HODGSON QUARRY AND PLANT PTY LIMITED

ROBERTS ROAD MAROOTA SAND QUARRY

GROUNDWATER STUDY REPORT

DUNDON CONSULTING PTY LTD

16 APRIL 2018

16-0318-R02B

COPYRIGHT

© Dundon Consulting Pty Ltd, 2018

All intellectual property and copyright reserved.

Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, 1968, no part of this report may be reproduced, transmitted, stored in a retrieval system or adapted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without written permission. Enquiries should be addressed to Dundon Consulting Pty Ltd.

CONTENTS

1 1.1 1.2	INTRODUCTION Background Purpose of this Report	1
2 2.1 2.2 2.3 2.4	HYDROGEOLOGICAL SETTING Rainfall and Evaporation Surface Drainage Geology Hydrogeology	3 3 4
3 3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6 3.6.1 3.6.2 3.6.3 3.6.4	GROUNDWATER INVESTIGATIONS Site Hydrogeology Revealed from Drilling and Quarry Excavations Historical Monitoring Bore Installation. Installation of Additional Monitoring Bores – December 2016 Hydraulic Properties Groundwater Quality. Laboratory Analysis Results Monthly Water Quality Monitoring Data Groundwater Quality Characterisation. Groundwater Levels. Maroota Sands Hawkesbury Sandstone. Groundwater Level Changes with Time. Wet Weather High Groundwater Levels	6 7 9 9 13 13 13 14 15 17 18
4 4.1 4.2 4.3 4.4 4.5	GROUNDWATER MONITORING	23 26 26 27
5	FUTURE SAND EXTRACTION AND POST-CLOSURE REHABILITATION	29
6	GROUNDWATER MANAGEMENT IMPROVEMENT PROGRAM	30
7	SUMMARY AND CONCLUSIONS	31
8	REFERENCES	33

TABLES

Table 1	Monthly Rainfall and Evaporation (mm)	3
Table 2	Stratigraphic Sequence at the Maroota Project Site	.4
Table 3	Results of Hydraulic Testing Program	.8
Table 4	Laboratory Water Quality Analysis Results1	0
Table 5	Monitoring Bore Water Levels1	5
Table 6	Wet Weather High Groundwater Levels (18 April 2018)2	20
Table 7	Monitoring Bores – Completions Details2	24
Table 8	Historical Availability of Monitoring Bores – 1998 to 20182	26
Table 9	Monitoring Regime 2	28
Table 10	Impact Assessment Criteria	28

FIGURES

Figure 1	Surface Contours and Quarry Status at June 2016
Figure 2	Bore Locations
Figure 3	Elevations of the Hawkesbury Sandstone Surface (mAHD)
Figure 4	Maroota Sands Surface Elevations (mAHD) and Thickness (m)
Figure 5	Composite Hydrographs Process Dam 1 and Nearby Bores
Figure 6	Water Quality Data Plots – EC and pH (1998-2018)
Figure 7	Water Quality Data Plots – EC and pH (2016-2018)
Figure 8	Piper Trilinear Diagram – Maroota Quarry – MW1 to MW13
Figure 9	Piper Trilinear Diagram – Maroota Quarry – PB1/PB2, surface water, tailings/process water
Figure 10	Most Recent Recorded Groundwater Levels (mostly 5 April 2018)
Figure 10 Figure 11	Most Recent Recorded Groundwater Levels (mostly 5 April 2018) Cross-Section AA'
-	
Figure 11	Cross-Section AA'
Figure 11 Figure 12	Cross-Section AA' Cross-Section BB'
Figure 11 Figure 12 Figure 13	Cross-Section AA' Cross-Section BB' Cross-Section CC'
Figure 11 Figure 12 Figure 13 Figure 14	Cross-Section AA' Cross-Section BB' Cross-Section CC' Cross-Section DD'
Figure 11 Figure 12 Figure 13 Figure 14 Figure 15	Cross-Section AA' Cross-Section BB' Cross-Section CC' Cross-Section DD' Cross-Section EE'

Dundon Consulting Pty Ltd

- Figure 19 Wet Weather High Groundwater Level Maroota Sands (February 2018)
- Figure 20 Water Level Hydrographs GW075003 and GW075004
- Figure 21 Wet Weather High Groundwater Level Hawkesbury Sandstone (February 2018)
- Figure 22 Bore Water Level Hydrographs Composite Plot MW1 to MW13
- Figure 23 Water Level Hydrograph MW1
- Figure 24 Water Level Hydrographs MW1 and MW7
- Figure 25 Water Level Hydrograph MW3
- Figure 26 Water Level Hydrograph MW4
- Figure 27 Water Level Hydrographs MW5 and MW8
- Figure 28 Water Level Hydrograph MW6
- Figure 29 Water Level Hydrographs MW9 and MW13
- Figure 30 Water Level Hydrograph MW10
- Figure 31 Water Level Hydrograph MW11
- Figure 32 Water Level Hydrograph MW12
- Figure 33 Water Level Hydrographs PB1 and PB2
- Figure 34 Sand Extraction Schedule
- Figure 35 Final Extraction Depth Contours

APPENDICES

- Appendix A Monitoring Bore and Production Bore Drill Logs
- Appendix B Dol-Water Monitoring Bore Logs
- Appendix C Hydraulic Testing Results

1 INTRODUCTION

1.1 Background

The Hodgson Quarry located on Lots 1 & 2, DP228308 and Lot 2, DP312327 at Roberts Road Maroota extracts sand from the Tertiary aged Maroota Sands Formation paleochannel and the underlying/adjacent Triassic Hawkesbury Sandstone. The quarry has been operating for more than 15 years, under a Development Consent granted by the Minister for Urban Affairs and Planning on 31 May 2000 (DA 267-11-99). The 2000 Consent allowed the quarry to operate for 15 years. A Modification approved on 18 August 2015 (MOD 3) extended the project operation until 31 May 2016.

The original approval was based on an operations plan and resource estimate outlined in the original EIS (Nexus, 1999), but since that time the resource estimated has been increased, and certain of the original extraction methods had proved to be inefficient. A Modification Application was lodged on behalf of the owners on 23 September 2015, which sought to extend the life of the quarry from 15 to 25 years, allowing an extension to 31 May 2025. The Modification also included a number of amendments, which are mostly minor or administrative in nature. This Modification (MOD 2) was approved on 18 March 2016.

Figure 1 shows the status of quarrying as at June 2016. The lowest point in the quarry is currently at about 186 mAHD. This is at the location of the pump suction in the Main Process Dam, as surveyed on 12 September 2017). Maximum depth of excavation reached to date is believed to be approximately 180 mAHD, although all parts of the quarry below 186 mAHD have now been backfilled with tailings.

1.2 Purpose of this Report

This document is a Groundwater Study Report, which was required under Conditions 39 and 40 of the Modification Consent dated 18 March 2016. The specific requirements of Conditions 39 and 40 are as follows:

"Groundwater Study and Remediation Works

- 39. Within six weeks of the date of approval of Modification 2, the Applicant shall commission a comprehensive groundwater study of the site. This study must:
 - (a) be prepared by suitably qualified and experienced person/s whose appointment has been endorsed by the Secretary and DPI-Water;
 - (b) consult with DPI-Water;
 - (c) examine all existing records of groundwater levels at the site;
 - (d) develop an interim contour map of the wet weather high groundwater level of the regional aquifer, based on all available records (see also Condition 44); and
 - (e) provide advice and recommendations on the Groundwater Monitoring Program as set out in Condition 43.
- 40. Unless otherwise agreed by the Secretary, the Applicant shall submit a report of the study to the Secretary and DPI-Water within six months of commissioning the study. The report must be accompanied by a Groundwater Management Improvement Program, based on the study's findings and recommendations which includes a program of proposed timeframes for implementation. Should the Applicant propose not to implement any of the report's recommendations, it must provide detailed justification to this effect.

