)=-3 \text { or } 36
$$

Since, speed cannot be negative

$$
\therefore \quad x=36
$$

so, First speed of train $=36 \mathrm{~km} / \mathrm{hr} \quad$ Ans.
24. Prove that the lengths of the tangents drawn from an external point to a circle are equal.

Solution : Given, Tangents $A M$ and $A N$ are drawn from point A to a circle with centre O. To prove : $A M=A N$

Page 134 of 164

Construction : Join OM, ON and OA
Proof : Since $A M$ is a tangent at M and $O M$ is radius
\therefore
$O M \perp A M$
Similarly,
$O N \perp A N$

Now, in $\triangle O M A$ and $\triangle O N A$.

$$
\begin{array}{rlr}
O M & =O N \\
& & \text { (radii of same circle) } \\
O A & =O A \quad \text { (common) } \\
\angle O M A & =\angle O N A=90^{\circ} \\
\therefore \quad \triangle O M A & \cong \triangle O N A \\
& & \text { (By RHS congruence) }
\end{array}
$$

Hence,

$$
A M=A N
$$

(By C.P.C.T)
Hence Proved.
25 . Prove that the tangent drawn at the midpoint of an arc of a circle is parallel to the chord joining the end points of the arc. [4] Solution :

Given : C is the mid-point of the minor arc $P Q$ and O is the centre of the circle and $A B$ is tangent to the circle through point C.
Construction : Draw PC and QC.
To prove :

$$
P Q \| A B
$$

Proof: It is given that C is the mid-point of the arc $P Q$.
So, \quad Minor arc $P C=$ Minor arc $Q C$
$\Rightarrow \quad P C=Q C$
Hence $\triangle P Q C$ is an isosceles triangle.
Thus the perpendicular bisector of the side $P Q$ of $\triangle P Q C$ passes through vertex C.
But we know that the perpendicular bisector of a chord passes through centre of the circle.
So, the perpendicular bisector of $P Q$ passes through the center O of the circle.
Thus, the perpendicular bisector of $P Q$ passes through the points O and C.
$\Rightarrow \quad P Q \perp O C$
$A B$ is perpendicular to the circle through the point C on the circle

$$
\begin{equation*}
\Rightarrow \quad A B \perp O C \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), the chord $P Q$ and tangent $A B$ of the circle are perpendicular to the same line $O C$.

Hence,
$A B \| P Q$
or
$P Q \| A B$
Hence Proved.
26. Construct a $\triangle A B C$ in which $A B=6 \mathrm{~cm}$, $\angle A=30^{\circ}$ and $\angle B=60^{\circ}$. Construct another $\triangle A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with base $A B^{\prime}=8$ cm .
Solution : Steps of construction :
(i) Draw a line segment $A B=6 \mathrm{~cm}$.
(ii) Construct $\angle A B P=60^{\circ}$ and $\angle Q A B=30^{\circ}$
(iii) Join $A C$ and $B C$ such that C is the intersection point of $B P$ and $A Q$.
Thus, $\triangle A B C$ is the required triangle.
(iv) Extend $A B$ to B^{\prime}, such that $A B^{\prime}=8 \mathrm{~cm}$.
(v) Draw $B^{\prime} C^{\prime} \| B C$ cutting $A C$ produced at C^{\prime}.
Then, $\triangle A B^{\prime} C^{\prime}$ is the required triangle similar to $\triangle A B C$.

27. At a point $A, 20 \mathrm{~m}$ above the level of water in a lake, the angle of elevation of a cloud is 30°. The angle of depression of the reflection of the cloud in the lake, at A is 60°. Find the distance of the cloud from A.
Solution :

Let $P Q$ be the surface of the lake. A is the point virtically above P such at $A P=20 \mathrm{~m}$.
Let C be the position of the cloud and D be its reflection in the lake.

Let $\quad B=H$ metres
Now, In $\triangle A B D$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{B D}{A B} \\
\Rightarrow & \sqrt{3} & =\frac{H+20+20}{A B} \\
\Rightarrow & \sqrt{3} \cdot A B & =H+40 \\
\Rightarrow & A B & =\frac{H+40}{\sqrt{3}} \tag{i}
\end{array}
$$

And in $\triangle A B C$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{B C}{A B} \\
\Rightarrow & & \frac{1}{\sqrt{3}} & =\frac{H}{A B} \\
\Rightarrow & B & =\sqrt{3} H \tag{ii}
\end{array}
$$

From equation (i) and (ii)

$$
\begin{aligned}
& & \frac{H+40}{\sqrt{3}} & =\sqrt{3} H \\
\Rightarrow & & 3 H & =H+40 \\
\Rightarrow & & 2 H & =40 \Rightarrow H=20
\end{aligned}
$$

Putting the value of H in equation (ii), we get

$$
A B=20 \sqrt{3}
$$

Again, in $\triangle A B C$

$$
\begin{aligned}
(A C)^{2} & =(A B)^{2} \\
& =(20 \sqrt{3})^{2}+(20)^{2} \\
& =1200+400 \\
& =1600 \\
\Rightarrow \quad A C & =\sqrt{1600}=40
\end{aligned}
$$

Hence, the distance of cloud from A is 40 m .
Ans.
28. A card is drawn at random from a wellshuffled deck of playing cards. Find the probability that the card drawn is
(i) A card of spade or an ace
(ii) A black king
(iii) Neither a jack nor a king
(iv) Either a king or a queen

Solution : (i) Let S be the sample space of drawing a card from a well-shuffled deck Then,

$$
S=52
$$

There are 13 spade cards and 4 acs in a deck. As a ace of spade is included in 13 spade cards
So, there are 13 spade cards and 3 ace's

A card of spade or an ace can be drawn in

$$
13+4-1=16 \text { (ways) }
$$

Probability of drawing a card of spade or an ace.

$$
P=\frac{16}{52}=\frac{4}{13} \quad \text { Ans. }
$$

(ii) There are 2 black king cards in a deck. Probability of drawing a black king

$$
\begin{aligned}
& P=\frac{2}{52} \\
& P=\frac{1}{26}
\end{aligned}
$$

Ans.
(iii) There are 4 jack and 4 king cards in a deck.
So, there are $52-8=44$ cards which are neither jack nor king
Probability of drawing a card which is neither a jack nor a king

$$
\begin{aligned}
& P=\frac{44}{52} \\
& P=\frac{11}{13}
\end{aligned}
$$

Ans.
(iv) There are 4 queen and 4 king cards in a deck.
So, there are 8 cards which are either king or queen.
Probability of drawing a card which is either king or a queen

$$
\begin{aligned}
& P=\frac{8}{52} \\
& P=\frac{2}{13}
\end{aligned}
$$

Ans.
29. Find the values of k so that the area of the triangle with vertices $(1,-1),(-4,2 k)$ and $(-k,-5)$ is 24 sq. units.
Solution: The vertice of the given $\triangle A B C$ are $A(1,-1), B(-4,2 k)$ and $C(-k,-5)$

$$
\begin{array}{r}
\therefore \text { Area of } \triangle A B C=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)\right. \\
\left.+x_{3}\left(y_{1}-y_{2}\right)\right] \\
=\frac{1}{2}[1(2 k+5)+(-4)(-5+1)+(-k) \\
\quad(-1-2 k)] \\
=\frac{1}{2}\left[2 k+5+16+k+2 k^{2}\right] \\
=\frac{1}{2}\left[2 k^{2}+3 k+21\right]
\end{array}
$$

(Given)

$$
\begin{aligned}
& =2 \times\left[\pi r^{2} \frac{\theta}{360^{\circ}} \frac{1}{2} r^{2} \sin \theta\right] \quad\left[\text { Where, } \theta=90^{\circ}\right] \\
& =2 \times\left[\frac{22}{7} \times(21 \sqrt{2})^{2} \frac{90^{\circ}}{360^{\circ}}-\frac{1}{2} \times 21 \sqrt{2} \times 21 \sqrt{2}\right] \\
& \quad\left[\because \sin 90^{\circ}=1\right] \\
& =2 \times\left[\frac{22}{7} \times 21 \times 21 \times 2 \times \frac{1}{4}-\frac{1}{2} \times 21 \times 21 \times 2\right] \\
& =2[33 \times 21-441] \\
& =2[693-441] \\
& =504 \mathrm{~m}^{2}
\end{aligned}
$$

Hence area of flower beds is $504 \mathrm{~m}^{2}$. Ans.
Hence, $k=3$ or $k=-\frac{9}{2}$
Ans.
30. In figure $5, P Q R S$ is a square lawn with side $P Q=42 \mathrm{~m}$ Two circular flower beds are there on the sides $P S$ and $Q R$ with center at O, the intersection of its diagonals. Find the total area of the two flower beds (shaded parts).

Figure 5
Solution :

Given, $P Q R S$ is a square with side 42 m .
Let its diagonals intersect at O.
Then,

$$
O P=O Q=O R=O S
$$

and

$$
\angle P O S=\angle Q O R=90^{\circ}
$$

$$
P R^{2}=P Q^{2}+Q R^{2}
$$

$\Rightarrow \quad P R=(\sqrt{2} \times 42) \mathrm{m}$

Now,

$$
O P=\frac{1}{2} \times(\text { diagonal })=21 \sqrt{2} \mathrm{~m}
$$

\because Area of flower bed PAS $=$ Area of flower bed QBR
\therefore Total area of the two flower beds $=$ Area of flower bed PAS + Area of flower bed $Q B R$
31. From each end of a solid metal cylinder, metal was scooped out in hemispherical form of same diameter. The height of the cylinder is 10 cm and its base is of radius 4.2 cm . The rest of the cylinder is melted and converted into a cylindrical wire of 1.4 cm thickness. Find the length of the wire. [4] Solution : Height of the cylinder $(h)=10 \mathrm{~cm}$ Radius of base of cylinder $(r)=4.2 \mathrm{~cm}$ Now,

$$
\begin{aligned}
\text { Volume of cylinder } & =\pi r^{2} h \\
& =\frac{22}{7} 4.2 \times 4.2 \times 10 \\
& =554.4 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times 4.2 \times 4.2 \times 4.2 \\
& =155.232 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of the rest of the cylinder after scooping out the hemisphere from each end $=$ Volume of cylinder $-2 \times$ Volume of hemisphere

$$
\begin{aligned}
& =554.4-2 \times 155.232 \\
& =554.4-310.464 \\
& =243.936 \mathrm{~cm}^{3} .
\end{aligned}
$$

The remaining cylinder is melted and converted into a new cylindrical wire of 1.4 cm thickness.
So, radius of cylindrical wire $=0.7 \mathrm{~cm}$
Volume of remaining cylinder $=$ Volume of new cylindrical wire

$$
\begin{aligned}
& & 243.936 & =\pi R^{2} H \\
\Rightarrow & & 243.936 & =\frac{22}{7} 0.7 \times 0.7 \mathrm{H} \\
\Rightarrow & & H & =158.4 \mathrm{~cm} \quad \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area of } \triangle A B C=24 \text { sq. units } \\
& \therefore \quad \frac{1}{2}\left[2 k^{2}+3 k+21\right]=24 \\
& \Rightarrow \quad\left[2 k^{2}+3 k+21\right]=48 \\
& \Rightarrow \quad 2 k^{2}+3 k+21=48 \\
& \Rightarrow \quad 2 k^{2}+3 k-27=0 \\
& \Rightarrow \quad 2 k^{2}+9 k-6 k-27=0 \\
& \Rightarrow \quad k(2 k+9)-3(2 k+9)=0 \\
& \Rightarrow \quad(k-3)(2 k+9)=0 \\
& k=3 \text { or }-\frac{9}{2}
\end{aligned}
$$

Note : Except for the following questions, all the remaining questions have been asked in previous set.

SECTION - B

10. If $A(4,3), B(-1, y)$ and $C(3,4)$ are the vertices of a right triangle $A B C$, right-angled at A, then find the value of y.
[2]
Solution : Given the triangle $A B C$,right angled at A.

$$
\begin{aligned}
& \text { Now, } \quad A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& A B=\sqrt{(-1-4)^{2}+(y-3)^{2}} \\
& A B=\sqrt{(-5)^{2}+(y-3)^{2}} \\
& A B=\sqrt{25+(y-3)^{2}} \\
& A B=\sqrt{25+y^{2}+9-64} \\
& \therefore \quad A B=\sqrt{34+y^{2}-6 y} \\
& B C=\sqrt{(3-(-1))^{2}+(4-y)^{2}} \\
& B C=\sqrt{(4)^{2}+(4-y)^{2}} \\
& B C=\sqrt{16+16+y^{2}-8 y} \\
& \therefore \quad B C=\sqrt{32+y^{2}-8 y} \\
& \text { and } \quad A C=\sqrt{(3-4)^{2}+(4-3)^{2}} \\
& A C=\sqrt{(-1)^{2}+(1)^{2}} \\
& A C=\sqrt{1+1} \\
& A C=\sqrt{2} \text { units }
\end{aligned}
$$

Given, $\triangle A B C$ is a right angled triangle
So, by pythagoras theorem

$$
\begin{aligned}
B C^{2} & =A C^{2}+A B^{2} \\
\left(\sqrt{32+y^{2}-8 y}\right)^{2} & =(\sqrt{2})^{2}+\left(\sqrt{34+y^{2}-6 y}\right)^{2} \\
32+y^{2}-8 y & =2+34+y^{2}-6 y \\
-2 y & =4 \\
y & =-2
\end{aligned}
$$

Hence, the value of y is -2 .
Ans.