The Groundwater Management Improvement Program must be prepared and implemented to the satisfaction of the Secretary. Progress against the Program shall be reported through Annual Reviews and considered as part of the Independent Environmental Audit."

This report should be read in conjunction with the following additional reports:

- Roberts Road Maroota Sand Quarry Groundwater Monitoring Program (Dundon Consulting, 2018)
- Roberts Road Maroota Sand Quarry Groundwater Management Plan (Dundon Consulting, 2018)
- Surface Water Management Plan Maroota Quarry via Maroota (VGT, 2017).

2 HYDROGEOLOGICAL SETTING

2.1 Rainfall and Evaporation

The monthly average total rainfalls recorded at the nearest Bureau of Meteorology station Number 67014 (Maroota – Old Telegraph Road) are shown in **Table 1**.

Rainfall	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Mean	98.3	110.6	104.3	87.7	58.3	93.3	45.6	52.5	53.2	64.8	80.4	80.4	929.4
Median	70.9	82.1	82.4	58.5	42.0	57.4	26.4	22.8	41.3	53.6	70.2	75.8	
Highest	146.1	167.1	220.2	183.1	140.7	172.0	161.0	325.0	110.7	83.1	94.4	92.2	
Mean monthly evaporation	183	138	124	90	65	51	56	84	114	146	150	174	

 Table 1:
 Monthly Rainfall and Evaporation (mm)

Station 67014, Maroota (Old Telegraph Road) is located opposite the junction with Roberts Road, and is less than 1 km from the quarry. The station has a long record, covering the period from 1925 to 2018.

The nearest evaporation data available on the BoM website are from Richmond UWS Hawkesbury (Station 067021), and covers the period from 1973 to 2018. Station 067021 is approximately 25 km from the quarry.

2.2 Surface Drainage

The project is located in an incised area of Hawkesbury Sandstone plateau. The topography is therefore quite steeply undulating, with relatively steep valley sides, and steep cliff faces in some places. Within the property on which the quarry is located, the terrain is a moderately undulating valley domain.

The natural drainage of the site was originally in a northerly direction, with the local creek system flowing into Coopers Creek approximately 2 km to the north (Woodward-Clyde, 1999).

The site is currently largely internal draining. There are two dams on DP228308 on the western side of the property, which capture runoff from upslope areas including a limited area off the quarry property. The water in the northernmost dam Dam 3 (**Figure 1**) is used as a water supply source for the nursery located at the north-western corner of the property. Water has at times been pumped from the other water supply dam Dam 4 to supplement the quarry water supply. At other times, water has been transferred from the quarry operations into Dam 4, to assist with ongoing quarry water management.

The main Process Dam 1 (**Figure 1**) is the primary component of quarry water management. Runoff from the quarry area, as well as the water product from the sand washing process, gravitates to Dam 1, from where it is pumped back as required to provide the primary water source for the quarrying operations, mainly for sand washing purposes. Hence Dam 1 acts primarily as a water storage, but collects runoff from the disturbed areas of the quarry site. There is no surface outflow from Dam 1.

Elsewhere on the quarry site, runoff is diverted around the disturbed area via diversion bunds where possible and the natural topography assists. A portion of clean water from the undisturbed areas and properties adjacent to the quarry on Roberts Road does enter the main quarry area. Dirty water

is collected in the disturbed areas into either the main site dam (Dam 1 on **Figure 1**), or into one of the tailings storages, an active Dam 2 and an inactive Dam 3 (**Figure 1**) to allow for settling to occur.

2.3 Geology

The project is located within the Permian to Triassic Sydney Basin. The quarry recovers sands from the Maroota Sands formation, which is of Tertiary age and occupies a paleochannel system incised into the underlying Hawkesbury Sandstone and Ashfield Shale basin sediments. Sand is also recovered from superficial eluvial sands derived from in situ weathering of the Hawkesbury Sandstone, and from the Hawkesbury Sandstone itself.

The general stratigraphy for the Maroota area is shown in Table 2.

Table 2:Stratigraphic Sequence at the Maroota Project Site (adapted from AGT (2015),
after Woodward-Clyde (1999) and Etheridge (1980))

Age	Unit	Lithology	Comment
Quaternary	Soils	Variable	
Tertiary	Maroota Sands	Sand, gravel, clayey sand and clay	Reworked Hawkesbury Sandstone. Paleochannel sands including clay and ferricrete bands (cemented ironstone). Outcrops at project site and is the target of quarry activities.
	Ashfield Shale	Shale and laminate	Not present at project site.
Triassic	Hawkesbury Sandstone	Quartzose sandstone with shale lenses	Weathered upper profile (eluvial sands) underlain by competent sandstone. Eluvial sands outcrop to north and west of quarry.

2.4 Hydrogeology

Groundwater is present within the Maroota Sands and the underlying Hawkesbury Sandstone. Groundwater in each of these two formations is regionally extensive and forms a regional water table in each. Localised groundwater is also present in perched aquifers within the Maroota Sands, as well as on top of or within the Hawkesbury Sandstone, above the regional water tables. Thus, localised groundwater may be intersected at a number of elevations above the regional water table levels.

Since the original consent in 2000, two groundwater policies affecting these aquifers have been introduced, namely:

- The Greater Metropolitan Region Groundwater Sources Water Sharing Plan 2011 (WSP) (NSW Government, 2011); and
- The Aquifer Interference Policy (NSW Office of Water, 2012).

The WSP defines two water sources for the locality -

• the **Maroota Tertiary Sands Groundwater Source** (MTSGS) which includes the total extent of the Maroota Sands paleochannel formation as well as connected Hawkesbury Sandstone eluvium, as defined by a map contained in the WSP; and

• the **Sydney Basin Central Groundwater Source** (SBCGS) which includes the Hawkesbury Sandstone formation over an area defined by a map in the WSP.

Protection measures for both water sources are detailed in the WSP.

The MTSGS is directly recharged by infiltration of rainfall and local runoff, and downward percolation to the water table, or to any perched water table present. The SBCGS is recharged by infiltration of rainfall and runoff in areas where fresh rock outcrops at the ground surface, or through downward leakage from overlying Maroota Sands, alluvium or eluvium. Groundwater levels in both units display fluctuations that relate to episodic recharge associated with major rainfall events. The recharge responses are particularly marked in the Maroota Sands.

No eluvium has been encountered on the Roberts Road Maroota site.

3 GROUNDWATER INVESTIGATIONS

3.1 Site Hydrogeology Revealed from Drilling and Quarry Excavations

Only limited drilling has been undertaken on the site. No drilling specifically for sand resource evaluation has been undertaken during the past 15 years.

Thirteen bores have been drilled for installation of groundwater monitoring piezometers. These have revealed stratigraphic information, including the depths of the interface between Maroota Sands and the underlying Hawkesbury Sandstone, and lithological information including the presence of more clayey zones within the Maroota Sands. The south-western part of the site has been found to be more clayey than the main trunk paleo valley.

The north-eastern corner of the site has been excavated for sand extraction through the full thickness of the Maroota Sands and into the Hawkesbury Sandstone, with the top of the sandstone occurring well above the regional water table levels. The Hawkesbury Sandstone is exposed over the north-eastern portion of the site in the current landform. The presence of Hawkesbury Sandstone above the water table in that area has allowed the eastern boundary of the paleochannel to be delineated accurately.

No significant seepage within the Maroota Sands has been observed during quarrying activity, apart from a small localised persistent seepage at a central location just west of the Tailings Dam 2. This seepage location is marked on **Figure 2**.

Minor seepages are present above the Hawkesbury Sandstone in the north-eastern corner of the site, causing minor flows from gullies into the Process Dam 1. These are believed to be fed by rainfall and local infiltration into residual unconsolidated material on the excavated landform upslope (north-west) from Dam 1. The volume of these inflows is very small, estimated at much less than 1 L/s in total.

3.2 Historical Monitoring Bore Installation

Three (3) monitoring bores (MW1 to MW3¹) were installed on the site in 1998 as part of the groundwater investigations undertaken to support the EIS for the initial project development application. MW2 became blocked in early 2000 by an obstruction above the water level in the bore, and was not able to be monitored thereafter. Bore MW3 was mined out by quarrying activity, and was replaced by MW4, which in turn was also later lost to quarrying.

MW5 was installed in 2013 as a replacement for MW2 at an adjacent site, however it too was found to be blocked and has also been removed from the monitoring network. MW6 was installed in 2015 as a replacement for MW4, and remains in place along with MW1.

Locations of current and former bores are shown on Figure 2.

Falling head tests were conducted on bores MW1, MW2 and MW3, but there is no record of hydraulic testing of the replacement bores MW4, MW5 or MW6.

Bores MW1, MW3, MW4 and MW5 were sampled for comprehensive laboratory analysis on limited occasions up until June 2013. No water quality monitoring of groundwater was undertaken between June 2013 and December 2016.

¹ The existing monitoring bores on the quarry site have the nomenclature PT84MW1 to PT84MW6 and the production bores PT84PB1 and PT84PB2. For simplification purposes, throughout this report, the bore nomenclature has been shortened to MW1 to MW6 and PB1 to PB2. The new monitoring bores installed in December 2016 have been named MW7 to MW13, continuing the previous nomenclature.

3.3 Installation of Additional Monitoring Bores – December 2016

A major expansion of the monitoring network was undertaken in December 2016, with seven (7) new monitoring bores installed at locations shown on **Figure 2**. These were installed to meet a compliance requirement of the 2016 MOD 2 approval.

The new bores provide a broader coverage of the site, and allow monitoring of each of the main hydrogeological units, Hawkesbury Sandstone and Maroota Sands.

Two of the new bores were installed at sites where monitoring bores already existed. Two bores were installed at one of the new sites. This has resulted in a cluster of bores at three of the monitoring sites, with separate bores monitoring at different depths, viz:

- MW1 (Maroota Sands) and MW7 (Hawkesbury Sandstone) near north-west corner of the site;
- MW2 (perched Maroota Sands), MW5 (partially penetrating Maroota Sands), and MW8 (fully penetrating Maroota Sands); supplemented by two of Dol-Water's bores GW075003 and GW075004 (both in Hawkesbury Sandstone) – located near the south-western boundary of the site; and
- MW9 (Hawkesbury Sandstone) and MW13 (Maroota Sands) located towards the western side of the current quarry, in an area earmarked for extraction in the next 2-3 years.

The locations of these bore clusters can be seen on **Figure 2**. Bore logs are presented for all bores in **Appendix A**. Logs for the Dol-Water bores are presented in **Appendix B**.

Each of the new monitoring bores was subjected to a falling head permeability test, and each one was sampled for a comprehensive laboratory analysis of the major anions and cations, as well as physical parameters. Distribution of Maroota Sands and Hawkesbury Sandstone

The upper surface of the Hawkesbury Sandstone has been encountered at varying depths in the recent drilling program. Some of the earlier drilling did not extend to sufficient depth to fully penetrate the Maroota Sands (MW2, MW3, MW4 and MW5).

The elevations of the top of Hawkesbury Sandstone are shown on **Figure 3**. Sites where the top was not encountered are marked with the maximum possible elevation, although it is almost certainly somewhat deeper at the above bore sites that were not drilled deep enough. The Hawkesbury Sandstone surface elevations shown at two locations near the bank on the eastern side of the main process water dam (Dam 1) are the current surveyed elevations, not the prequarrying elevation. The excavated landform is comprised of exposed Hawkesbury Sandstone in the area to the east of Dam 1. The original Hawkesbury Sandstone surface elevations in this area are not known.

Elevations of the top of Maroota Sands and its thickness are plotted on **Figure 4**. As above, the minimum thickness is shown at sites that were not drilled to the base of the Maroota Sands (ie MW2, MW3, MW4 and MW5). At sites where drilling took place within the partly excavated quarry (PB1, MW3 and MW4), the surface elevations at the time of drilling are used.

The elevations and Maroota Sands thickness have not been contoured on **Figures 3** and **4**, as there is minimal off-site data available to allow sensible contouring which takes account of the regional position.

3.4 Hydraulic Properties

The results of falling head permeability tests slug tests) conducted on each of the recently installed monitoring bores, MW7 to MW13, are presented in **Appendix C**, and summarised in **Table 3**. The results of earlier testing of MW1 to MW3 (Woodward-Clyde, 1999) are also included in **Table 3**.

Bore	Aquifer	Date of slug test	Average Hydra	ulic Conductivity
DOIC		Date of slug test	m/s	m/d
MW1	Maroota Sands	26 October 1998	6.7 x 10 ⁻⁷	0.058
MW2	Maroota Sands	26 October 1998	1.4 x 10 ⁻⁸	0.0012
MW3	Maroota Sands	26 October 1998	2.9 x 10⁻ ⁶	0.25
MW7	Hawkesbury Sandstone	16 December 2016	1.7 x 10⁻ ⁸	0.0015
MW8	Maroota Sands	20 January 2017	1.08 x 10 ⁻⁶	0.093
	Maroota Gands	20 Sandary 2017	*2.9 x 10⁻ ⁷	*0.025
MW9	Hawkesbury Sandstone	20 January 2017	4.4 x 10 ⁻⁷	0.038
MW10	Maroota Sands	20 January 2017	1.1 x 10 ⁻⁵	0.99
1010010		20 00110019 2017	*6.1 x 10 ⁻⁶	*0.53
MW11	Maroota Sands	20 January 2017	4.2 x 10 ⁻⁶	0.36
MW12	Hawkesbury Sandstone	22 December 2016	3.9 x 10 ⁻⁷	0.034
MW13	Maroota Sands	16 December 2016	2.0 x 10 ⁻⁷	0.017

Table 3:Results of Hydraulic Testing Program

* Late time data, representing conditions further from the bore.

Hydraulic conductivity values determined from testing the Maroota Sands ranged from 0.0012 m/d to 0.99 m/d, with an average value of 0.25 m/d. The Maroota Sands at three of the sites was clayey, and revealed relatively low conductivity values. The three sites where clean Maroota Sands were encountered (MW3, MW10 and MW11) gave much higher conductivity values, more consistent with the typical range for unconsolidated clean sands.

Values for the Hawkesbury Sands ranged from 0.0015 m/d to 0.038 m/d, with an average value of 0.025 m/d.

In summary, the following approximate hydraulic conductivity ranges are considered to apply to the three main hydrogeological units encountered at the site:

- Maroota Sands clean sands and gravels, and clayey sands/gravels 0.1 to 1.0 m/d
- Maroota Sands sandy clays, silty clays, and clays 0.01 to 0.1 m/d
- Hawkesbury Sandstone 0.001 to 0.05 m/d.

The deepest excavated depth in the quarry was believed to be approximately 180 mAHD. However, the deepest parts of the quarry have now been backfilled with fines settled from either tailings or recycled process water. There are residual silts and clays in the base of Dams 1 and 2 and the unnamed former tailings dam.

The water-filled Process Dam 1 is now the lowest part of the quarry. A probing survey conducted in September 2017 established the depth to the top of sediment in Dam 1, finding that the water depth over most of the area of Dam 1 is between 0.1m and 0.7m, with a small localised area of greater water depth around the water recovery pump inlet, where water depth reached a measured maximum of 2.95m. Most of Process Dam 1 has a base elevation in the range 187.1 to 187.6 mAHD, with the deepest measured point near the pump inlet being at 184.8 mAHD.