SECTION - C

18. All the vertices of a rhombus lie on a circle. Find the area of the rhombus, if the area of the circle is $1256 \mathrm{~cm}^{2}$. [Use $\pi=3.14$]

Solution :

Given that the area of the circle is $1256 \mathrm{~cm}^{2}$.
$\because \quad$ Area of the circle $=\pi r^{2}$

Now, $A B C D$ are the vertices of a rhombus.

$$
\begin{equation*}
\angle A=\angle C \tag{i}
\end{equation*}
$$

[opposite angles of rhombus]
But $A B C D$ lie on the circle.
So, $A B C D$ is called cyclic quadrilateral
$\therefore \quad \angle A+\angle C=180^{\circ}$
On using equation (i), we get

$$
\begin{array}{rlrl}
& & \angle A+\angle A & =180^{\circ} \\
\Rightarrow & 2 \angle A & =180^{\circ} \\
& \Rightarrow & \angle A & =90^{\circ} \\
\text { so, } & \angle C & =90^{\circ}
\end{array}
$$

[From eq. (i)]
$\therefore \mathrm{ABCD}$ is square.
So, $B D$ is a diameter of circle.
$[\because$ The angle in a semi-circle is a right angle triangle]
Now, Area of rhombus

$$
\begin{aligned}
& =\frac{1}{2} \times \text { Product diagonals } \\
& =\frac{1}{2} \times 40 \times 40 \\
& =800 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, Area of rhombus is $800 \mathrm{~cm}^{2}$. Ans.
19. Solve for x :

$$
\begin{equation*}
2 x^{2}+6 \sqrt{3} x-60=0 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \Rightarrow \quad 1256=\frac{3.14}{100} \times r^{2} \\
& \Rightarrow \quad r^{2}=\frac{1256 \times 100}{314} \\
& \Rightarrow \quad r=\sqrt{400} \\
& r=20 \mathrm{~cm}
\end{aligned}
$$

Solution : Consider the given equation

$$
\begin{align*}
& 2 x^{2}+6 \sqrt{3} x-60 & =0 \\
\Rightarrow & x^{2}+3 \sqrt{3} x-30 & =0 \tag{i}
\end{align*}
$$

Comparing equation (i) by

We get

$$
a x^{2}+b x+c=0
$$

By quadratic formula

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-3 \sqrt{3} \pm \sqrt{27+120}}{2} \\
& x=\frac{-3 \sqrt{3} \pm \sqrt{147}}{2}
\end{aligned}
$$

Hence value for $x=\frac{-3 \sqrt{3} \pm \sqrt{147}}{2}$
Ans.
20. The $16^{\text {th }}$ term of an AP is five times its third term. If its $10^{\text {th }}$ term is 41 , then find the sum of its first fifteen terms.
Solution : Given that $16^{\text {th }}$ term of an A.P. is five time its $3^{\text {rd }}$ term.

$$
\begin{align*}
\text { i.e., } & & a+(16-1) d & =5[a+(3-1) d] \\
\Rightarrow & & a+15 d & =5[a+2 d] \\
\Rightarrow & & a+15 d & =5 a+10 d \\
\Rightarrow & & 4 a-5 d & =0 \tag{i}
\end{align*}
$$

Also given that,

$$
\begin{array}{rlrl}
a_{10} & =41 \\
& & & \\
\Rightarrow & a+(10-1) d & =41 \tag{ii}\\
\Rightarrow & a+9 d & =41
\end{array}
$$

On multiplying equation (ii) by 4 , we get

$$
\begin{equation*}
4 a+36 d=164 \tag{iii}
\end{equation*}
$$

Subtracting equation (iii) from (i), we get

$$
\begin{aligned}
4 a-5 d & =0 \\
4 a+36 d & =164
\end{aligned}
$$

$$
\begin{array}{rlr}
& \begin{array}{ll}
-16 & - \\
\hline & -41 d
\end{array}=-164 \\
\therefore & d & =4
\end{array}
$$

On putting the value of ' d ' in equation (i), we get

$$
\begin{array}{rlrl}
& & 4 a-5 \times 4 & =0 \\
\Rightarrow & 4 a & =20 \\
\therefore & a & =5 \\
& \text { Now, } & \mathrm{S}_{15} & =\frac{15}{2}[2 a+(15-1) d]
\end{array}
$$

$$
\begin{aligned}
\mathrm{S}_{15} & =\frac{15}{2}(2 \times 5+14 \times 4) \\
& =\frac{15}{2} 2(5+14 \times 2) \\
& =15(5+28) \\
& =15 \times 33
\end{aligned}
$$

$$
\therefore \quad \mathrm{S}_{15}=495
$$

Hence, sum of first fifteen terms is 495. Ans.

SECTION - D

28. A bus travels at a certain average speed for a distance of 75 km and then travels a distance of 90 km at an average speed of $10 \mathrm{~km} / \mathrm{h}$ more than the first speed. If it takes 3 hours to complete the total journey, find its first speed.
[4]
Solution : Let x be the initial speed of the bus we know that
or
Thus, we have

$$
\begin{array}{rlrl}
& & 3 & =\frac{75}{x}+\frac{90}{x+10} \\
\Rightarrow & & 3 & =\frac{75(x+10)+90 x}{x(x+10)} \\
\Rightarrow & & 3(x)(x+10) & =75 x+750+90 x \\
\Rightarrow & 3 x^{2}+30 x & =75 x+750+90 x \\
\Rightarrow & 3 x^{2}-135 x-750 & =0 \\
\Rightarrow & x^{2}-45 x-250 & =0 \\
\Rightarrow & x^{2}-50 x+5 x-250 & =0 \\
\Rightarrow & x(x-50)+5(x-50) & =0 \\
\Rightarrow & & (x+5)(x-50) & =0 \\
\Rightarrow & & x & =-5 \text { or } x=50
\end{array}
$$

Since, speed cannot be negative

$$
\text { So, } \quad x=50
$$

Hence, the initial speed of bus is $50 \mathrm{~km} / \mathrm{hr}$.
Ans.
29. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
[4]
Solution :

Page 139 of 164

Given,
A circle with centre O and a tangent T at a point M of the circle.
To prove: $O M \perp T$
Construction : Take a point P, other than M on T. Join $O P$.
Proof: P is a point on the tangent T, other than the point of contact M.
$\therefore P$ lies outside the circle.
Let $O P$ intersect the circle at N.
Then,
$O N<O P$
[\because a part is less than whole]
But
$O M=O N$
[Radii of the same circle]
$\therefore \quad O M<O P \quad$ [Using (ii)]
Thus, $O M$ is shorter than any other line segment joining O to any point T, other than M.

But a shortest distance between a point and a line is the perpendicular distance.
$\therefore \quad O M \perp T$
Hence, $O M$ is perpendicular on T.
Hence Proved.
30. Construct a right triangle $A B C$ with $\mathrm{AB}=$ $6 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $\angle B=90^{\circ}$. Draw $B D$, the perpendicular from B on $A C$. Draw the circle through B, C and D and construct the tangents from A to this circle.
[4]
Solution : Steps of construction :
(i) Draw a line segment $A B=6 \mathrm{~cm}$.
(ii) Make a right angle at point B and draw $B C=8 \mathrm{~cm}$.
(iii) Draw a perpendicular $B D$ to $A C$.
(iv) Taking $B C$ as diameter, draw a circle which passes through points B, C and D.
(v) Join A to O and taking $A O$ as diameter, draw second circle.

(vi) From point A, draw tangents $A B$ and $A P$.
31. Find the values of k so that the area of the triangle with vertices $(k+1,1),(4,-3)$ and $(7,-k)$ is 6 sq. units.
Solution : Given, the vertices are $(k+1,1)$, $(4,-3)$ and $(7,-k)$ and the area of the triangle is 6 square units.

Therefore,

$$
\begin{gathered}
\text { Area }=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
\Rightarrow 6=\frac{1}{2}[(k+1)(-3+k)+4(-k-1)+7(1+3)]
\end{gathered}
$$

$$
\begin{array}{lc}
\Rightarrow & 12=(k+1)(k-3)+4(-k-1)+28 \\
\Rightarrow & 12=k^{2}-3 k+k-3-4 k-4+28 \\
\Rightarrow & k^{2}-6 k+9=0 \\
\Rightarrow & k^{2}-3 k-3 k+9=0 \\
\Rightarrow & k(k-3)-3(k-3)=0 \\
\Rightarrow & (k-3)(k-3)=0 \\
\therefore & k=3,3
\end{array}
$$

Hence, value of k is 3 .
Ans.

Mathematics 2015 (Outside Delhi)

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. Solve the following quadratic equation for x :

$$
\begin{equation*}
x^{2}-2 a x-\left(4 b^{2}-a^{2}\right)=0 \tag{2}
\end{equation*}
$$

Solution : We have, $x^{2}-2 a x-\left(4 b^{2}-a^{2}\right)=0$
$\Rightarrow \quad x^{2}-2 a x+a^{2}-4 b^{2}=0$
$\Rightarrow \quad(x-a)^{2}-(2 b)^{2}=0$
$\therefore \quad(x-a+2 b)(x-a-2 b)=0$
$\Rightarrow \quad x=a-2 b$ or $a+2 b$
Hence, $\quad x=a-2 b$ or $x=a+2 b \quad$ Ans.
SECTION - C
18. The $13^{\text {th }}$ term of an AP is four times its $3^{\text {rd }}$ term. If its fifth term is 16 , then find the sum of its first ten terms.
Solution : In the given A.P., let first term $=a$ and common difference $=d$
Then,

$$
T_{n}=a+(n-1) d
$$

Mathematics 2015 (Delhi) Term II

$$
\begin{align*}
& \Rightarrow \quad T_{13}=a+(13-1) d=a+12 d \\
& \text { and } \quad T_{3}=a+(3-1) d=a+2 d \\
& \text { Now, } \quad T_{13}=4 T_{3} \\
& \text { (Given) } \\
& a+12 d=4(a+2 d) \\
& \Rightarrow \quad a+12 d=4 a+8 d \\
& \Rightarrow \quad 3 a=4 d \\
& \therefore \quad a=\frac{4}{3} d \tag{i}
\end{align*}
$$

$$
\begin{array}{rlrl}
\text { Also, } & & T_{5} & =a+(5-1) d \\
\Rightarrow & a+4 d & =16 \tag{ii}
\end{array}
$$

Putting the value of ' a ' from equation (i) in (ii), we get

$$
\begin{aligned}
& \frac{4}{3} d+4 d=16 \\
& \Rightarrow \quad 4 d+12 d=48 \\
& \Rightarrow \quad 16 d=48 \\
& \therefore \quad d=3
\end{aligned}
$$

Substituting $d=3$ in equation (ii), we get

$$
\begin{aligned}
& & a+4(3) & =16 \\
\Rightarrow & & a & =16-12 \\
\therefore & & a & =4
\end{aligned}
$$

\therefore Sum of first ten terms is

$$
\begin{aligned}
\mathrm{S}_{10} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{10}{2}[2 \times 4+(10-1) 3] \\
& =5[8+27] \quad \text { where } n=10 \\
& =175 \quad \text { Ans. }
\end{aligned}
$$

19. Find the coordinates of a point P on the line segment joining $A(1,2)$ and $B(6,7)$ such that $A P=\frac{2}{5} A B$.

Solution : Given, $A(1,2)$ and $B(6,7)$ are the given points of a line segment $A B$ with a point P on it.
Let the co-ordinate of point P be (x, y)

$$
\begin{align*}
& \text { Also, } \\
& \begin{array}{cccccc}
& & & A P=\frac{2}{5} A B & \text { (Given) } \\
\begin{array}{ccccc}
(1,2) & & & \\
(x, y) & & \\
(6,7)
\end{array} \\
\hline \mathrm{A} & 2 & \mathrm{P} & 3 & \mathrm{~B}
\end{array} \\
& \begin{aligned}
A B & =A P+P B \\
\Rightarrow \quad & \frac{A P}{P B}
\end{aligned}=\frac{2}{3}
\end{align*}
$$

Then, new average speed of truck

$$
=(x+20) \mathrm{km} / \mathrm{hr} .
$$

Time taken by truck to cover $150 \mathrm{~km}=\frac{150}{x}$ hrs. and time taken by truck to cover 200 km

$$
=\frac{200}{x+20} \mathrm{hrs} .
$$

$$
\begin{array}{rlrl}
\therefore & \frac{150}{x}+\frac{200}{x+20} & =5 \\
\Rightarrow & \frac{150(x+20)+200 x}{x(x+20)} & =5 \\
\Rightarrow & 150 x+3000+200 x & =5 x(x+20) \\
\Rightarrow & 350 x+3000 & =5 x^{2}+100 x \\
\Rightarrow & 5 x^{2}-250 x-3000 & =0 \\
\Rightarrow & x^{2}-50 x-600 & =0 \\
\Rightarrow & x^{2}-60 x+10 x-600 & =0 \\
\Rightarrow & x(x-60)+10(x-60) & =0 \\
\Rightarrow & (x+10)(x-60) & =0 \\
\therefore & & x & =-10 \text { or } 60
\end{array}
$$

Since speed cannot be negative.
So, $\quad x=60$
\therefore First speed of truck $=60 \mathrm{~km} / \mathrm{hr}$. Ans.
29. An arithmetic progression $5,12,19, \ldots$. . has 50 terms. Find its last term. Hence find the sum of its last 15 terms.
Solution : Given, AP is 5, 12, 19
Here, $n=50, a=5, d=12-5=19-12=7$
Now,

$$
T_{50}=a+(50-1) d
$$

$\Rightarrow \quad T_{50}=5+(49) \times 7=348$
15 terms from last $=(50-15+1)$ terms from starting

$$
\begin{aligned}
\mathrm{T}_{36} & =a+(36-1) d \\
& =5+35(7) \\
& =250
\end{aligned}
$$

Sum of last 15 terms $=\frac{n}{2}(a+l)$

$$
\begin{aligned}
= & \frac{15}{2}(250+348) \\
& {[\because a=250 \text { and } l=348] } \\
= & \frac{15}{2} \times 598 \\
= & 4485 \quad \text { Ans. }
\end{aligned}
$$

30. Construct a triangle $A B C$ in which $A B=$ $5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Now
construct another triangle whose sides are $\frac{5}{7}$ times the corresponding sides of $\triangle A B C$.
[4]
Solution : Steps of construction :
(i) Draw a line segment $A B=5 \mathrm{~cm}$.
(ii) Construct $\angle A B X=60^{\circ}$.
(iii) From B, draw $B C=6 \mathrm{~cm}$ cutting $B X$ at C.
(iv) Join $A C$.

Thus, $\triangle A B C$ is obtained
(v) Draw D on $A B$ such that $A D=\frac{5}{7} A B$

$$
=\left(\frac{5}{7} \times 5\right) \mathrm{cm}=3.6 \mathrm{~cm}
$$

(vi) Draw $D E \| B C$ cutting $A C$ at E. Then $\triangle A D E$ is the required triangle similar to $\triangle A B C$ Such that each side of $\triangle A D E$ is $\frac{5}{7}$ times the corresponding side of $\triangle A B C$.