The fines in the Process Dam 1, Tailings Dam 2 and the unnamed former tailings dam to the north of Dam 2 have a very low hydraulic conductivity. Testing of the in situ conductivity of the settled fines has not been possible due to inaccessibility and safety concerns. However, there is clear evidence of the low conductivity, viz:

- There is no evidence for mounding beneath or downgradient from the site;
- Hydrographs show a declining water level trend in both MW10 and MW6 (up-gradient), and MW11 (down-gradient from Dam 1) see **Figure 5.**
- There is a clear downstream gradient that appears to be unaffected by the Dam (**Figure 5**).
- All four hydrographs depicted in **Figure 5** are responding primarily to the rainfall pattern, with trends conforming generally with the Maroota RCD curve.
- There is at all times a distinct head difference between the dam water levels and the underlying groundwater levels (see **Figure 5**). The relative water levels measured on 5 April 2018 were:
 - o Dam 1 187.2 mAHD
 - o MW6 (up-gradient) 183.2 mAHD, and
 - MW11 (down-gradient) 180.4 mAHD.
- The recession trend in the Dam water level is similar to the recession trends in the upgradient bores (MW6 and MW10), and less steep than in the down-gradient bore MW11 (Figure 5).
- The recession trend in MW11 downstream of Dam 1 is much steeper than the recession trends in both the dam water level itself and the upstream bores (**Figure 5**).

The three groundwater bore levels are at all times several metres lower than the Dam 1 water level. Any leakage from the dam would be expected to result in relatively higher groundwater levels beneath and down-gradient from the dam. However, no such mounding on the water table is apparent, and there is no evidence that the groundwater downstream of the Dam is receiving more recharge than is being received upstream.

Leakage from Dam 1 would also be expected to result in a gentler downstream recession trend during periods of low rainfall, due to the recharging effect of the leakage from the Dam. However, the down-stream recession trend at MW11 is steeper than the upstream recession trends and the Dam recession trend.

Any downward leakage from the dam would have been reflected in a mounding beneath the dam, and a recharge effect in the downstream bore MW11. Both these effects are absent, suggesting strongly that there is negligible leakage from Dam 1, and therefore the residual clay and silt in the base of the dam has very low permeability.

3.5 Groundwater Quality

Historically, there has been limited sampling for comprehensive laboratory analysis of major ionic composition. MW1 and MW3 were analysed once in 1998, PB2 was analysed once in 2005, MW1 and MW4 annually from 2010 to 2013, and MW5 once in 2013. Groundwater quality was not monitored in any bore between June 2013 and December 2016.

Samples from each of the new monitoring bores MW7 to MW13 were collected in December 2016 – January 2017, and submitted to ALS for comprehensive water quality analysis. All monitoring bores, PB1 and the dams were sampled in July 2017, January 2018 and April 2018 as part of ongoing monitoring.

3.5.1 Laboratory Analysis Results

The results of laboratory analysis for major ion composition are presented in Table 4.

Bore	Aquifer	Date sampled	рН	EC @ 25°C	TDS @ 180°C	OH alkalinity	CO₃ alkalinity	HCO ₃ alkalinity	SO₄	CI	Са	Mg	Na	к	Total anions	Total cations	Oil and grease
Units			pH units	μS/cm	mg/L	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	mg/L
		23 Oct 98	4.96	246	186	<1	<1	4	3	50	3	3	27	3			
		19 Oct 10	4.24	174	150	<1	<1	3.6	4	30	1	6	12	2			
		22 Jun 11	5.18	122	169	<1	<1	4.8	8	143	5	5	19	2			
MW1	Maroota Sands	20 Jun 12	4.87	174	320	<1	<1	<1	8	31	1	5	13	6			
	Maroota Sands	19 Jun 13	4.93	312	820	<1	<1	<1	8	59	6	12	22	6	1.83	2.40	
		27 Jul 17	4.1	355	247			<5	4	47	5	14	25	4			
		11 Jan 18	4.14	396	247*												<5
		5 April 18	4.2	385													
MW3	Maroota Sands	23 Oct 98	5.88	381	266	<1	<1	4	3	50	3	9	27	3			
		19 Oct 10	4.58	138	100	<1	<1	2.4	1	29	<1	3	16	<1			
MW4	Maroota Sands	22 Jun 11	3.23	151	99	<1	<1	2.4	2	33	<1	3	17	1			
101 0 0 4	Maroota Sanus	20 Jun 12	4.45	141	123	<1	<1	<1	22	26	<1	4	14	1			
		19 Jun 13	4.49	152	95	<1	<1	<1	<1	36	<1	4	16	1	1.02	1.05	
MW5	Maroota Sands	19 Jun 13	4.13	140	158	<1	<1	<1	1	34	<1	2	15	<1			
CANIN	Maroota Sands	27 Jul 17	5.1	113	61			5	2	22	1	1	13	2			
		27 Jul 17	9.3	103	55			19	<1	18	2	1	12	5			
MW6	Maroota Sands	11 Jan 18	7.09	110	69*												<5
		5 April 18	10.3	406													
		22 Dec 16	7.00	255	282	<1	<1	50	17	27	4	1	46	<1	2.11	2.28	
MW7	Howkoobury Conditions	27 Jul 17	5.3	192	215			12	9	29	<0.5	<0.5	59	<0.5			
	Hawkesbury Sandstone	11 Jan 18	5.45	170	106*												<5
		5 April 18	5.8	237													

 Table 4:
 Laboratory Water Quality Analysis Results

Bore	Aquifer	Date sampled	рН	EC @ 25°C	TDS @ 180°C	OH alkalinity	CO₃ alkalinity	HCO₃ alkalinity	SO₄	CI	Са	Mg	Na	к	Total anions	Total cations	Oil and grease
		20 Jan 17	5.68	161	114	<1	<1	5	1	36	3	3	26	<1	1.14	1.53	
MW8	Maroota Sands	27 Jul 17	5.1	178	118			8	2	37	4	3	26	<0.5			
		11 Jan 18	4.66	183	114*												<5
		20 Jan 17	6.71	175	134	<1	<1	18	4	32	8	2	25	<1	1.34	1.34	
MW9	Howkeebury Conditions	27 Jul 17	4.9	148	96			<5	2	24	3	2	16	0.8			
101009	Hawkesbury Sandstone	11 Jan 18	4.64	183	73*												<5
		5 April 18	4.6	148													
		20 Jan 17	5.45	184	104	<1	<1	2	<1	42	1	4	30	<1	1.22	1.22	
MW10	Mana ata Can da	27 Jul 17	4.7	180	108			<5	<1	39	0.6	4	27	0.6			
	Maroota Sands	11 Jan 18	4.53	186	116*												<5
		5 April 18	4.4	190													
		20 Jan 17	6.34	169	98	<1	<1	5	7	34	4	2	24	3	1.20	1.20	
MW11	Maroota Sands	27 Jul 17	4.7	154	90			<5	<1	32	<0.5	2	19	1			
	Maroota Sands	11 Jan 18	4.69	158	99*												<5
		5 April 18	4.6	151													
		22 Dec 16	6.12	156	110	<1	<1	8	12	21	2	<1	23	3	1.00	1.18	
MW40	Hawkeekum, Candatana	27 Jul 17	5.3	96	72			11	7	13	2	0.9	12	<0.5			
MW12	Hawkesbury Sandstone	11 Jan 18	5.46	103	64*												<5
		5 April 18	5.2	102													
		16 Dec 16	6.65	204	105	<1	<1	17	5	34	4	2	26	3	1.40	1.57	
MW13	Maroota Sands	27 Jul 17	4.9	134	92			<5	1	27	2	2	16	<0.5			
		11 Jan 18	4.52	142	88*												<5
PB1	Hawkesbury Sandstone	27 Jul 17	4.6	148	88			<5	<1	30	<0.5	3	19	0.7			
PB2	Hawkesbury Sandstone	12 Sep 05	4.52	113	77			<1	<1	34	<1	3	17	<1			

 Table 4:
 Laboratory Water Quality Analysis Results

Bore	Aquifer	Date sampled	рН	EC @ 25°C	TDS @ 180°C	OH alkalinity	CO₃ alkalinity	HCO₃ alkalinity	SO₄	CI	Ca	Mg	Na	к	Total anions	Total cations	Oil and grease
Process		27 Jul 17	4.5	134	90			<5	4	25	<0.5	2	16	2			
Dam 1	-	5 April 18	4.4	229													
		27 Jul 17	4.5	139	75			<5	4	25	<0.5	2	17	3			
Tailings Dam 2	-	11 Jan 18	4.29	254	159*												<5
		5 April 18	4.3	249													
		27 Jul 17	6.61	133	77			13	9	20	3	3	13	4			
Nursery Dam 3	-	11 Jan 18	7.09	177	111*												<5
		5 April 18	7.8	223													
		27 Jul 17	6.6	116	63			15	3	20	2	3	13	2			
Farm Dam 4	-	11 Jan 18	6.87	165	103*												<5
		5 April 18	8.8	188													
Former Tailings Dam	-	27 Jul 17	4.9	77	49			<5	2	15	<0.5	1	11	1			

 Table 4:
 Laboratory Water Quality Analysis Results

* TDS calculated from EC

The groundwater in the Maroota Sands is generally low salinity, with lab measurements of EC ranging from 122 μ S/cm (at MW1 in June 2012) to 381 μ S/cm (at MW3 in October 1998). It is moderately acidic, with laboratory pH values ranging from a low of 3.23 (at MW4 in June 2012) to a high of 5.88 (at MW3 in October 1998).

Groundwater quality in the Hawkesbury Sandstone aquifer system is low salinity (with EC ranging from 156 to 255 μ S/cm), and is less acidic than the Maroota Sands groundwater, with near-neutral pH ranging from 6.12 to 7.00.

3.5.2 Monthly Water Quality Monitoring Data

From 1995 until 2013, field measurements of pH, EC and TDS were routinely conducted on samples collected at intervals ranging from monthly to 6-monthly. The results are presented graphically for pH and EC in **Figures 6** and **7**. **Figure 6** shows the full dataset, while **Figure 7** shows the water quality data for the period 2016-2018. Both plots include all available field and lab data.

The pH values range from 3.2 to 10.3, although during 2016-2018, the groundwater samples mostly had pH values in the range 4-7, apart from MW6, which has pH in the range 7-11. The Process Dam 1 and Tailings Dam 2 had pH in a similar range to the groundwater. However, the surface water samples (Nursery Dam 3 and Farm Dam 4) had pH in the range 6.6-8.8.

EC values range from 46 μ S/cm (MW3) to 543 μ S/cm (MW2). During 2016-2018, most values were between about 100 and 250 μ S/cm. The exceptions are MW1, which has a consistently higher EC that the other groundwater and surface water samples in the range 350-400 μ S/cm.

The April 2018 sample from MW6 appears to be anomalous, with pH and EC both higher than past values (10.3 and 406 μ S/cm respectively). The quality at the up-gradient bore MW10 remained consistent with previous months (pH 4.4 and EC 190 μ S/cm). Likewise the water sampled from the Process Dam 1 on that date reported a pH of 4.4 and EC of 190 μ S/cm), hence the change in quality at MW6 was not due to leakage from Dam 1.

3.5.3 Groundwater Quality Characterisation

Major ion chemistry has been analysed using a Piper Trilinear Diagram, which uses the concentrations of the major cations (Ca, Mg, Na and K) and major anions (HCO₃, Cl and SO₄) expressed as milliequivalents per litre (meq/L). The relative concentrations of the cations are plotted on a triangular cation field, and the relative concentrations of the anions on an anion field, and these plotted locations are then projected onto a diamond shaped field that allows the relative ionic concentrations of each sample to be plotted as a unique point.

By comparing the plotted locations of different samples, inferences can be drawn about the sources of different waters, and potential mixing of waters from different sources, as well as proximity to rainfall recharge.

Piper diagrams of all the lab analysis results from the Roberts Rd quarry site are presented as **Figures 8** and **9**. The monitoring bores MW1 to MW13 are plotted in **Figure 8**, while **Figure 9** shows the two production bores PB1 and PB2, and waters sampled from the site dams.

Figures 8 and **9** show only small differences between the Maroota Sands and the Hawkesbury Sandstone groundwaters. All groundwater samples collected from beneath the regional water tables of both aquifers are clustered generally close to the right-hand side of the main field on the Piper diagram, which is characterised by low bicarbonate relative to the other anions, and varying proportions of sodium plus potassium versus calcium plus magnesium among the major cations.

However, there are greater differences between the water chemistry of the regional groundwater and groundwater in perched aquifers.

The perched groundwater in Maroota Sands on this site has more calcium plus magnesium and less sodium plus potassium than the regional Maroota Sands groundwater, but with similar low levels of bicarbonate (**Figure 8**). The perched Hawkesbury Sandstone groundwater differs from the regional Hawkesbury Sandstone groundwater by a higher relative concentration of bicarbonate (15-50% of total anions) than the regional Hawkesbury Sandstone groundwater (less than 5% of total anions).

In summary, the water quality of the Maroota Sands groundwater is characterised by the following:

- Low salinity;
- Acidic pH, in the range 3.5 to 6.5;
- Anionic composition dominated by chloride (generally over 80% of total anions), with very low bicarbonate (less than 10%), and occasional moderately higher concentrations of sulphate (MW4, MW8 and MW12); and
- Cationic composition dominated by sodium + potassium (between 40% and 80%), with low calcium (less than 20%), and magnesium between 10% and 45%.

The Hawkesbury Sandstone groundwater quality from beneath the project site is characterised by the following:

- Low salinity;
- Near neutral pH, in the range 6.1 to 7.0;
- Anionic composition is more variable, with sulphate 5 to 25%, chloride 35 to 70% and bicarbonate less than 5% in regional aquifer and 15 to 50% in perched groundwater; and
- The cations are dominantly sodium + potassium (65 to 90%), with very low magnesium (less than 10%), and low calcium (10 to 30%).

The low EC indicates that both aquifer systems are readily recharged by infiltration of rainfall.

3.6 Groundwater Levels

Measured groundwater levels beneath the Maroota sand quarry property range from around 170 mAHD to around 210 mAHD.

The most recent water level measured in each monitoring bore, including the bores that are no longer available, is listed in **Table 5** and shown on **Figure 10**.

Five cross-sections have been prepared to illustrate the relationship between the observed groundwater levels in the monitoring bores. The cross-sections are presented as **Figures 11** to **15**. The locations of the cross-sections are shown on **Figure 2**.

Cross-sections BB' and CC' have been extended to include relevant information from the adjacent PF Formation quarry to the west of the Roberts Road quarry.

Screened Bore Interval Aquifer			Water Level		
Bore	Interval (m BGL)	Aquifer	Date	m BGL	m AHD
MW1	4.9-9.9	Maroota Sands (perched)	5 Apr 2018	7.76	205.66
MW5	32-44	Maroota Sands (perched)	20 Sep 2017	34.31	192.69
MW6	24-29	Maroota Sands	5 Apr 2018	19.29	183.18
MW7	30-36	Hawkesbury Sandstone	5 Apr 2018	29.22	183.74
MW8	37-40	Maroota Sands (perched)	5 Apr 2018	34.52	192.49
MW9	44.5-50.5	Hawkesbury Sandstone	5 Apr 2018	38.55	187.03
MW10	44-47	Maroota Sands	5 Apr 2018	33.04	184.08
MW11	24-28.5	Maroota Sands	5 Apr 2018	11.98	180.37
MW12	23-26	Hawkesbury Sandstone	5 Apr 2018	16.03	194.25
MW13	27.5-30.5	Maroota Sands (perched)	5 Apr 2018	26.58	198.92
		Maraata Canda (narahad)	10 Mar 2000	23.75	203.14
MW2*	19.5-25.5	Maroota Sands (perched)	9 Jan 2017	>20.7	<206.2
MW3**	14.9-20.9	Maroota Sands	6 Jul 2009	18.95	183.48
MW4**	19.5-28.5	Maroota Sands	19 Jun 2013	24.06	187.94***
PB1	>28.8	Hawkesbury Sandstone	19 Aug 1999	14.10	179.40***
PB2	>53	Hawkesbury Sandstone	5 Jul 2002	42.11	173.99***
GW75003	72-75	Hawkesbury Sandstone	27 Aug 2015	46.12	178.51
GW75004	54-57	Hawkesbury Sandstone	9 Jan 2017	40.11	185.94

Table 5:	Monitoring B	Bore Water Levels
	Monitoring L	

* Bore obstructed at 20.7 m below ground level. Dry to this depth.