31. Find the values of k for which the points $\mathrm{A}(k+1,2 k), \mathrm{B}(3 k, 2 k+3)$ and $\mathrm{C}(5 k-1,5 k)$ are collinear.
Solution : Given, the points $\mathrm{A}(k+1,2 k)$, $B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$
\because The point to be collinear

$$
\begin{array}{ll}
\therefore & x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0 \\
\Rightarrow & (k+1)(2 k+3-5 k)+3 k(5 k-2 k)+(5 k-1) \\
& (2 k-2 k-3)=0 \\
\Rightarrow & (k+1)(3-3 k)+3 k(3 k)+(5 k-1)(-3)=0 \\
\Rightarrow & 3 k+3-3 k^{2}-3 k+9 k^{2}-15 k+3=0 \\
\Rightarrow & 6 k^{2}-15 k+6=0 \\
\Rightarrow & 2 k^{2}-5 k+2=0 \\
\Rightarrow & 2 k^{2}-4 k-k+2=0 \\
\Rightarrow & 2 k(k-2)-1(k-2)=0 \\
\Rightarrow & (2 k-1)(k-2)=0 \\
\Rightarrow & k=2 \text { or } \frac{1}{2}
\end{array}
$$

Hence, $k=2$ or $k=\frac{1}{2}$.
Ans.

SECTION - A

1. If $x=-\frac{1}{2}$, is a solution of the quadratic equation $3 x^{2}+2 k x-3=0$, find the value of k.
Solution : Since $x=\frac{-1}{2}$ is a solution of $3 x^{2}+$ $2 k x-3=0$, it must satisfy the equation.

$$
\begin{aligned}
& \therefore 3 \times\left(-\frac{1}{2}\right)^{2}+2 k\left(-\frac{1}{2}\right)-3=0 \\
& \Rightarrow \quad \frac{3}{4}-k-3=0 \\
& \Rightarrow \quad k=\frac{3}{4}-3 \\
& \Rightarrow \quad k=\frac{-9}{4}
\end{aligned}
$$

Ans.
2. The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find $x: y$. [1] Solution : Let $A B$ and $C D$ be two towers of height x and y respectively.

M is the mid-point of $B C$ i.e., $B M=M C$
In $\triangle A B M$, we have

$$
\Rightarrow \begin{align*}
\frac{A B}{B M} & =\tan 30^{\circ} \\
B M & =\frac{x}{\tan 30^{\circ}} \tag{i}
\end{align*}
$$

In $\triangle C D M$, we have

$$
\begin{align*}
\frac{D C}{M C} & =\tan 60^{\circ} \\
\Rightarrow \quad \frac{y}{M C} & =\tan 60^{\circ} \\
M C & =\frac{y}{\tan 60^{\circ}} \tag{ii}
\end{align*}
$$

From eq. (i) and (ii), we get

$$
\frac{x}{\tan 30^{\circ}}=\frac{y}{\tan 60^{\circ}}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{x}{y}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}} \\
\Rightarrow & \frac{x}{y}=\frac{1 / \sqrt{3}}{\sqrt{3}}=\frac{1}{3} \\
\therefore & x: y=1: 3 .
\end{array}
$$

Ans.
3. A letter of English alphabet is chosen at random. Determine the probability that the chosen letter is a consonant.
Solution : Total number of all possible outcomes $=26$
Number of consonants $=21$
Let E be the event of getting a consonant
$\therefore P($ getting a consonant $)=P(E)=\frac{21}{26}$ Ans.
4. In Fig. 1, $P A$ and $P B$ are tangents to the circle with centre O such that $\angle A P B=50^{\circ}$, Write the measure of $\angle O A B$.

Figure 1
Solution : Since $P A$ and $P B$ are tangents to the circle with centre O then,

$$
P A=P B
$$

and

$$
\angle A P O=\angle B P O=25^{\circ}
$$

Join $O P$ and $O A \perp P A$.
In $\triangle A P O$,

$$
\begin{aligned}
& \angle A P O+\angle P O A+\angle O A P & =180^{\circ} \\
\Rightarrow & 25^{\circ}+\angle P O A+90^{\circ} & =180^{\circ} \\
\Rightarrow & \angle P O A & =65^{\circ}
\end{aligned}
$$

Join $O B$, then
In $\triangle A O B$

$$
\begin{array}{ccc}
& \angle O A B+\angle O B A+\angle A O B=180^{\circ} \\
\Rightarrow & 2 \angle O A B+2 \angle P O A=180^{\circ} \\
& {[\because \angle O A B=\angle O B A} \\
& O A \& O B \text { are radii }] \\
\Rightarrow & 2 \angle O A B+2 \times 65^{\circ}=180^{\circ} \\
\Rightarrow & \angle O A B=90^{\circ}-65^{\circ} \\
\therefore & \angle O A B=25^{\circ} \quad \text { Ans. } & \\
& & \angle O A
\end{array}
$$

SECTION - B

5. In Fig. $2, A B$ is the diameter of a circle with centre O and $A T$ is a tangent. If $\angle A O Q=$ 58°, find $\angle A T Q$.

Figure 2
Solution : Given, $A B$ is a diameter of a circle with centre O and AT is a tangent, then

$$
B A \perp A T
$$

Also $\quad \angle A B Q=\frac{1}{2} \angle A O Q$
(\because Angle subtended on the arc is half of the angle subtended at centre)

$$
\left.\begin{array}{lrl}
\Rightarrow & \angle A B Q & =\frac{1}{2} \times 58^{\circ}=29^{\circ} \\
\text { Now, } & \angle A T Q & =180^{\circ}-(\angle A B Q+\angle B A T) \\
& & =180^{\circ}-\left(29^{\circ}+90^{\circ}\right) \\
\therefore & & \angle A T Q
\end{array}\right)=61^{\circ} \quad \text { Ans. }
$$

6. Solve the following quadratic equation for x :

$$
\begin{equation*}
4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0 \tag{2}
\end{equation*}
$$

Solution : We have $4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0$

$$
\begin{array}{lr}
\Rightarrow & \left(4 x^{2}-4 a^{2} x+a^{4}\right)-b^{4}=0 \\
\Rightarrow & \left(2 x-a^{2}\right)^{2}-\left(b^{2}\right)^{2}=0 \\
\Rightarrow & \left(2 x-a^{2}+b^{2}\right)\left(2 x-a^{2}-b^{2}\right)=0 \\
\therefore & x=\frac{a^{2}-b^{2}}{2} \text { or } \frac{a^{2}+b^{2}}{2}
\end{array}
$$

Ans.
7. From a point T outside a circle of centre O, tangents $T P$ and $T Q$ are drawn to the circle. Prove that $O T$ is the right bisector of line segment $P Q$.
Solution : Given, $T P$ and $T Q$ are the tangents drawn on a circle with centre O.

To prove : $O T$ is the right bisector of $P Q$.

Proof : In $\triangle T P M$ and $\triangle T Q M$
$T P=T Q$
(Tangents drawn from
external point are equal)

$$
\begin{aligned}
T M & =T M \\
\angle P T M & =\angle Q T M
\end{aligned}
$$

(Common)
(TP and $T Q$ are equally inclined to $O T$)
$\therefore \quad \triangle T P M \cong \triangle T Q M$
(By SAS congruence)
$\therefore \quad P M=M Q$
and $\quad \angle P M T=\angle Q M T($ By C.P.C.T) since, $P M Q$ is a straight line, then

$$
\begin{aligned}
\angle P M T+\angle Q M T & =180^{\circ} \\
\therefore \quad \angle P M T & =\angle Q M T=90^{\circ}
\end{aligned}
$$

$\therefore O T$ is the right bisector of $P Q$.
Hence Proved.
8. Find the middle term of the A.P. 6, 13, 20,, 216.
Solution : Given A.P. is $6,13,20$,
Here, $a=6, d=13-6=20-13=7$
Let n be the number of terms.

$$
\begin{array}{rlrl}
\text { then } & \mathrm{T}_{n} & =a+(n-1) d \\
\Rightarrow & & 216 & =6+(n-1) 7 \\
\Rightarrow & 216 & =6+7 n-7 \\
\Rightarrow & & 217 & =7 n \\
& \therefore & n & =31
\end{array}
$$

and middle term is $\frac{(n+1) \text { th }}{2}$ term i.e., $16^{\text {th }}$ term

$$
\begin{aligned}
\therefore & \mathrm{T}_{16} & =6+(16-1) 7 \\
& & =6+15 \times 7 \\
\therefore & \mathrm{~T}_{16} & =111
\end{aligned}
$$

\therefore Middle term of the A.P. is 111 . Ans.
9. If $A(5,2), B(2,-2)$ and $C(-2, t)$ are the vertices of a right angled triangle with $\angle B=90^{\circ}$, then find the value of t.
Solution : Given, $A B C$ are the vertices of a right angled triangle, then,
By Pythagoras theorem,

Page 144 of 164

$$
\begin{equation*}
(A C)^{2}=(B C)^{2}+(A B)^{2} \tag{i}
\end{equation*}
$$

Now, $\quad(A C)^{2}=(5+2)^{2}+(2-t)^{2}$

$$
=49+(2-t)^{2}
$$

$$
(B C)^{2}=(2+2)^{2}+(-2-t)^{2}
$$

$$
=16+(t+2)^{2}
$$

And

$$
\begin{aligned}
(A B)^{2} & =(5-2)^{2}+(2+2)^{2} \\
& =9+16=25
\end{aligned}
$$

Putting these values in (i)

$$
\left.\begin{array}{rlrl}
& & 49+(2-t)^{2} & =16+(t+2)^{2}+25 \\
& \Rightarrow & 49+(2-t)^{2} & =41+(t+2)^{2} \\
\Rightarrow & & 8 & =(t+2)^{2}-(2-t)^{2} \\
\Rightarrow & & 8 & =t^{2}+4+4 t-4-t^{2}+4 t \\
\Rightarrow & & 8 & =8 t \\
& \therefore & & t
\end{array}\right)=1 \quad \text { Ans. }
$$

10. Find the ratio in which the point $P\left(\frac{3}{4}, \frac{5}{12}\right)$ divides the line segment joining the points $A\left(\frac{1}{2}, \frac{3}{2}\right)$ and $B(2,-5)$.

Solution : Let point $P\left(\frac{3}{4}, \frac{5}{12}\right)$ divides the line $A B$ in ratio $k: 1$.

Then, by section formula, coordinates of P are

$$
\begin{aligned}
& & \begin{array}{rlrl}
\frac{2 k+\frac{1}{2}}{k+1} & =\frac{3}{4} \\
\Rightarrow & & 8 k+2 & =3 k+3 \\
& \Rightarrow & 8 k-3 k & =3-2 \\
& \Rightarrow & 5 k & =1 \\
& \Rightarrow & k & =\frac{1}{5} \\
& & & \\
& \text { and } & \frac{-5 k+\frac{3}{2}}{k+1} & =\frac{5}{12} \\
& \Rightarrow & -60 k+18 & =5 k+5 \\
& \Rightarrow & -60 k-5 k & =5-18 \\
& \Rightarrow & -65-k & =-15
\end{array} r l
\end{aligned}
$$

$$
\begin{array}{rlrl}
& & k & =\frac{-15}{-65}=\frac{1}{5} \\
\Rightarrow & k & =\frac{1}{5} \\
\Rightarrow & k & =\frac{1}{5} \text { in each case } \\
\Rightarrow & & 8 k+2 & =3 k+3 \\
& \text { and } & -60 k+18 & =5 k+5 \\
\Rightarrow & 8 k-3 k & =3-2 \\
& \text { and } & 65 k & =18-5 \\
& \Rightarrow & 5 k & =1
\end{array}
$$

$$
\text { and } \quad 65 k=13 \Rightarrow k=\frac{1}{5} \text { in each case }
$$

Hence the required ratio is $1: 5$.
Ans.

SECTION - C

11. Find the area of the triangle $A B C$ with $A(1,-4)$ and mid-points of sides through A being ($2,-1$), and ($0,-1$).

Solution: Let $A(1,-4), B\left(x_{1}, y_{1}\right)$ and $C\left(x_{2}, y_{2}\right)$ be the vertices of a triangle $A B C$ and let $P(2,-1)$ and $Q(0,-1)$ be the mid-points of $A B$ and $A C$ respectively.

$\because P$ is the mid-point of $A B$.

$$
\begin{aligned}
\therefore \quad \frac{1+x_{1}}{2} & =2, \frac{-4+y_{1}}{2}=-1 \\
x_{1} & =3, y_{1}=2
\end{aligned}
$$

So, $B\left(x_{1}, y_{1}\right) \equiv B(3,2)$
Similarly, Q is the mid-point of $A C$.

$$
\begin{aligned}
& \quad \frac{1+x_{2}}{2}=0, \frac{-4+y_{2}}{2}=-1 \\
& \Rightarrow \quad x_{2}=-1, y_{2}=2 \\
& \text { So, } C\left(x_{2}, y_{2}\right) \equiv C(-1,2) \\
& \text { Thus, Area of } \triangle A B C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}[1(2-2)+3(2+4)-1(-4-2)] \\
& =\frac{1}{2} \times 24=12 \text { sq. units. }
\end{aligned}
$$

Ans.
12. Find that non-zero value of k, for which the quadratic equation $k x^{2}+1-2(k-1) x+x^{2}$ $=0$ has equal roots. Hence find the roots of the equation.
Solution : The given equation can be written as

$$
(k+1) x^{2}-2(k-1) x+1=0
$$

Since the equation has equal roots

$$
\begin{array}{rlrl}
& & 4(k-1)^{2}-4(k+1) & =0 \\
\Rightarrow & 4\left(k^{2}+1-2 k\right)-4(k+1) & =0 \\
\Rightarrow & 4 k^{2}+4-8 k-4 k-4 & =0 \\
\Rightarrow & & 4 k^{2}-12 k & =0 \\
\Rightarrow & & 4 k(k-3) & =0 \\
\Rightarrow & & k & =0,3
\end{array}
$$

\therefore Non zero value of k is 3 .
And the equation becomes,

$$
\begin{array}{rlrl}
\Rightarrow & & 4 x^{2}-4 x+1 & =0 \\
\Rightarrow & (2 x-1)^{2} & =0 \\
\Rightarrow & x & =\frac{1}{2}
\end{array}
$$

$x=\frac{1}{2}, \frac{1}{2}$ which are the required roots of the given equation.

Ans.
13. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building.