** Bore lost to sand extraction.

*** Estimated - surface RL not surveyed.

Red Most recent available water level.

3.6.1 Maroota Sands

Groundwater levels within the Maroota Sands formation range between approximately 180 mAHD (bore MW11) and 206 mAHD (bore MW1).

The deepest reported intersections of Maroota Sands were at MW6, MW10 and MW11, where the top of the Hawkesbury Sandstone was encountered at <173.5 mAHD, 168.1 mAHD and 164 mAHD respectively.

At these locations, the water level in the Maroota Sands on 5 April 2018 was at elevations of 183.2 mAHD, 184.1 mAHD and 180.4 mAHD respectively. All three water levels are lower than the current water level in the main process area dam (Dam 1), which on the same date was 187.2 mAHD. Similar water levels were reported from previous monitoring bores MW3 and MW4 before they were destroyed by the quarry expansion. The water levels in these five bores are believed to be true reflections of the regional water table level within the Maroota Sand aquifer.

Elsewhere on the site, groundwater levels within the Maroota Sands formation are elevated, in the range 192 mAHD to 206 mAHD. In some locations, the perched water levels may be further elevated due to leakage from the various dams on the property, in which the water levels on 5 April 2018 were determined by survey as follows:

Process area – Dam 1
 187.2 mAHD

•	Tailings dam – Dam 2	199.11 mAHD
•	Former tailings dam north of Dam 2	approx 200 mAHD (estimated from contours)
•	Nursery Dam 3	205.40 mAHD
•	Farm Dam 4	212.45 mAHD.

A persistent seepage zone has been observed in the active quarry about 120m east of Dam 4, at the location marked "**Seepage**" on **Figure 2**, close to the edge of Tailings Dam 2. This seepage is observed at an elevation of approximately 195 mAHD, ie about 20m lower than the Dam 4 water level. It is currently lower than the water level in the tailings dam (Dam 2), but when first observed it was at least 7m higher than the Dam 2 water level at that time. The seepage has been observed to dry up whenever water is pumped for an extended period from Dam 4 causing the water level in Dam 4 to be lowered, indicating a clear connection between the dam and the seepage.

There is localised perched groundwater present at some sites, either in shallow Maroota Sands where the top of the Hawkesbury Sandstone is above the regional water table elevation (such as on the flanks of the palaeovalley), or above a clayey aquitard within the Maroota Sands itself.

Examples of perched groundwater above shallow Hawkesbury Sandstone include:

• At bore MW1, which was terminated at 11.8m depth in Maroota Sands, and has continuously reported a water level in the range 205 to 209 mAHD. A new bore drilled in December 2016 at this site (MW7) was screened only in Hawkesbury Sandstone, and has a water level at around 184-185 mAHD. The top of Hawkesbury Sandstone was encountered at 14m BGL (199 mAHD) in MW7, and drilling revealed the upper part of the Hawkesbury Sandstone to be dry, between at least 199 and 185 mAHD. There was also no water intersected while the hole was being drilled through the Maroota Sands above 199 mAHD.

The groundwater level in MW1 is clearly a perched aquifer above the top of the Hawkesbury Sandstone surface. The relative water levels at this site are shown on a composite bore log on **Figure 16**, and on cross-section AA' (**Figure 11**).

The MW1 water level on 5 April 2018 (205.66 mAHD) was very similar to the water level at that time in nearby Nursery Dam 3 (205.40 mAHD). It is possible that the water intersected in MW1 may be sustained as a localised perched body hydraulically connected with Dam 3, which is about 75m from MW1 at its nearest point.

- There is a cluster of bores at the site of MW2, MW5 and MW8 (see **Figure 2**), all completed (screened) in Maroota Sands. MW2 was drilled to only 26.5m and screened from 19.5-25.5m, and reported a water level in the range 23.7 to 24.7 m BGL (202-203 mAHD), until the bore was found to be obstructed at shallower depth². Bore MW5 was drilled to 44m and was reported to be still in Maroota Sands at that depth. Bore MW8 was drilled in December 2016 to verify whether the water level in MW5 was perched, as MW8 had not reached the Hawkesbury Sandstone. MW8 was drilled to a depth of 49m BGL, and the top of the Hawkesbury Sandstone was interpreted from the drill cuttings to be at approximately 40m. The bore is screened only in Maroota Sands (see log in **Appendix A**). MW5 and MW8, both screened only in Maroota Sands, have a consistent water level at around 192-193 mAHD, about 10m lower than the level previously measured in MW2. The relative water levels at this cluster site are shown on a composite log **Figure 17**, as well as on cross-section BB' (**Figure 12**).
- Seepage was noted during drilling of bores MW8, MW9 and MW13 at 10-11m below ground surface, however in all three bores the drilling then revealed dry conditions below the seepage zone (see bore logs in **Appendix A**). Two of these bores (MW8 and MW9) are screened in Maroota Sands, and have standing water levels 10-15m below the seepage zone, confirming that the seepage zone is from a local perched aquifer. The relative

² The obstruction was measured at 20.7m BGL on 6 December 2016.

groundwater levels and seepage levels at bores MW9 and MW13 are shown on a composite bore log (**Figure 18**) and on cross-section BB' (**Figure 12**).

The composite log of MW2, MW5 and MW8, also showing the 2 Dol-Water bores GW75003 and GW75004 (**Figure 17**), shows two distinct standing water levels for the Maroota Sands, as well as the seepages reported during drilling, which are believed to indicate three separate perched groundwater occurrences in the Maroota Sands at this location. All Maroota Sands groundwater levels are well above the deeper water levels in the Hawkesbury Sandstone. GW75004 is not as deep as GW75003, and has a higher water level than GW75003. The higher water level in GW75004 may represent a perched aquifer horizon within the Hawkesbury Sandstone itself, or possibly it may be a composite level between the Hawkesbury Sandstone and the overlying Maroota Sands, as the bore annulus is open to the lowermost 10m of the Maroota Sands, albeit well above the screen interval (see cross-section BB' – **Figure 12**).

Taking into account the results of the December 2016 drilling, and considering the water levels in the dams on the site, it is now considered very likely that at least some of the elevated water levels in the Maroota Sands are caused by leakage from the dams which are all at significantly higher elevation than the nearby bore water levels.

Interpreted groundwater contours of the regionally continuous Maroota Sands water table are presented on **Figure 19**. In compiling these contours, the available information from the nearby PF Formation and Dixon Sands sand extraction projects to the west of the Roberts Road quarry has been considered together with the information from the project site.

None of the occurrences of perched groundwater within Maroota Sands is extensive enough to permit contouring. The reason for perched groundwater within the Maroota Sands arises from the varying lithology of the formation, which is formally described as comprising "clayey gravel, gravelly sand, pebbly sand and sand", but with other horizons described as "clay and silty clay" and "ferruginised sand and pebbly sand". The "ferruginised sand and pebbly sand" unit appears to be a basal unit, however the "clay and silty clay" unit appears to be gradational and interlayered with the cleaner sands and gravels.

Geological mapping by Etheridge (1980) identified an area of clayey Maroota Sands across the south-western side of the property. This clayey material was drilled as the dominant lithology in bores MW2, MW5, MW8, MW9 and MW13. Elsewhere, horizons of more clayey Maroota Sands were drilled in bores MW3, MW4, MW6, MW7, MW10, MW11 and MW12. The more clayey material would be relatively less permeable than the cleaner lithologies, and would be capable of forming a localised perching layer. In particular, a prominent clay unit close to the base of the paleochannel is reported in the logs of MW3 and MW11, which is believed to form a localised perching layer.

A Quaternary aged eluvial sand was mapped by Etheridge in places overlying the Maroota Sands formation. The eluvial alluvium has been included with the Maroota Sands in the defined MTSGS in the WSP (NSW Government, 2011). However, there is no evidence of any eluvial sands within or near the quarry site.

3.6.2 Hawkesbury Sandstone

Regional groundwater levels within the Hawkesbury Sandstone range between approximately 170 and 195 mAHD.

The regional groundwater level is interpreted to be at 170-180 mAHD (as illustrated by water levels in bores PB2, GW075003 and GW075004). However, like the Maroota Sands, there is perched groundwater within the Hawkesbury Sandstone, either naturally perched above shale bands or possibly artificially elevated by leakage from the site dams. Evidence for the latter is the rising trends seen on the hydrographs for PB2, GW075003 and GW075003 and GW075004 (**Figure 20**).

Interpreted regional groundwater contours of the Hawkesbury Sandstone beneath the quarry site are shown on **Figure 21**.

3.6.3 Groundwater Level Changes with Time

The groundwater levels are presented as hydrographs in Figures 20 and 22 to 33.

Figure 22 is a composite plot of all available manual monitoring data. **Figures 20** and **23** to **33** present individual hydrographs plotted against the Monthly Rainfall Cumulative Deviation (RCD) curves for the nearby Maroota BoM rainfall station.

The rainfall cumulative deviation (RCD) curve is derived by calculating the difference between actual monthly total rainfalls and the long-term average monthly rainfalls for the location. These monthly deviations from the average are then accumulated to develop a cumulative deviation curve. A rising trend on the curve results when monthly rainfalls over a period are above the long-term averages, and a downward trend arises when actual rainfalls are below average. The RCD curve for the Maroota BoM station are plotted on **Figures 20** and **23** to **33**.

During periods of below average rainfall, the hydrograph of a bore in an aquifer that receives regular recharge shows an overall downward trend, while still showing short-term rises in response to specific rainfall events. In periods of generally above average rainfall, the hydrograph shows an overall rising trend. By comparing the hydrograph with the RCD curve, it is easy to see whether the hydrograph fluctuations are related to rainfall recharge, or other causes, such as an impact from irrigation use or quarry dewatering.

Most hydrographs display a marked fluctuation in response to episodic rainfall recharge and natural discharge. The shallow groundwater responds quite quickly to recharge from larger rainfall events. This is typified by the hydrograph for bore MW1 (**Figure 18**), which shows short-term sharp rises in water level following many of the larger rainfall events, followed by a steady downward recession trend reflecting natural discharge from the shallow perched aquifer. Superimposed on the short-term fluctuations is a longer-term trend, which reflects the overall climatic conditions.

By contrast, the hydrographs for bores in the regional water tables of either the Maroota Sands or the Hawkesbury Sandstone show a much more attenuated response to specific rainfall events. However, even the deeper Dol-Water's Hawkesbury Sandstone bores GW75003 and GW765004 show a clear similarity between their hydrographs and the RCD curves.

There is no evidence from the hydrographs of any trend that could be attributed to any non-climate activity, apart from the possible effect of leakage from the site dams mentioned above.

At the most recent date of datalogger download (5 April 2018), water levels were at or near historic lows. The Maroota RCD curve has been on an overall downward trend since March 2017, due to mostly below average rainfalls during that time.

3.6.4 Wet Weather High Groundwater Levels

The wet weather high groundwater level (WWHGL) is defined in the Consent as:

'The rolling average of all recorded groundwater level measurements at any monitoring location on the site, as first recorded following any rainfall event of at least 50 mm over any 24-hour period, and as contour mapped using this data'.

For the Roberts Road Maroota site, the WWHGL has been calculated using the water level data from the historical monitoring records for all available monitoring bores on the site, taken immediately after any rainfall exceeding 50mm in any day, as determined using the BoM Maroota (Old Telegraph Road) meteorological station³.

³ During historical monitoring, water levels have not always been available immediately after a 24-hour rainfall of 50mm or more. Where necessary, the first available water level measurement after the rainfall event has been used in the table.

Separate WWHGLs have been determined for the Maroota Sands and the Hawkesbury Sandstone, using data only from bores interpreted to be screened below the respective regional water tables of the two aquifers. The calculations are presented in **Table 6**.

Contours of the wet weather high groundwater level, updated in April 2018, are depicted for the Maroota Sands and the Hawkesbury Sandstone on **Figures 19** and **21** respectively.

It is interpreted that the Maroota Sands regional water table is only present within the central part of the property, as the top of the Hawkesbury Sandstone rises above this water table level across the western and eastern flanks of the paleovalley. The Hawkesbury Sandstone outcrops along the eastern bank of the Main Process Water Dam 1. The lines marking the limit of saturated Maroota Sands are shown on **Figure 19**. West and east of these lines, there may be groundwater present in perched zones within the Maroota Sands, but the recent drilling program has shown that these zones are both limited in area and of limited saturated thickness.

The contours on **Figure 19** suggest a relatively gentle gradient to the north/north-northeast, down the axis of the paleovalley.

The regional water table (or potentiometric surface) of the Hawkesbury Sandstone has been encountered only in three of the deeper bores on site. The water levels in these bores have been used to construct tentative potentiometric surface contours across part of the site (**Figure 21**). These contours suggest a gradient to the northwest. On the eastern and western parts of the quarry site, the regional Hawkesbury Sandstone potentiometric surface lies below the top of the sandstone, whereas within the central zone occupied by the paleovalley, the potentiometric surface is well below the base of the quarry.

Table 6:

Wet Weather High Groundwater Levels (18 April 2018)

Nee	Data	Delutell	0					Peak wat	ter level aft	er >50mm/	day rainfal	l (mAHD)				
Year	Date	Rainfall	Comment	MW1	MW2	*MW3	*MW4	MW5	MW6	MW7	MW8	MW9	MW10	MW11	MW12	MW13
Collar	Elevation (mAH	ID)	•	213.43	226.89	*202.43	*212.00	227.00	202.47	212.96	227.01	225.58	217.12	192.35	210.28	225.50
Screer	ed Interval (mA	(HD)		*202-208		*181-187	*183-192	183-195	173-178	177-183	187-190	175-181	170-173	164-168	184-187	195-198
1999	24 October	59.0		208.1	203.1	183.6										
2000	9 March	54.0		207.8		182.8										
2000	17 November	56.0		207.3		182.5										
	31 January	53.0		208.0		182.9										
2001	6 February	50.0		208.0		182.9										
	20-21 March	55.0	2 day total	208.0		182.9										
	5 February	60.0		207.4		183.3										
2002	30 March	56.0		207.4		183.3										
	10 December	55.0		206.8		181.3										
2004	25-26 February	105.0	2 day total	206.6		181.0										
2004	21-22 October	61.0	2 day total	-		181.0										
	2-3 February	50.0	2 day total	-		180.5										
2005	21 February	60.0		-		180.7										
2000	23-27 November	55.0	5 day total	-		181.0		<u></u>							<u></u>	
2006	7 September	65.0		206.2		182.1										