Solution : Let $A B$ be the tower and $C D$ be a building of height 30 m and $x \mathrm{~m}$ respectively. Let the distance between the two be $y \mathrm{~m}$. Then, in $\triangle A B C$

And, in $\triangle B D C$

$$
\frac{x}{y}=\tan 30^{\circ}
$$

$$
\begin{aligned}
& x=y \tan 30^{\circ} \\
& x=30 \times \frac{1}{\sqrt{3}}=10 \sqrt{3}
\end{aligned}
$$

Hence, the height of the building is $10 \sqrt{3} \mathrm{~m}$.
Ans.
14. Two different dice are rolled together. Find the probability of getting :
(i) the sum of numbers on two dice to be 5 .
(ii) even numbers on both dice.

Solution : Total possible outcomes when two dices are rolled together $=36$
(i) Let E_{1} be the event of getting the sum of 5 on two dice.
Then, the favourable outcomes are $(2,3),(3,2)$, $(1,4),(4,1)$.
Number of favourable outcomes $=4$
$\therefore \mathrm{P}($ getting the sum of 5$)=P\left(E_{1}\right)=\frac{4}{36}=\frac{1}{9}$
Ans.
(ii) Let E_{2} be the event of getting even numbers on both dice.
Then, the favourable outcomes are $(2,2),(2,4)$, $(2,6),(4,2),(4,4)(4,6),(6,2),(6,4),(6,6)$
Number of favourable outcomes $=9$
$\therefore \mathrm{P}$ (getting even numbers on both dice)

$$
=P\left(E_{2}\right)=\frac{9}{36}=\frac{1}{4}
$$

Ans.
15. If $S_{n^{\prime}}$ denotes the sum of first n terms of an A.P., prove that $S_{12}=3\left(S_{8}-S_{4}\right)$

Solution : Let a be the first term and d be the common difference.

We know, $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Then, $\quad S_{12}=\frac{12}{2}[2 a+(12-1) d]$

$$
=6(2 a+11 d)=12 a+66 d
$$

$$
S_{8}=\frac{8}{2}[2 a+(8-1) d]
$$

$$
=4(2 a+7 d)=8 a+28 d
$$

and,

$$
S_{4}=\frac{4}{2}[2 a+(4-1) d]
$$

$$
=2(2 a+3 d)=4 a+6 d
$$

Now, $3\left(S_{8}-S_{4}\right)=3(8 a+28 d-4 a-6 d)$

$$
=3(4 a+22 d)
$$

$$
=12 a+66 d
$$

$$
=S_{12}
$$

Hence Proved.

Mathematics 2015 (Delhi) Term II

16. In Fig. 3, $A P B$ and $A Q O$ are semi-circles, and $A O=O B$. If the perimeter of the figure is 40 cm , find the area of the shaded region. $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$

Figure 3
Solution: Given, $O A=O B=r$ (say)
We have, perimeter of the figure

$$
\begin{aligned}
& =\pi r+\frac{\pi r}{2}+r \\
& \therefore \quad 40=\frac{22}{7} \times r+\frac{22}{7} \times \frac{r}{2}+r \\
& \Rightarrow \quad 280=22 r+11 r+7 r \\
& \Rightarrow \quad 40 r=280 \\
& \therefore \quad r=7
\end{aligned}
$$

Now, area of the shaded region

$$
\begin{aligned}
& =\frac{\pi r^{2}}{2}+\frac{\pi}{2}\left(\frac{r}{2}\right)^{2} \\
& =\frac{1}{2} \times \frac{22}{7} \times 7 \times 7+\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =77+\frac{77}{4} \\
& =\frac{77 \times 5}{4}=\frac{385}{4} \\
& =96 \frac{1}{4} \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
17. In Fig. 4, from the top of a solid cone of height 12 cm base radius 6 cm , a cone of height 4 cm is removed by a plane parallel to the base. Find the total surface area of the remaining solid. $\left[\right.$ Use $\pi=\frac{22}{7}$ and $\left.\sqrt{5}=2.236\right]$

Figure 4

Solution : Height of the given cone $=12 \mathrm{~cm}$ and the radius of the base $=6 \mathrm{~cm}$
Let the radius of the base of the smaller cone be $x \mathrm{~cm}$ and height is 4 cm .

Now,

$$
\triangle A R Q \sim \triangle A C D
$$

$$
\begin{array}{ll}
\therefore & \frac{D C}{Q R}=\frac{A D}{A Q} \\
\Rightarrow & \frac{6}{x}=\frac{12}{4} \Rightarrow x=2 \mathrm{~cm}
\end{array}
$$

$$
l=R C=\sqrt{h^{2}+(R-r)^{2}}
$$

$$
=\sqrt{8^{2}+(6-2)^{2}}
$$

$$
=\sqrt{64+16}
$$

$$
=4 \sqrt{5}
$$

Total surface area of frustum PRCB

$$
\begin{aligned}
& =\left[\pi l(R+r)+\pi r^{2}+\pi R^{2}\right] \\
& =\frac{22}{7} \times 4 \sqrt{5}(6+2)+\frac{22}{7} \times(2)^{2}+\frac{22}{7}+(6)^{2} \\
& =\frac{22}{7}[32 \times 2.236+4+36]
\end{aligned}
$$

$$
=\frac{22}{7}(111.552)
$$

$$
=350.592 \mathrm{~cm}^{2}
$$

Ans.
18. A solid wooden toy is in the form of hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and the total wood used in the making of toy is $166 \frac{5}{6} \mathrm{~cm}^{3}$. Find the height of the toy. Also, find the cost of painting the hemispherical part of the toy at the rate of $₹ 10$ per cm ${ }^{2}$.

$$
\left[\text { Use } \pi=\frac{22}{7}\right]
$$

Solution : Given, the radius of hemisphere is 3.5 cm and let the height of the cone be $h \mathrm{~cm}$.

Now, Volume of wood $=166 \frac{5}{6} \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h=166 \frac{5}{6} \\
& \Rightarrow \frac{2}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5+\frac{1}{3} \times \frac{22}{7}
\end{aligned}
$$

$$
\times 3.5 \times 3.5 \times h
$$

$$
\Rightarrow \quad=\frac{1001}{6}
$$

$$
\Rightarrow \frac{22}{7} \times 3.5 \times 3.5\left(\frac{2}{3} \times \frac{7}{2}+\frac{1}{3} \times h\right)=\frac{1001}{6}
$$

$$
\Rightarrow \quad \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\left(\frac{7+h}{3}\right)=\frac{1001}{6}
$$

$$
\Rightarrow \quad 7+h=\frac{1001 \times 7 \times 2 \times 2 \times 3}{6 \times 7 \times 7 \times 22}
$$

$$
\Rightarrow \quad h=\frac{1001}{77}-7
$$

$$
\therefore \quad h=6 \mathrm{~cm}
$$

Area of hemispherical part of the toy $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =77 \mathrm{~cm}^{2}
\end{aligned}
$$

The cost of painting the hemispherical part of the toy $\quad=₹(77 \times 10)$

$$
\text { = ₹ } 770
$$

Ans.
19. In Fig. 5, from a cuboidal solid metallic block, of dimensions $15 \mathrm{~cm} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm}$, a cylindrical hole of diameter 7 cm is drilled out. Find the surface area of the remaining block. [Use $\left.\pi=\frac{22}{7}\right]$

Figure 5
Solution : We have cuboidal solid metallic block having dimensions $15 \mathrm{~cm} \times 10 \mathrm{~cm} \times 5$ cm .
and diameter of cylinder is 7 cm .
Now, Total surface area of cuboidal block

$$
\begin{aligned}
& =2(l b+b h+h l) \\
& =2(15 \times 10+10 \times 5+5 \times 15) \\
& =2(150+50+75) \\
& =2 \times 275=550 \mathrm{~cm}^{2} .
\end{aligned}
$$

$2($ Area of circular base $)=2 \times \pi r^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =77 \mathrm{~cm}^{2}
\end{aligned}
$$

And, curved surface area of cylinder $=2 \pi r h$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{7}{2} \times 5 \\
& =110 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, required surface area $=$ T.S.A. of block - Area of base + C.S.A. of cylinder

$$
\begin{aligned}
& =550-77+110 \\
& =583 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
20. In Fig. 6, find the area of the shaded region
[Use $\pi=3.14]$

Figure 6

Solution : Area of square ($A B C D$)

Area of small square ($E F G H$)

$$
\begin{aligned}
& =(7-3)^{2} \\
& =4 \times 4=16 \mathrm{~cm}^{2}
\end{aligned}
$$

$4($ Area of semi-circle $)=4 \times \frac{\pi r^{2}}{2}$

$$
\begin{aligned}
& =2 \times 3.14 \times 2 \times 2 \\
& =25.12 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Required area (shaded) $=$ Area of square - Area of small square $-4 \times$ Area of semi-circle

$$
\begin{aligned}
& =(196-16-25 \cdot 12) \mathrm{cm}^{2} \\
& =154 \cdot 88 \mathrm{~cm}^{2} \quad \text { Ans. }
\end{aligned}
$$

SECTION - D

21. The numerator of a fraction is 3 less than its denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and original fraction is $\frac{29}{20}$. Find the original fraction.[4]

Solution : Let the denominator of the fraction be x then numerator is $x-3$ and fraction is $\frac{x-3}{x}$
If 2 is added to both numerator and denominator then New fraction is

$$
\frac{x-3+2}{x+2}=\frac{x-1}{x+2}
$$

According to the question

$$
\begin{array}{lrl}
\therefore & \frac{x-3}{x}+\frac{x-1}{x+2} & =\frac{29}{20} \\
\Rightarrow & \frac{(x-3)(x+2)+x(x-1)}{x(x+2)} & =\frac{29}{20} \\
\Rightarrow & 20\left(x^{2}-3 x+2 x-6+x^{2}-x\right) & =29\left(x^{2}+2 x\right) \\
\Rightarrow & 40 x^{2}-40 x-120 & =29 x^{2}+58 x
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow & 11 x^{2}-98 x-120=0 \\
\Rightarrow & 11 x^{2}-110 x+12 x-120=0 \\
\Rightarrow & 11 x(x-10)+12(x-10)=0 \\
\Rightarrow & (11 x+12)(x-10)=0 \\
x=10 \text { or }-\frac{12}{11} \text { (neglect) }
\end{array}
$$

Hence, the fraction is $\frac{10-3}{10}$ i.e., $\frac{7}{10}$. Ans.
22. Ramkali required ₹ 2500 after 12 weeks to send her daughter to school. She saved ₹ 100 in the first week and increased her weekly saving by ₹ 20 every week. Find whether she will be able to send her daughter to school after 12 weeks.
What value is generated in the above situation?
Solution : Money required by Ramkali

$$
=₹ 2500
$$

We have, $a=100, d=20$ and $n=12$
\therefore A.P. formed is $100,120,140$ \qquad upto 12 terms.

Sum of money after 12 weeks

$$
\begin{aligned}
S_{12} & =\frac{12}{2}[2 \times 100+(12-1) 20] \\
& =6[200+11 \times 20]=6(200+220) \\
& =6 \times 420=₹ 2520
\end{aligned}
$$

Hence, Ramkali will be able to send her daughter to school after 12 weeks. Ans.
23. Solve for x :

$$
\begin{equation*}
\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5 x}, x \neq 0,-1,2 \tag{4}
\end{equation*}
$$

Solution: We have, $\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5 x}$

$$
x \neq 0,-1,2
$$

$$
\begin{aligned}
& \Rightarrow 2(10 x)(x-2)+3(5 x)(x+1) \\
& \quad=23(2)(x+1)(x-2) \\
& \Rightarrow 20 x(x-2)+15 x(x+1) \\
& \quad=46(x+1)(x-2) \\
& \Rightarrow 20 x^{2}-40 x+15 x^{2}+15 x \\
& \quad=46\left(x^{2}+x-2 x-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 20 x^{2}-40 x+15 x^{2}+15 x \\
& =46 x^{2}-46 x-92 \\
& \Rightarrow \quad 11 x^{2}-21 x-92=0 \\
& \Rightarrow \quad x=\frac{21 \pm \sqrt{441+4048}}{22} \\
& \Rightarrow \quad x=\frac{21 \pm \sqrt{4489}}{22} \\
& \Rightarrow \quad x=\frac{21 \pm 67}{22} \\
& \Rightarrow \quad x=\frac{21+67}{22} \text { or } \frac{21-67}{22} \\
& \Rightarrow \quad x=\frac{88}{22} \text { or }-\frac{46}{22} \\
& \therefore \quad x=4 \text { or }-\frac{23}{11}
\end{aligned}
$$

Ans.
24. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Solution : Given, a circle with centre O and a tangent $A B$ at point P on circle.
To prove : $O P \perp A B$.
Construction : Take another point Q on $A B$ and join $O Q$.
Proof : Since Q is a point on $A B$ (other than P)
$\therefore Q$ lies outside the circle.
Let $O Q$ intersect the circle at R,

Then,

$$
\begin{equation*}
O R<O Q \tag{i}
\end{equation*}
$$

But
$O P=O R \quad$ (radii of circle)
$O P<O Q$
(from (i) and (ii))
Thus, $O P$ is shorter than any other line segment joining O to any point on $A B$.
But the shortest distance between a point and a line is the perpendicular distance.
\therefore
$O P \perp A B$
Hence Proved
25. In Fig. 7, tangents $P Q$ and $P R$ are drawn from an external point P to a circle with centre O, such that $\angle R P Q=30^{\circ}$. A chord RS is drawn parallel to the tangent $P Q$. Find $\angle R Q S$.

Figure 7
Solution : We have, $\quad P R=P Q$
and

$$
\angle P R Q=\angle P Q R
$$

In $\triangle P Q R$,

$$
\begin{array}{ll}
\angle P R Q+\angle P Q R+\angle R P Q=180^{\circ} \\
\Rightarrow & 2 \angle P R Q+30^{\circ}=180^{\circ} \\
\Rightarrow & \angle P R Q=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}
\end{array}
$$

$\because S R \| Q P$ and $Q R$ is a transversal
$\therefore \quad \angle S R Q=\angle P Q R=75^{\circ}$
Join $O R, O Q$.

$$
\begin{aligned}
\angle O R Q & =\angle R Q O=90^{\circ}-75^{\circ}=15^{\circ} \\
\angle Q O R & =\left(180^{\circ}-2 \times 15^{\circ}\right) \\
& =180^{\circ}-30^{\circ}=150^{\circ} \\
\angle Q S R & =\frac{1}{2} \angle Q O R \\
& =75^{\circ}
\end{aligned}
$$

(Angle subtended on arc is half the angle subtended on centre)
\therefore In $\triangle S Q R$

$$
\begin{aligned}
\angle R Q S & =180^{\circ}-(\angle S R Q+\angle R S Q) \\
& =180^{\circ}-\left(75^{\circ}+75^{\circ}\right)
\end{aligned}
$$

$$
\therefore \quad \angle R Q S=30^{\circ}
$$

Ans.
26. Construct a triangle $A B C$ with $B C=7 \mathrm{~cm}$, $\angle B=60^{\circ}$ and $A B=6 \mathrm{~cm}$. Construct another triangle whose sides are $\frac{3}{4}$ times the corresponding side of $\triangle A B C$.

Solution : Steps of Construction :
(i) Draw a line segment $A B=6 \mathrm{~cm}$.
(ii) Construct $\angle A B X=60^{\circ}$.
(iii) From B as centres draw an arc of 7 cm cutting $B X$ at C.
(iv) Join $A C$.

Thus $\triangle A B C$ is obtained.
(v) Take point D on $A B$ such that $A D=\frac{3}{4}$

$$
A B=\left(\frac{3}{4} \times 6\right) \mathrm{cm}=\frac{9}{2} \mathrm{~cm}=4.5 \mathrm{~cm}
$$

(vi) Draw $D E \| B C$, meeting $A C$ at E.

Then, $\triangle A D E$ is the required triangle similar to $\triangle A B C$ such that each side of $\triangle A D E$ is $\frac{3}{4}$ times the corresponding side of $\triangle A B C$.

27. From a point P on the ground the angle of elevation of the top of a tower is 30° and that of the top of a flag staff fixed on the top of the tower, is 60°. If the length of the flag staff is 5 m , find the height of the tower. [4]
Solution : Let $C B$ be the tower of $x \mathrm{~m}$ and $A C$ be the flag staff of 5 m .
Then, in $\triangle C P B$

$$
\tan 30^{\circ}=\frac{x}{P B}
$$

$$
\begin{equation*}
\Rightarrow \quad P B=\frac{x}{\tan 30^{\circ}}=\sqrt{3} x \tag{i}
\end{equation*}
$$

In $\triangle A P B$,

$$
\begin{array}{rlrl}
\tan 60^{\circ} & =\frac{5+x}{P B} \\
\Rightarrow \quad & P B & =\frac{5+x}{\sqrt{3}} \tag{ii}
\end{array}
$$

From eq. (i) and (ii),

$$
\sqrt{3} x=\frac{x+5}{\sqrt{3}}
$$

$$
\begin{aligned}
\Rightarrow & x & =\frac{x+5}{3} \\
\Rightarrow & 3 x-x & =5 \\
\Rightarrow & 2 x & =5 \\
\Rightarrow & x & =5 / 2=2.5
\end{aligned}
$$

\therefore Height of the tower is 2.5 m .
Ans.
28. A box contains 20 cards numbered from 1 to 20. A card is drawn at random from the box. Find the probability that the number on the drawn card is :
(i) divisible by 2 or 3
(ii) a prime number

Solution : Total number of outcomes $=20$
(i) Let E_{1} be the event of getting a number. divisible by 2 or 3 .
Then, favourable outcomes $=2,4,6,8,10$, $12,14,16,18,20,3,9,15$.
Number of fayourable outcomes $=13$
$\therefore \mathrm{P}$ (getting a no. divisible by 2 or 3)

$$
=P\left(E_{1}\right)=\frac{13}{20}
$$

Ans.
(ii) Let E_{2} be the event of getting a prime number.
Then, favourable outcomes $=2,3,5,7,11$, 13, 17, 19.
Number of favourable outcomes $=8$
$\therefore \mathrm{P}($ getting a prime number $)=P\left(E_{2}\right)=\frac{8}{20}$

$$
=\frac{2}{5} \quad \text { Ans. }
$$

29. If $A(-4,8), B(-3,-4), C(0,-5)$ and $D(5,6)$ are the vertices of a quadrilateral $A B C D$, find its area.
Solution : We have, $A(-4,8), B(-3,-4)$, $C(0,-5)$ and $D(5,6)$ are the vertices of a quadrilateral.
Join A and C. Then, area of quad. $A B C D$

$$
=(\text { area of } \triangle A B C)+(\text { area of } \triangle A C D)
$$

$$
\begin{aligned}
& \text { Area of } \triangle A B C \\
& \qquad \begin{aligned}
& =\frac{1}{2}[-4(-4+5)-3(-5-8)+0(8+4)] \\
& =\frac{1}{2}[-4+39] \\
& =\frac{35}{2} \text { sq. units }
\end{aligned}
\end{aligned}
$$

And, area of $\triangle A C D$

$$
\begin{aligned}
& =\frac{1}{2}[-4(-5-6)+0(6-8)+5(8+5)] \\
& =\frac{1}{2}[44+65] \\
& =\frac{109}{2} \text { sq. units. }
\end{aligned}
$$

\therefore Area of quadilateral $A B C D$

$$
\begin{aligned}
& =\text { Area of } \triangle A B C+\text { Area of } \triangle A C D \\
& =\frac{35}{2}+\frac{109}{2} \\
& =\frac{144}{2} \text { sq. units }=72 \text { sq. units. }
\end{aligned}
$$

Ans.
30. A well of diameter 4 m is dug 14 m deep. The earth taken out is spread evenly all around the well to form a 40 cm high embankment. Find the width of the embankment.
Solution : We have, diameter of well $=4 \mathrm{~m}$ and height $=14 \mathrm{~m}$.
Volume of earth taken out after digging the well

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{4}{2} \times \frac{4}{2} \times 14 \\
& =176 \mathrm{~m}^{3}
\end{aligned}
$$

Let x be the width of the embankment formed by the earth taken out.
Volume of embankment

$$
\begin{array}{rlrl}
& & =\frac{22}{7}\left[(2+x)^{2}-(2)^{2}\right] \times \frac{40}{100}=176 \\
& \Rightarrow & \frac{22}{7}\left[4+x^{2}+4 x-4\right] \times \frac{2}{5}=176 \\
\Rightarrow & x^{2}+4 x=\frac{176 \times 5 \times 7}{22 \times 2} \\
\Rightarrow & & x^{2}+4 x-140=0 \\
\Rightarrow & & x^{2}+14 x-10 x-140=0 \\
\Rightarrow & x(x+14)-10(x+14)=0
\end{array}
$$

$$
\begin{array}{lc}
\Rightarrow & (x+14)(x-10)=0 \\
\Rightarrow & x=-14 \text { or } 10 \\
& x=-14 \text { (neglect) } \\
\therefore & x=10
\end{array}
$$

Hence, width of embankment $=10 \mathrm{~m}$. Ans.
31. Water is flowing at the rate of $2.52 \mathrm{~km} / \mathrm{h}$ through a cylindrical pipe into a cylindrical tank, the radius of whose base is 40 cm , If the increase in the level of water in the tank, in half an hour is 3.15 m , find the internal diameter of the pipe.
Solution : Let the internal radius of the pipe be $x \mathrm{~m}$.

Radius of base of tank $=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}$
Speed of water flowing through the pipe

$$
\begin{aligned}
& =2.52 \mathrm{~km} / \mathrm{hr} \\
& =\frac{2.52}{2} \times 1000 \\
& =1260 \mathrm{~m} \text { in half an hour }
\end{aligned}
$$

Volume of water flown in half an hour

$$
\begin{aligned}
& =\pi r^{2} h \\
& =\frac{22}{7} \times x \times x \times 1260 \\
& =3960 x^{2}
\end{aligned}
$$

Level of water raised in the tank $=3 \cdot 15 \mathrm{~m}$ $=\frac{315}{100} \mathrm{~m}$
Now, $\pi \times \frac{2}{5} \times \frac{2}{5} \times \frac{315}{100}=3960 x^{2}$

$$
\begin{aligned}
x^{2} & =\frac{22 \times 2 \times 2 \times 315}{7 \times 5 \times 5 \times 100 \times 3960} \\
x^{2} & =\frac{4}{10000} \\
x & =\frac{2}{100}=0.02 \mathrm{~m}
\end{aligned}
$$

Internal diameter of the pipe

$$
=0.04 \mathrm{~m} \mathrm{=}=4 \mathrm{~cm}
$$

Ans.

Note : Except for the following questions, all the remaining questions have been asked in previous set.

SECTION - B

10. Find the middle term of the A.P. 213, 205, 197,, 37.
Solution : Given A.P. is 213, 205, 197, 37
Here $a=213, d=205-213=197-205=-8$
Let n be the number of terms
Then,

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
37 & =213+(n-1)(-8) \\
37 & =213-8 n+8 \\
8 n & =184 \\
n & =23
\end{aligned}
$$

And middle term is $\frac{(n+1)^{\text {th }}}{2}$ term i.e. $12^{\text {th }}$ term
\therefore Middle term of the A.P. is 125 . Ans.
SECTION - C
18. If the sum of the first n terms of an A.P. is $\frac{1}{2}\left(3 n^{2}+7 n\right)$, then find its $n^{\text {th }}$ term. Hence write its $20^{\text {th }}$ term.
Solution: Given, $S_{n}=\frac{1}{2}\left(3 n^{2}+7 n\right)$
Now,

$$
S_{1}=\frac{1}{2}\left[3(1)^{2}+7(1)\right]=5=a
$$

(First term)
And, $\quad S_{2}=\frac{1}{2}\left[3(2)^{2}+7(2)\right]=13$
Second term $\left(a_{2}\right)=13-5=8$
We know,

$$
a=5, d=3
$$

$$
T_{n}=a+(n-1) d
$$

$$
=5+(n-1)(3)
$$

$$
=5+3 n-3
$$

$\therefore \quad T_{n}=3 n+2$
And

$$
\begin{aligned}
T_{20} & =5+(20-1) 3 \\
& =5+19 \times 3
\end{aligned}
$$

$$
\therefore \quad T_{20}=62
$$

Ans.
19. Three distinct coins are tossed together.

Find the probability of getting
(i) at least 2 heads
(ii) at most 2 heads

$$
\begin{aligned}
& \therefore \quad T_{12}=213+(12-1)(-8) \\
& =213+11(-8)=213-88 \\
& \therefore \quad T_{12}=125
\end{aligned}
$$

Solution : Total number of possible outcomes $=8$
(i) Let E_{1} be the event of getting atleast two heads
Favourable outcomes $=(H, H, T),(T, H, H)$, ($H, T, H),(H, H, H)$
\Rightarrow Number of favourable outcomes $=4$
$\therefore P$ (getting atleast two heads) $=P\left(E_{1}\right)$

$$
=\frac{4}{8}=\frac{1}{2} \quad \text { Ans. }
$$

(ii) Let E_{2} be the event of getting atmost two heads.
Favourable outcomes $=(H, T, T),(T, H, T)$, (T, T, H), (H, H, T), (H, T, H), (T, H, H), (T, T, T) \Rightarrow Number of favourable outcomes $=7$
$\therefore P($ getting atmost two heads $)=P\left(E_{2}\right)=\frac{7}{8}$
Ans.
20. Find that value of p for which the quadratic equation $(p+1) x^{2}-6(p+1) x$ $+3(p+9)=0, p \neq-1$ has equal roots. Hence find the roots of the equation.

Solution : Given,

$(p+1) x^{2}-6(p+1) x+3(p+9)=0, p \neq-1$.
For equation to have equal roots

$$
\left.\begin{array}{rlrl}
& {[6(p+1)]^{2}-4(p+1) \cdot 3(p+9)} & =0 \\
\Rightarrow & 36(p+1)^{2}-12(p+1)(p+9) & =0 \\
\Rightarrow & 12(p+1)[3 p+3-p-9] & =0 \\
\Rightarrow & 12(p+1)(2 p-6) & =0 \\
\Rightarrow & & 24(p+1)(p-3) & =0 \\
\therefore & & p & =-1 \text { or } 3 \\
& \text { So, } & p & =3 \\
& \text { As } & & p
\end{array}\right)=-18
$$

Now the given equation become

$$
\begin{array}{rlrl}
& & 4 x^{2}-24 x+36 & =0 \\
\Rightarrow & x^{2}-6 x+9 & =0 \\
\Rightarrow & x^{2}-3 x-3 x+9 & =0 \\
\Rightarrow & x(x-3)-3(x-3) & =0 \\
\Rightarrow & (x-3)(x-3) & =0 \\
\therefore & x & =3,3
\end{array}
$$

\therefore Roots are 3,3 .
Ans.

SECTION - D

28. To fill a swimming pool two pipes are to be used. If the pipe of larger diameter is used for 4 hours and the pipe of smaller diameter for 9 hours, only half the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than
the pipe of larger diameter to fill the pool.
[4]
Solution : Let the pipe of larger diameter fills the pool in x hours.
Then, the pipe with smaller diameter fills the pool in $(x+10)$ hours.
According to the condition,

$$
\begin{array}{rlrl}
& & \frac{4}{x}+\frac{9}{x+10} & =\frac{1}{2} \\
\Rightarrow & & \frac{4(x+10)+9 x}{x(x+10)} & =\frac{1}{2} \\
\Rightarrow & & 2(4 x+40+9 x) & =x^{2}+10 x \\
\Rightarrow & 8 x+80+18 x & =x^{2}+10 x \\
\Rightarrow & & 26 x+80 & =x^{2}+10 x \\
\Rightarrow & & x^{2}-16 x-80 & =0 \\
\Rightarrow & x^{2}-20 x+4 x-80 & =0 \\
\Rightarrow & x(x-20)+4(x-20) & =0 \\
\Rightarrow & & (x-20)(x+4) & =0 \\
\Rightarrow & x & =20[\text { As } x \neq-4]
\end{array}
$$

Hence, the pipe with larger diameter fills the tank in 20 hours.
And, the pipe with smaller diameter fills the tank in 30 hours.

Ans.
30. Construct an isosceles triangle whose base is 6 cm and altitude 4 cm . Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of isosceles triangle.
Solution : Steps of construction :
(i) Draw a line segment $A B=6 \mathrm{~cm}$.
(ii) Draw a perpendicular bisector $P Q$ of $A B$.
(iii) Draw an arc at a distance 4 cm (from $A B$) intersecting $P Q$ at C.

(iv) Join $C A$ and $C B$.
(v) Mark D on $A B$, such that $A D=\frac{3}{4} A B=$

$$
\left(\frac{3}{4} \times 6\right) \mathrm{cm}=\frac{9}{2} \mathrm{~cm}=4.5 \mathrm{~cm}
$$

(vi) Draw $D E \| B C$, cutting $A C$ at E.

Then, $\triangle A D E$ is the required triangle similar to $\triangle A B C$ such that each side of $\triangle A D E$ is $\frac{3}{4}$ times the corresponding side of $\triangle A B C$.
31. If $P(-5,-3), Q(-4,-6), R(2,-3)$ and $S(1,2)$ are the vertices of a quadrilateral PQRS, find its area.
[4]
Solution : We have $P(-5,-3), Q(-4,-6)$, $R(2,-3)$ and $S(1,2)$ are the vertices of a quadrilateral $P Q R S$. Join P and R. Then,
Area of quad $P Q R S=($ Area of $\triangle P Q R)$ $+($ Area of $\triangle P R S)$
Area of $\triangle P Q R$
$=\frac{1}{2}|-5(-6+3)-4(-3+3)+2(-3+6)|$

$=\frac{1}{2}|-5(-3)-4(0)+2(3)|$
$=\frac{1}{2}|15+6|=\frac{21}{2}$ sq. units
And, area of $\triangle P R S$
$=\frac{1}{2}|-5(-3-2)+2(2+3)+1(-3+3)|$
$=\frac{1}{2}|-5(-5)+2(5)+1(0)|$
$=\frac{1}{2}|25+10|$
$=\frac{35}{2}$ sq. units
Hence, area of quad. $P Q R S$

$$
\begin{aligned}
& =\text { Area of } \triangle P Q R+\text { Area of } \triangle P R S \\
& =\left(\frac{21}{2}+\frac{35}{2}\right) \text { sq. units } \\
& =\frac{56}{2} \text { sq. units } \\
& =28 \text { sq. units Ans. }
\end{aligned}
$$

Note : Except for the following questions, all the remaining questions have been asked in previous sets.

SECTION - B

10. Solve the following quadratic equation for x :

$$
\begin{equation*}
9 x^{2}-6 b^{2} x-\left(a^{4}-b^{4}\right)=0 \tag{2}
\end{equation*}
$$

Solution : We have, $9 x^{2}-6 b^{2} x-\left(a^{4}-b^{4}\right)=0$

$$
\begin{aligned}
&\left(9 x^{2}-6 b^{2} x+b^{4}\right)-a^{4}=0 \\
&\left(3 x-b^{2}\right)^{2}-\left(a^{2}\right)^{2}=0 \\
&\left(3 x-b^{2}+a^{2}\right)\left(3 x-b^{2}-a^{2}\right)=0 \\
& x=\frac{b^{2}-a^{2}}{3} \text { or } \frac{b^{2}+a^{2}}{3}
\end{aligned}
$$

Ans.
SECTION - C
18. All red face cards are removed from a pack of playing cards. The remaining cards were well shuffled and then a card is drawn at random from them. Find the probability that the drawn card is :
(i) a red card
(ii) a face card
(iii) a card of clubs
[3]
Solution : Total number of possible outcomes $=52-6=46$
$[\because$ No. of red face cards $=6]$
(i) Let E_{1} be the event of getting a red card.

Favourable outcomes $=10$ of heart +10 of diamond
\therefore No. of favourable outcomes $=20$
$\therefore P($ getting a red card $)=P\left(E_{1}\right)=\frac{20}{46}=\frac{10}{23}$
Ans.
(ii) Let E_{2} be the event of getting a face card
\therefore Favourable outcomes $=3$ of club +3 of spade
No. of favourable outcomes $=6$
$\therefore P($ getting a face card $)=P\left(E_{2}\right)=\frac{6}{46}=\frac{3}{23}$
Ans.
(iii) Let E_{3} be the event of getting a card of clubs
\therefore Favourable outcomes $=13$ of clubs
No. of favourable outcomes $=13$
$\therefore P($ getting a card of clubs $)=P\left(E_{3}\right)=\frac{13}{46}$
Ans.
19. Find the area of the triangle $P Q R$ with $Q(3,2)$ and the mid-points of the sides
through Q being $(2,-1)$ and $(1,2)$.
Solution : Let $P\left(x_{1}, y_{1}\right), Q(3,2)$ an $R\left(x_{2}, y_{2}\right)$ be the vertices of a triangle $P Q R$ and let $A(2,-1)$ and $B(1,2)$ be the mid-points of $P Q$ and $Q R$ respectively.

$\because A$ is the mid-point of $P Q$

$$
\begin{array}{ll}
\therefore & \frac{3+x_{1}}{2}=2, \frac{2+y_{1}}{2}=-1 \\
\Rightarrow & x_{1}=1, y_{1}=-4
\end{array}
$$

So, $P(1,-4)$
$\because B$ is the mid-point of $Q R$

$$
\begin{aligned}
\therefore & \frac{3+x_{2}}{2} & =1, \frac{2+y_{2}}{2}=2 \\
\Rightarrow & x_{2} & =-1, y_{2}=2
\end{aligned}
$$

So, $R(-1,2)$
Thus, Area of $\triangle P Q R$

$$
\begin{aligned}
& =\frac{1}{2}|[1(2-2)-1(2+4)+3(-4-2)]| \\
& =\frac{1}{2}|[1(0)-1(6)+3(-6)]| \\
& =\frac{1}{2}|[-6-18]| \\
& =\frac{24}{2}=12 \text { sq. units. Ans. }
\end{aligned}
$$

20. If S_{n} denotes the sum of first n terms of an A.P., prove that $S_{30}=3\left[S_{20}-S_{10}\right]$

Solution : Let a be the first term and d be the common difference of the A.P.

$$
\begin{aligned}
\because \quad S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
\therefore \quad & \\
& S_{30}
\end{aligned}=\frac{30}{2}[2 a+(30-1) d]
$$

$$
\text { And, } \quad \begin{aligned}
S_{10} & =\frac{10}{2}[2 a+(10-1) d] \\
& =5[2 a+9 d] \\
& =10 a+45 d
\end{aligned}
$$

Now, $3\left[S_{20}-S_{10}\right]$

$$
=3[20 a+190 d-10 a-45 d]
$$

$$
=3[10 a+145 d]
$$

$$
=30 a+435 d=S_{30}
$$

$$
\therefore \quad S_{30}=3\left[S_{20}-S_{10}\right] \text { Hence Proved. }
$$

SECTION - D
28. A 21 m deep well with diameter 6 m is dug and the earth from digging is evenly spread to form a platform $27 \mathrm{~m} \times 11 \mathrm{~m}$. Find the height of the platform. [Use $\pi=\frac{22}{7}$]

Solution : Volume of earth taken out after digging the well of height 21 m and diameter 6 m .

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{6}{2} \times \frac{6}{2} \times 21 \\
& =594 \mathrm{~m}^{3}
\end{aligned}
$$

Let h be the height of the platform formed by the earth dug out.
\therefore Volume of platform $=$ Volume of earth dug out

$$
\begin{aligned}
27 \times 11 \times h & =594 \\
h & =\frac{594}{27 \times 11}=2 \mathrm{~m}
\end{aligned}
$$

\therefore Height of the platform $=2 \mathrm{~m}$
Ans.
29. A bag contains 25 cards numbered from 1 to 25. A card is drawn at random from the bag. Find the probability that the number on the drawn card is :
(i) divisible by 3 or 5
(ii) a perfect square number.

Solution: Total number of possible outcomes $=25$
(i) Let E_{1} be the event of getting a number divisible by 3 or 5 .
Favourable outcomes $=\{3,6,9,12,15,18$, $21,24,5,10,20,25\}$
\therefore Number of favourable outcomes

$$
=12
$$

$\therefore P($ getting a no. divisible by 3 or 5$)$

$$
P\left(E_{1}\right)=\frac{12}{25}
$$

Ans.
(ii) Let E_{2} be the event of getting a perfect square number.
Favourable outcomes $=\{1,4,9,16,25\}$
\therefore Number of favourable outcomes $=5$
$\therefore \mathrm{P}$ (getting a perfect square number)

$$
P\left(E_{2}\right)=\frac{5}{25}=\frac{1}{5} \quad \text { Ans. }
$$

30. Draw a line segment $A B$ of length 7 cm . Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm . Construct tangents to each circle from the centre of the other cirlce.
Solution : Steps of construction :
(i) Draw a line segment $A B=7 \mathrm{~cm}$.
(ii) Take A as centre, draw a circle of radius 3 cm .
(iii) Take B as centre, draw a circle of radius 2 cm .
(iv) Bisect $A B$ at O.
(v) Draw a circle with O as centre and radius equal to $A O \quad(=O B)$ to intersect the circle of radius 3 cm at P and P^{\prime}, and the circle of radius 2 cm at Q and Q^{\prime}.
(vi) Join $B P$ and $B P^{\prime}$. Also, join $A Q$ and $A Q^{\prime}$.

Then, $B P, B P^{\prime}, A Q$ and $A Q^{\prime}$ are the required tangents.

31. Solve for x :

$$
\begin{equation*}
\frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4 x-1} ; x \neq 1,-1, \frac{1}{4} \tag{4}
\end{equation*}
$$

Solution: We have,

$$
\begin{aligned}
& \frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4 x-1} ; x \neq 1,-1, \frac{1}{4} \\
& \Rightarrow 3(x-1)(4 x-1)+4(x+1)(4 x-1) \\
&=29(x+1)(x-1) \\
& \Rightarrow 3\left(4 x^{2}-4 x-x+1\right)+4\left(4 x^{2}+4 x-x-1\right) \\
&=29\left(x^{2}-1\right) \\
& \Rightarrow 12 x^{2}-15 x+3+16 x^{2}+12 x-4=29 x^{2}-29 \\
& \Rightarrow \quad 28 x^{2}-3 x-1
\end{aligned}=29 x^{2}-29 .
$$

Mathematics 2014 (Term I)

Time allowed : 3 hours
SECTION - A

1. In the given figure if $D E \| B C, A E=8 \mathrm{~cm}, E C$ $=2 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, then find $D E$.
Solution: In $\triangle A D E$ and $\triangle A B C$,

$$
\begin{array}{ll}
\angle D A E=\angle B A C \quad \text { [Common] } \\
\angle A D E=\angle A B C &
\end{array}
$$

[Corresponding angles]
By AA axiom

$$
\begin{align*}
& \triangle A D E \sim \triangle A B C \\
& \therefore \quad \frac{A E}{A C}=\frac{D E}{B C} \tag{C.P.C.T.}\\
& \Rightarrow \quad \frac{8}{8+2}=\frac{D E}{6} \\
& \Rightarrow \quad 10 D E=48 \\
& \Rightarrow \quad D E=4.8 \mathrm{~cm}
\end{align*}
$$

2. Evaluate : 10. $\frac{1-\cot ^{2} 45^{\circ}}{1+\sin ^{2} 90^{\circ}}$.

Solution : $10 \cdot \frac{1-\cot ^{2} 45^{\circ}}{1+\sin ^{2} 90^{\circ}}=10 \cdot \frac{1-(1)^{2}}{1+(1)^{2}}$

$$
=10 .\left(\frac{0}{2}\right)=0
$$

3. If $\operatorname{cosec} \theta=\frac{5}{4}$, find the value of $\cot \theta$.

Solution : We know that,

$$
\begin{aligned}
\cot ^{2} \theta & =\operatorname{cosec}^{2} \theta-1 \\
& =\left(\frac{5}{4}\right)^{2}-1 \\
& =\frac{25}{16}-1=\frac{25-16}{16}=\frac{9}{16} \\
\Rightarrow \quad \cot ^{2} \theta & =\frac{9}{16} \\
\Rightarrow \quad \cot \theta & =\frac{3}{4}
\end{aligned}
$$

Ans.
4. Following table shows sale of shoes in a store during one month :

Size of Shoe	3	4	5	6	7	8
Number of Pairs Sold	4	18	25	12	5	1

Find the model size of the shoes sold. [1]
Solution : Maximum number of pairs sold

$$
\begin{array}{ll}
& =25(\text { size } 5) \\
\therefore \quad & \text { Model size of shoes }=5 \quad \text { Ans. }
\end{array}
$$

Maximum Marks : 90

SECTION - B

5. Find the prime factorisation of the denominator of rational number expressed as $6 . \overline{12}$ in simplest form.
Solution : Let $x=6 . \overline{12}$
$\Rightarrow \quad 100 x=612 . \overline{12}$
Subtracting eq. (i) from (ii), we get

$$
\begin{aligned}
99 x & =606 \\
x & =\frac{606}{99}=\frac{202}{33}
\end{aligned}
$$

\therefore Denominator $=33$
Prime factorisation $=3 \times 11$
Ans.
6. Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}$ respectively.
[2]
Solution : Given, sum of zeroes, $(\mathrm{S})=\sqrt{3}$
Product of zeroes, $(P)=\frac{1}{\sqrt{3}}$
Quadratic polynomial is given as, $x^{2}-\mathrm{S} x+\mathrm{P}$

$$
=x^{2}-\sqrt{3} x+\frac{1}{\sqrt{3}}
$$

$=\frac{\sqrt{3} x^{2}-3 x+1}{\sqrt{3}}$
$=\frac{1}{\sqrt{3}}\left(\sqrt{3} x^{2}-3 x+1\right)$
Ans.
7. Complete the following factor tree and find the composite number x.

Solution :

$$
y=5 \times 13=65
$$

$$
x=3 \times 195=585
$$

Ans.
8. In a rectangle $A B C D, E$ is middle point of $A D$. If $A D=40 \mathrm{~m}$ and $A B=48 \mathrm{~m}$, then find $E B$. [2]

Given, E is the mid-point of $A D$

$$
\begin{aligned}
\therefore \quad A E & =\frac{40}{2}=20 \mathrm{~m} \\
& \angle A=90^{\circ} \quad \text { [Angle of a rectangle] }
\end{aligned}
$$

\therefore In right angle $\triangle B A E$,

$$
E B^{2}=A B^{2}+A E^{2}
$$

[Pythagoras theorem]

$$
\begin{aligned}
& =(48)^{2}+(20)^{2} \\
& =2304+400 \\
& =2704 \\
E B & =\sqrt{2704}=52 \mathrm{~m}
\end{aligned}
$$

Ans.
9. If $x=p \sec \theta+q \tan \theta$ and $y=p \tan \theta+q \sec \theta$, then prove that $x^{2}-y^{2}=p^{2}-q^{2}$.
Solution: L.H.S. $=x^{2}-y^{2}$
$=(p \sec \theta+q \tan \theta)^{2}-(p \tan \theta+q \sec \theta)^{2}$
$=\left(p^{2} \sec ^{2} \theta+q^{2} \tan ^{2} \theta+2 p q \sec \theta \tan \theta\right.$
$-\left(p^{2} \tan ^{2} \theta+q^{2} \sec ^{2} \theta+2 p q \sec \theta \tan \theta\right)$.
$=p^{2} \sec ^{2} \theta+q^{2} \tan ^{2} \theta+2 p q \sec \theta \tan \theta-p^{2} \tan ^{2} \theta$
$-q^{2} \sec ^{2} \theta-2 p q \sec \theta \tan \theta$
$=p^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)-q^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)$
$=p^{2}-q^{2}$
$\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$=$ R.H.S.
Hence Proved.
10. Given below is the distribution of weekly pocket money received by students of a class. Calculate the pocket money that is received by most of the students.

Pocket Money (in ₹)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$	$120-140$
No. of Students	2	2	3	12	18	5	2

Solution :

Pocket Money (in ₹)	Number of Students
$0-20$	2
$20-40$	2
$40-60$	3
$60-80$	$12 f_{0}$
$80-100$	$18 f_{1}$
$100-120$	$5 f_{2}$
$120-140$	2

(Maximum)

Maximum frequency is 18
\therefore Modal class $=80-100$

$$
\begin{aligned}
\text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& =80+\frac{18-12}{36-12-5} \times 20 \\
& =80+\frac{6}{19} \times 20=80+\frac{120}{19} \\
& =80+6.32 \\
& =86.32 \text { (approx.) }
\end{aligned}
$$

\therefore Required pocket money $=₹ 86.32$ (approx.)
Ans.

SECTION - C

11. Prove that $3+2 \sqrt{3}$ is an irrational number.

Solution : Let us assume to the contrary, that $3+2 \sqrt{3}$ is rational.
So that we can find co-prime positive integers a and $b(b \neq 0)$, such that $3+2 \sqrt{3}=\frac{a}{b}$
Rearranging the equation, we get

$$
\begin{aligned}
2 \sqrt{3} & =\frac{a}{b}-3=\frac{a-3 b}{b} \\
\sqrt{3} & =\frac{a-3 b}{b}=\frac{a}{2 b}-\frac{3 b}{2 b} \\
\sqrt{3} & =\frac{a}{2 b}-\frac{3}{2}
\end{aligned}
$$

Since a and b are integer, we get $\frac{a}{2 b}-\frac{3}{2}$ is rational and so $\sqrt{3}$ is rational.
But this contradicts the fact that $\sqrt{3}$ is irrational. So we conclude that $3+2 \sqrt{3}$ is irrational.

Hence Proved.

12. Solve by elimination :

$$
\begin{gather*}
3 x=y+5 \\
5 x-y=11 \tag{3}
\end{gather*}
$$

Solution : Given equations are,

$$
\begin{align*}
3 x & =y+5 \tag{i}\\
5 x-y & =11 \tag{ii}
\end{align*}
$$

On subtracting eq. (i) and (ii), we get

$$
\begin{gathered}
3 x-y=5 \\
5 x-y=11 \\
\quad \quad+\quad- \\
\hline-2 x=-6
\end{gathered}
$$

$$
x=3
$$

Website : www.ssstrategies.com or www.newtongate.in

Putting the value of x in equation (i)

$$
\begin{array}{rl}
3(3)-y & =5 \\
9-5 & =y \\
\Rightarrow \quad y & y
\end{array}
$$

$\therefore x=3, y=4$.
Ans.
13. A man earns $₹ 600$ per month more than his wife. One-tenth of the man's salary and one-sixth of the wife's salary amount to $₹ 1,500$, which is saved every month. Find their incomes.
Solution : Let wife's monthly income $=₹ x$
Then man's monthly income $=₹(x+600)$
According to the question,

$$
\begin{aligned}
\frac{1}{10}(x+600)+ & \frac{1}{6}(x)=1,500 \\
\frac{3(x+600)+5 x}{30} & =1,500 \\
3 x+1,800+5 x & =45,000 \\
8 x & =45,000-1,800 \\
x & =\frac{43,200}{8}=5,400
\end{aligned}
$$

Wife's income $=₹ x=₹ 5,400$

$$
\text { Man's income }=₹(x+600)=₹ 6,000 .
$$

Ans.
14. Check whether polynomial $x-1$ is a factor of the polynomial $x^{3}-8 x^{2}+19 x-12$. Verify by division algorithm.
Solution : Let $P(x)=x^{3}-8 x^{2}+19 x-12$
Put $x=1$,

$$
\begin{aligned}
P(1) & =(1)^{3}-8(1)^{2}+19(1)-12 \\
& =1-8+19-12 \\
& =20-20 \\
& =0
\end{aligned}
$$

$\therefore(x-1)$ is a factor of $P(x)$.
Verification :

$$
\begin{array}{r}
x-1) \begin{array}{r}
\frac{x^{2}-7 x+12}{x^{3}-8 x^{2}+19 x-12} \\
x^{3}-x^{2}
\end{array} \\
-\quad+ \\
\hline-7 x^{2}+19 x-12 \\
-7 x^{2}+7 x \\
+\quad- \\
\hline
\end{array}
$$

Since remainder $=0$.
$(x-1)$ is a factor of $P(x)$. Hence Verified.
15. If the perimeters of two similar triangles $A B C$ and $D E F$ are 50 cm and 70 cm respectively and one side of $\triangle A B C=20 \mathrm{~cm}$, then find the corresponding side of $\triangle D E F$. Solution :

Given, $\triangle A B C \sim \triangle D E F$,
Perimeter of $\triangle A B C=50 \mathrm{~cm}$
Perimeter of $\triangle D E F=70 \mathrm{~cm}$
One side of $\triangle D E F=20 \mathrm{~cm}$
Let $A B=20 \mathrm{~cm}$
$\triangle A B C \sim \triangle D E F$ [Given]

$$
\begin{aligned}
\therefore \quad \frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)} & =\frac{A B}{D E} \\
\frac{50}{70} & =\frac{20}{D E} \\
5 D E & =140 \\
D E & =28 \mathrm{~m}
\end{aligned}
$$

The corresponding side of $\triangle D E F=28 \mathrm{~cm}$.
Ans.
16. In the figure if $D E \| O B$ and $E F \| B C$, then prove that DF II OC.
[3]

Solution: Given, In $\triangle A B C, D E \| O B$ and $E F$ | | BC
To Prove: $D F \| O C$
Proof: In $\triangle A O B$,

$$
\begin{array}{ll}
& D E \| O B \\
\therefore & \frac{A E}{E B}=\frac{A D}{D O} \tag{i}
\end{array}
$$

[Thales' Theorem]
Similarly, in $\triangle A B C$,

$$
E F \| B C
$$

$$
\begin{equation*}
\therefore \quad \frac{A E}{E B}=\frac{A F}{F C} \tag{ii}
\end{equation*}
$$

From equation (i) and (ii),

$$
\begin{array}{ll}
& \frac{A D}{D O}=\frac{A F}{F C} \\
\therefore & D E \| O C
\end{array}
$$

[By Converse of Thales' Theorem]
Hence Proved.
17. Prove the identify :
$(\sec A-\cos A) \cdot(\cot A+\tan A)=\tan A \cdot \sec A$.
[3]
Solution :

$$
\begin{aligned}
\text { L.H.S. } & =(\sec A-\cos A)(\cot A+\tan A) \\
& =\left(\frac{1}{\cos A}-\cos A\right)\left(\frac{\cos A}{\sin A}+\frac{\sin A}{\cos A}\right) \\
& =\left(\frac{1-\cos ^{2} A}{\cos A}\right)\left(\frac{\cos ^{2} A+\sin ^{2} A}{\sin A \cos A}\right) \\
& =\frac{\sin ^{2} A}{\cos A} \times \frac{1}{\sin A \cos A} \\
& =\frac{\sin A}{\cos A} \times \frac{1}{\cos A} \\
& =\tan A . \sec A=\text { R.H.S. }
\end{aligned}
$$

Hence Proved.
18. Given $2 \cos 3 \theta=\sqrt{3}$, find the value of θ. [3]

Solution : Given, $2 \cos 3 \theta=\sqrt{3}$

$$
\begin{aligned}
\Rightarrow & \cos 3 \theta & =\frac{\sqrt{3}}{2} \\
\Rightarrow & \cos 3 \theta & =\cos 30^{\circ} \\
\Rightarrow & 3 \theta & =30^{\circ} \\
\Rightarrow & \theta & =10^{\circ} .
\end{aligned}
$$

Ans.
19. For helping poor girls of their class, students saved pocket money as shown in the following table :

Money Saved (in ₹)	$5-7$	$7-9$	$9-11$	$11-13$	$13-15$
Number of Students	6	3	9	5	7

Find mean and median for this data.
[3]
Solution :

Money saved (in ₹)	No. of Students $\left(f_{i}\right)$	$\boldsymbol{X}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}=\frac{\boldsymbol{X}_{\boldsymbol{i}}-\mathbf{1 0}}{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} d_{\boldsymbol{i}}$	\boldsymbol{c} c.f.
$5-7$	6	6	-2	-12	6
$7-9$	3	8	-1	-3	9
$9-11$	9	$a=10$	0	0	18
$11-13$	5	12	1	5	23
$13-15$	7	14	2	14	30
	$\Sigma f_{i}=30$			$\Sigma f_{i} d_{i}=4$	

$$
\begin{align*}
\text { Mean } & =a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}} \times h=10+\frac{4}{30} \times 2 \tag{i}\\
& =10+0.27=₹ 10.27 \quad \text { Ans. } \\
N & =\Sigma f_{i}=30 \\
\frac{N}{2}=\frac{30}{2} & =15
\end{align*}
$$

(ii)
\therefore Median class is $9-11$.
Median $=l+\frac{\frac{N}{2}-F}{f} \times h$

$$
\begin{aligned}
& =9+\frac{15-9}{9} \times 2=9+\frac{6}{9} \times 2 \\
& =9+1.33=₹ 10.33 \quad \text { Ans. }
\end{aligned}
$$

20. Monthly pocket money of students of a class is given in the following frequency distribution :

Pocket Money (in ₹)	$100-125$	$125-150$	$150-175$	$175-200$	$200-225$
Number of Students	14	8	12	5	11

Find mean pocket money using step deviation method.
Solution :

Pocket Money (in ₹)	No. of Students $\left(f_{i}\right)$	X_{i}	$d_{i}=\frac{X_{i}-162.5}{25}$	$f_{i} d_{i}$
100-125	14	112.5	-2	-28
125-150	8	137.5	-1	-8
150-175	12	$a=162.5$	0	0
175-200	5	187.5	1	5
200-225	11	212.5	2	22
	$\Sigma f_{i}=50$			$\Sigma f_{i} d_{i}=-9$
$\text { Mean }=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}} \times h$				
	$=162.5+\left(\frac{-9}{50} \times 25\right)$			
	$=162.5-4.5$			
	= ₹ 158			Ans.
	SECTION - D			

21. If two positive integers x and y are expressible in terms of primes as $x=p^{2} q^{3}$ and $y=p^{3} q$, what can you say about their LCM and HCF. Is LCM a multiple of HCF ? Explain.

Solution : Given,

$$
\begin{aligned}
& x=p^{2} q^{3} \\
& =p \times p \times q \times q \times q \\
& \text { And } \\
& y=p^{3} q \\
& =p \times p \times p \times q \\
& \therefore \quad \mathrm{HCF}=p \times p \times q=p^{2} q
\end{aligned}
$$

Mathematics 2014 (Term I)

```
And LCM \(=p \times p \times p \times q \times q \times q=p^{3} q^{3}\)
\(\Rightarrow \quad\) LCM \(=p q^{2}\) (HCF)
```

Yes, LCM is a multiple of HCF.

Explanation :

$$
\text { Let } \quad \begin{align*}
a & =12=2^{2} \times 3 \\
b & =18=2 \times 3^{2} \\
\therefore \quad \text { HCF } & =2 \times 3=6 \tag{i}\\
\text { LCM } & =2^{2} \times 3^{2}=36 \\
\text { LCM } & =6 \times 6 \\
\text { LCM } & =6(\mathrm{HCF}) \quad \text { [From equation (i)] }
\end{align*}
$$

Here LCM is 6 times HCF.
Ans.
22. Sita Devi wants to make a rectangular pond on the road side for the purpose of providing drinking water for street animals. The area of the pond will be decreased by 3 square feet if its length is decreased by 2 ft . and breadth is increased by $\mathbf{1} \mathrm{ft}$. Its area will be increased by 4 square feet if the length is increased by 1 ft . and breadth remains same. Find the dimensions of the pond. What motivated Sita Devi to provide water point for street animals?
Solution : Let length of rectangular pond $=x \mathrm{ft}$. and breadth of rectangular pond $=y \mathrm{ft}$.

Area of rectangular pond $=x y$
According to the question,

$$
\begin{align*}
(x-2)(y+1) & =(x y-3) \\
x y+x-2 y-2 & =x y-3 \\
x-2 y & =-1 \tag{i}\\
(x+1) \cdot y & =(x y+4) \\
x y+y & =x y+4 \\
y & =4 \tag{ii}
\end{align*}
$$

Putting the value of y in equation (i), we get

$$
\Rightarrow \quad \begin{aligned}
x-2(4) & =-1 \\
x-8 & =-1 \\
x & =-1+8=7
\end{aligned}
$$

Length of rectangular pond $=7 \mathrm{ft}$.
Breadth of rectangular pond $=4 \mathrm{ft}$. Ans.
Values:
(i) Water is essential for the survival of all living things including street animals.
(ii) Water is the base of life and no one can live without it.
23. If a polynomial $x^{4}+5 x^{3}+4 x^{2}-10 x-12$ has two zeroes as -2 and -3 , then find the other zeroes.
[4]
Solution : Given, polynomial is

$$
x^{4}+5 x^{3}+4 x^{2}-10 x-12
$$

Since two zeroes are -2 and -3
$\therefore(x+2)(x+3)=x^{2}+3 x+2 x+6$

$$
=x^{2}+5 x+6
$$

Dividing the polynomial with $x^{2}+5 x+6$,

$$
\begin{gathered}
\left.x^{2}+5 x+6\right) \frac{x^{2}-2}{x^{4}+5 x^{3}+4 x^{2}-10 x-12} \\
x^{4}+5 x^{3}+6 x^{2} \\
-\quad-\quad- \\
-2 x^{2}-10 x-12 \\
-2 x^{2}-10 x-12 \\
+\quad+\quad+
\end{gathered}
$$

$$
\begin{aligned}
\therefore x^{4}+5 & x^{3}+4 x^{2}-10 x-12 \\
& =\left(x^{2}+5 x+6\right)\left(x^{2}-2\right) \\
& =(x+2)(x+3)(x-\sqrt{2})(x+\sqrt{2})
\end{aligned}
$$

Other zeroes: $x-\sqrt{2}=0 \quad$ or $x+\sqrt{2}=0$

$$
x=\sqrt{2} \text { or } \quad x=-\sqrt{2}
$$

The zeroes of the polynomial are $-2,-3, \sqrt{2}$ and $-\sqrt{2}$.

Ans.
24. Find all the zeroes of the polynomial $8 x^{4}+8 x^{3}-18 x^{2}-20 x-5$, if it is given that two of its zeroes are $\sqrt{\frac{5}{2}}$ and $-\sqrt{\frac{5}{2}}$.
[4]
Solution : Given polynomial is

$$
8 x^{4}+8 x^{3}-18 x^{2}-20 x-5
$$

Since two zeroes are $\sqrt{\frac{5}{2}}$ and $-\sqrt{\frac{5}{2}}$

$$
\begin{aligned}
\therefore\left(x-\sqrt{\frac{5}{2}}\right)\left(x+\sqrt{\frac{5}{2}}\right) & =(x)^{2}-\left(\sqrt{\frac{5}{2}}\right)^{2} \\
& =x^{2}-\frac{5}{2}
\end{aligned}
$$

Dividing the polynomial by $x^{2}-\frac{5}{2}$

$$
\begin{aligned}
& \left.x^{2}-5 / 2\right) \frac{8 x^{2}+8 x+2}{8 x^{4}+8 x^{3}-18 x^{2}-20 x-5} \\
& \begin{aligned}
\begin{array}{c}
8 x^{4}
\end{array} \begin{array}{l}
-20 x^{2} \\
+
\end{array} \\
\hline 8 x^{3}+2 x^{2}-20 x-5
\end{aligned} \\
& -8 x^{3}-20 x \\
& \begin{array}{ll}
- & + \\
2 x^{2} & -5
\end{array} \\
& 2 x^{2}-5 \\
& \frac{-\quad+}{\times}
\end{aligned}
$$

Website: www.ssstrategies.com or www.newtongate.in

$$
\begin{aligned}
\therefore 8 x^{4} & +8 x^{3}-18 x^{2}-20 x-5 \\
& =\left(x^{2}-\frac{5}{2}\right)\left(8 x^{2}+8 x+2\right) \\
& =\left(x^{2}-\frac{5}{2}\right) \cdot 2\left(4 x^{2}+4 x+1\right) \\
& =2\left(x^{2}-\frac{5}{2}\right)\left(4 x^{2}+2 x+2 x+1\right) \\
& =2\left(x^{2}-\frac{5}{2}\right)[2 x(2 x+1)+1(2 x+1)] \\
& =2\left(x^{2}-\frac{5}{2}\right)(2 x+1)(2 x+1)
\end{aligned}
$$

All the zeroes are $\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}}, \frac{-1}{2}$ and $\frac{-1}{2}$. Ans.
25. In the figure, there are two points D and E on side $A B$ of $\triangle A B C$ such that $A D=B E$. If $D P \| B C$ and $E Q \| A C$, then prove that $P Q \| A B$. [4]

Solution :

In $\triangle A B C$,

$$
D P \| B C
$$

(Given)

$$
\Rightarrow \quad \frac{A D}{\overline{D B}}=\frac{A P}{P C} \ldots \text { (i) [Thales' Theorem] }
$$

$$
\begin{array}{lll}
\text { Also, } & E Q|\mid A C \\
\Rightarrow & \frac{B E}{E A}= & \frac{B Q}{Q C} \\
\Rightarrow & \frac{A D}{D B}=\frac{B Q}{Q C} \\
& & {[\because A D=B E, \therefore E A=D B]}
\end{array}
$$

From equation (i) and (ii)

$$
\frac{A P}{P C}=\frac{B E}{E A}
$$

$\therefore \quad P Q|\mid A B$
(Inverse of Thales theorem)
Hence Proved.
26. In $\triangle A B C$, altitudes $A D$ and $C E$ intersect each other at the point P. Prove that
(i) $\triangle \mathrm{APE} \sim \Delta \mathrm{CPD}$
(ii) $\mathrm{AP} \times \mathrm{PD}=\mathrm{CP} \times \mathrm{PE}$
(iii) $\triangle \mathrm{ADB} \sim \Delta \mathrm{CEB}$
(iv) $\mathrm{AB} \times \mathrm{CE}=\mathrm{BC} \times \mathrm{AD}$

Solution :

Given, In $\triangle A B C, A D \perp B C$ and $C E \perp A B$
(i) In $\triangle A P E$ and $\triangle C P D$

$$
\begin{array}{ll}
\angle 1=\angle 4 & {\left[\text { Each } 90^{\circ}\right]} \\
\angle 2=\angle 3
\end{array}
$$

[Vertically opposite angles]
By AA axiom
(ii)
$\triangle A P E \sim \triangle C P D$
Hence Proved.

$$
\triangle A P E \sim \triangle C P D
$$

[Proved above]

$$
\therefore \quad \frac{A P}{P C}=\frac{P E}{P D}
$$

[C.P.C.T.]

$$
\Rightarrow \quad A B \times P D=C P \times P E \quad \text { Hence Proved. }
$$

(iii) In $\triangle A D B \sim \triangle C E B$

$$
\begin{equation*}
\therefore \quad \frac{A B}{C B}=\frac{A D}{C E} \tag{C.P.C.T.}
\end{equation*}
$$

$$
\begin{aligned}
A B \times C E & =B C \times A D \text { Hence Proved. } \\
& =(\cot A+\sec B)^{2} \\
& \quad-(\tan B-\operatorname{cosec} A)^{2} \\
\angle 5 & =\angle 7 \\
\angle 6 & =\angle 6 \quad\left(\text { Each } 90^{\circ}\right) \\
& (\text { Common })
\end{aligned}
$$

By AA axiom,

$$
\begin{aligned}
& \triangle A D B \sim \triangle C E B \text {. Hence Proved. } \\
& \text { (iv) } \triangle A D B \sim \triangle C E B \quad \text { [Proved Above] }
\end{aligned}
$$

Mathematics 2014 (Term I)

27. Prove that :
$(\cot A+\sec B)^{2}-(\tan B-\operatorname{cosec} A)^{2}$

$$
\begin{equation*}
=2(\cot A \cdot \sec B+\tan B \cdot \operatorname{cosec} A) \tag{4}
\end{equation*}
$$

Solution : L.H.S.

$$
\begin{aligned}
= & (\cot A+\sec B)^{2}-(\tan B-\operatorname{cosec} A)^{2} \\
= & \left(\cot ^{2} A+\sec ^{2} B+2 \cot A \sec B\right) \\
& \quad-\left(\tan ^{2} B+\operatorname{cosec}{ }^{2} A-2 \tan B \operatorname{cosec} A\right) \\
= & \cot ^{2} A+\sec ^{2} B+2 \cot A \sec B \\
& \quad-\tan ^{2} B-\operatorname{cosec}^{2} A+2 \tan B \operatorname{cosec} A \\
= & \left(\sec ^{2} B-\tan ^{2} B\right)-\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right) \\
& \quad+2(\cot A \sec B+\tan B \operatorname{cosec} A) \\
= & 1-1+2(\cot A \sec B+\tan B \operatorname{cosec} A)
\end{aligned}
$$

$$
\left[\begin{array}{c}
\because \sec ^{2} B-\tan ^{2} B=1 \\
\operatorname{cosec}^{2} A-\cot ^{2} A=1
\end{array}\right]
$$

$$
=2(\cot A \sec B+\tan B \operatorname{cosec} A)=\text { R.H.S. }
$$

Hence Proved.

28. Prove that :
$(\sin \theta+\cos \theta+1) .(\sin \theta-1+\cos \theta) \cdot \sec \theta \cdot \operatorname{cosec} \theta$ $=2$.
Solution : L.H.S.
$=(\sin \theta+\cos \theta+1) \cdot(\sin \theta-1+\cos \theta) \cdot \sec \theta \operatorname{cosec} \theta$
$=[(\sin \theta+\cos \theta)+1] .[(\sin \theta+\cos \theta)-1]$
$=\left[(\sin \theta+\cos \theta)^{2}-(1)^{2}\right] \sec \theta \operatorname{cosec} \theta$

$$
\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]
$$

$=\left[\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1\right] . \sec \theta \operatorname{cosec} \theta$
$=(1+2 \sin \theta \cdot \cos \theta-1) \cdot \sec \theta \operatorname{cosec} \theta$

$$
\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
$$

$=(2 \sin \theta \cos \theta) \cdot \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta}$
$=2=$ R.H.S.
Hence Proved.
29. If $\tan \left(20^{\circ}-3 \alpha\right)=\cot \left(5 \alpha-20^{\circ}\right)$, then find the value of α and hence evaluate :
$\sin \alpha \cdot \sec \alpha \cdot \tan \alpha-\operatorname{cosec} \alpha \cdot \cos \alpha \cdot \cot \alpha$. [4]
Solution : $\tan \left(20^{\circ}-3 \alpha\right)=\cot \left(5 \alpha-20^{\circ}\right)$
$\Rightarrow \tan \left(20^{\circ}-3 \alpha\right)=\tan \left[90^{\circ}-\left(5 \alpha-20^{\circ}\right)\right]$

$$
\left[\because \cot \theta=\tan \left(90^{\circ}-\theta\right)\right]
$$

$\Rightarrow 20^{\circ}-3 \alpha=90^{\circ}-5 \alpha+20^{\circ}$
$\Rightarrow-3 \alpha+5 \alpha=90^{\circ}+20^{\circ}-20^{\circ}$
$\Rightarrow \quad 2 \alpha=90^{\circ}$
$\Rightarrow \quad \alpha=45^{\circ}$
Now,
$\sin \alpha \cdot \sec \alpha \cdot \tan \alpha-\operatorname{cosec} \alpha \cdot \operatorname{cosec} \alpha \cdot \cot \alpha$
$=\sin 45^{\circ} \cdot \sec 45^{\circ} \cdot \tan 45^{\circ}-\operatorname{cosec} 45^{\circ} \cdot \cos 45^{\circ} \cdot \cot 45^{\circ}$
$=\frac{1}{\sqrt{2}} \times \sqrt{2} \times 1-\sqrt{2} \times \frac{1}{\sqrt{2}} \times 1$
$=1-1=0$.
Ans. . $\sec \theta \cdot \operatorname{cosec} \theta$
30. The frequency distribution of weekly pocket money received by a group of students is given below :

Pocket money in (₹)	More than or equal to 20	More than or equal to 40	More than or equal to 60	More than or equal to 80	More than or equal to 100	More than or equal to 120	More than or equal to 140	More than or equal to 160	More than or equal to 180	More than or oqual to 200
Number of Students	90	76	60	55	51	49	33	12	8	4

Draw a 'more than type' ogive and from it, find median. Verify median by actual calculations Solution :

Website: www.ssstrategies.com or www.newtongate.in

Pocket Money (in ₹)	No. of Students	c.i.	f_{i}	$c f_{i}$
More than or equal to 20	90	$20-40$	14	14
More than or equal to 40	76	$40-60$	16	30
More than or equal to 60	60	$60-80$	5	35
More than or equal to 80	55	$80-100$	4	39
More than or equal to 100	51	$100-120$	2	41
More than or equal to 120	49	$120-140$	16	57
More than or equal to 140	33	$140-160$	21	78
More than or equal to 160	12	$160-180$	4	82
More than or equal to 180	8	$180-200$	4	86
More than or equal to 200	4	$200-220$	4	90
c 90			90	

$$
\frac{n}{2}=\frac{90}{2}=45
$$

\therefore Median class is $120-140$

$$
\begin{aligned}
\text { Median } & =l+\frac{\frac{n}{2}-\text { c.f. }}{f} \times h=120+\frac{45-41}{16} \times 20 \\
& =120+\frac{4 \times 20}{16} \\
& =120+5=₹ 125
\end{aligned}
$$

Hence Verified.
31. Cost of living Index for some period is given in the following frequency distribution :

Index	$1500-1600$	$1600-1700$	$1700-1800$	$1800-1900$	$1900-2000$	$2000-2100$	$2100-2200$
No. of Weeks	3	11	12	7	9	8	2

Find the mode and median for above data.
Solution :

Index	Number of Weeks $\left(f_{i}\right)$	$c f_{i}$
$1500-1600$	3	3
$1600-1700$	$11 f_{0}$	14
$1700-1800$	$12 f_{1}$	26
$1800-1900$	$7 f_{2}$	33
$1900-2000$	9	42
$2000-2100$	8	50
$2100-2200$	2	52
	$\Sigma f_{i}=52$	

$$
\begin{aligned}
n & =52 \\
\frac{n}{2} & =\frac{52}{2}=26
\end{aligned}
$$

\therefore Median class is $1700-1800$

$$
\text { Median }=l+\frac{\frac{n}{2}-c . f .}{f} \times h
$$

$=1700+\frac{26-14}{12} \times 100$

$$
\frac{n}{2}=1700+\left(\frac{12}{12} \times 100\right)=1800
$$

Maximum frequency is 12
\therefore Modal class is $1700-1800$

$$
\begin{aligned}
\text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& =1700+\frac{12-11}{24-11-7} \times 100 \\
& =1700+\frac{1}{6} \times 100 \\
& =1700+16.67 \\
& =1716.67
\end{aligned}
$$

Ans.