Veer	Data	Rainfall	I Comment	Peak water level after >50mm/day rainfall (mAHD)												
Year	Date	Rainfall	Comment	MW1	MW2	*MW3	*MW4	MW5	MW6	MW7	MW8	MW9	MW10	MW11	MW12	MW13
	13 February	52.2		206.2		182.1										
2007	9 June	172.0		206.2		182.1										
2007	20 July	136.5		207.7		183.1										
	6 December	50.6		207.7		183.1										
2008	5 June	51.0		207.7		183.1										
	2 April	51.0		206.5		183.5										
2009	22 May	78.0		206.5		183.5										
2010	7 February	75.0		205.6			186.6									
2011	20 August	74.5		206.0			189.3									
2012	18 April	52.0		206.0			189.3									
	29 January	118.0		206.8			187.9									
2013	23 February	72.0	154.4 mm over 2 days	206.8			187.9									
	24 February	82.4	(23-24 February 2013)	206.8			187.9									
	19 August	52.6		205.7				192.6								
2014	7 December	55.0		205.9				192.8								
	21 April	161.0	279 mm over 2 days (21	206.5				192.3	183.4							
2015	22 April	118.0	to 22 April 2015)	206.5				192.3	183.4							
	22 December	63.6		207.4				192.6	185.4							
2016	5 January	108.0	221.2 mm over 4 days (4	207.4				192.6	185.4							

Year	Date	Rainfall	Comment					Peak wat	er level aft	er >50mm/	day rainfal	l (mAHD)				
rear	Date	Kaintaii	Comment	MW1	MW2	*MW3	*MW4	MW5	MW6	MW7	MW8	MW9	MW10	MW11	MW12	MW13
	6 January	68.0	to 7 January 2016)	207.4				192.6	185.4							
	5 June	69.0	147.4 mm over 3 days (4	207.1				193.1	185.7							
	6 June	68.0	to 6 June 2016)	207.0				193.0	185.8							
	18 March	54.8	149.4 mm over 6 days (14 to 19 March 2017)	206.9				192.6	185.0	184.6	192.8	188.8	185.3	183.9	194.7	199.2
2017	31 March	55.0		206.9				192.6	185.0	184.6	192.8	188.8	185.3	183.9	194.7	199.2
	8 June	36.0*	*111.4 mm over 5 days (7 to 11 June 2017)	207.0				192.6	185.3	184.4	192.8	188.5	185.7	184.3	194.9	199.4
2018	26 February	66.0		205.7					183.4	183.7	192.5	187.2	184.3	180.4	194.4	198.9
	· · · · ·															
Averag	Average peak water level after >50mm/day rainfall event			206.9	203.1	182.4	188.2	192.6	184.8	184.3	192.7	188.3	185.2	183.1	194.7	199.2

4 GROUNDWATER MONITORING

4.1 Monitoring Bore Network

The monitoring bore network comprises nine (9) currently active monitoring bores (MW1 and MW6 to MW13). Six are screened to monitor the Maroota Sands aquifer system, and three the Hawkesbury Sandstone. These are supplemented by two Dol-Water bores completed in the Hawkesbury Sandstone (GW75003 and GW75004).

Three previous monitoring bores are no longer available, MW3 and MW4 having been lost to quarry expansion and MW2 having become blocked by an obstruction above the water level in the bore.

MW5 has also been found to be obstructed, some 9m above its original constructed depth but still below the water level in the bore. Hence, it can still be monitored, however as the nature and cause of the obstruction are unknown, and there is less than 1m of water depth above the obstruction, MW5 has been removed from the monitoring network. Comparison of water levels between MW5 and MW8 (**Figure 27**), both of which are screened in the basal part of the Maroota Sands, shows that these two bores have similar absolute water levels and almost identical trends. Hence, MW8 is considered a suitable replacement for MW5.

The bores installed in December 2016 were designed to provide a broader coverage of the site, and to provide better monitoring of each of the main hydrogeological units, Hawkesbury Sandstone and Maroota Sands (including perched zones).

At three sites, there is now a cluster of bores monitoring at different depths, viz:

- MW1 (perched Maroota Sands) and MW7 (Hawkesbury Sandstone);
- MW5 (Maroota Sands partially penetrating), and MW8 (Maroota Sands fully penetrating); supplemented by two of DoI-Water's bores GW075003 and GW075004 (both in Hawkesbury Sandstone); and
- MW13 (Maroota Sands) and MW9 (Hawkesbury Sandstone).

Locations of these bore clusters are shown on Figure 2.

Table 7 lists the main construction and completion details of all monitoring bores that have been installed over the life of the project.

Table 7 also includes details of two water supply production bores, one of which (PB1) has been used to supply process water to the quarrying operations. The other (PB2) is used for water supply at the nursery located at the north-western corner of the property, and does not form part of the quarry operations. The two production bores are significantly deeper than the base of the quarry, and draw water from the underlying Hawkesbury Sandstone rather than the Maroota Sands aquifer.

Also listed in **Table 7** are details of the two Dol-Water monitoring bores GW75003 and GW75004, which are located within the property close to MW5 and MW8 near the south-western property boundary.

Borehole Logs for bores MW1 to MW13 and PB1 and PB2 are included in **Appendix A**. Logs for the two Dol-Water bores are presented in **Appendix B**.

 Table 7:
 Monitoring Bores – Completion Details

Bore	Date Drilled	Registered	Locatio	n (MGA)	Ground Level	Stick- up	Bore Depth	Base of Bore	Screer	n Interval	Formation	Salinity TDS		Level I 2018)	Current
		Bore No	Easting	Northing	mAHD	m	m	mAHD	mBGL	(mAHD)	Screened	mg/L	m BGL	mAHD	Status
MW1	22 Oct 1998	GW101674	313743	6295740	213.43	0.70	11.9	201.43	4.9-10.9	202.5-208.5	Maroota Sands (perched)	186	7.76	205.66	Active
MW5	Apr 2013	GW114208	313893	6295283	227.00	0.80	44.0 (now 35.2)	183.00 (now 191.8)	32.0-44.0	183-195	Maroota Sands (perched)		*34.31	*192.69	No longer monitored
MW6	23 Jan 2015		314200	6295366	202.47	0.72	29.0	173.47	24-29	173.5-178.5	Maroota Sands		19.29	183.18	Active
MW7	9 Dec 2016		313761	6295741	212.96	0.48	37 (sealed below 36)	176.96	30-36	177-183	Hawkesbury Sandstone		29.22	183.74	Active
MW8	6 Dec 2016		313889	6295287	227.00	0.42	49 (sealed below 40)	187.00	37-40	187-190	Maroota Sands		34.52	192.49	Active
MW9	19 Dec 2016		313916	6295356	225.58	0.53	50.5	175.08	44.5-50.5	175-181	Hawkesbury Sandstone		38.55	187.03	Active
MW10	14 Dec 2016		314122	6295187	217.12	0.48	49 (sealed below 47)	170.12	44-47	170-173	Maroota Sands		33.04	184.08	Active
MW11	21 Dec 2016		314176	6295789	192.35	0.71	29 (sealed below 28.5)	163.85	24-28.5	164-168.5	Maroota Sands		11.98	180.37	Active
MW12	8 Dec 2016		313902	6295584	210.28	0.47	27 (sealed below 26)	184.28	23-26	184-187	Hawkesbury Sandstone		16.03	194.25	Active
MW13	7 Dec 2016		313916	6295358	225.50	0.46	31 (sealed below 30.5)	195.00	27.5-30.5	195-198	Maroota Sands		26.58	198.92	Active
PB1	6 Jul 1999	GW105835	314116	6295574	~193.5	0.70	126.1	~67.4	Open hole below 28.8	<164.7	Hawkesbury Sandstone		*14.1	*~179.4	Pumping for water supply

Bore	Date Drilled	Registered Bore No	Locatio	n (MGA)	Ground Level	Stick- up	Bore Depth	Base of Bore	Screer	n Interval	Formation Screened	Salinity TDS	Water Level (5 April 2018)		Current Status	
		BOIE NO	Easting	Northing	mAHD	m	m	mAHD	mBGL	(mAHD)	Screened	mg/L	m BGL	mAHD	Status	
PB2	19 Feb 1999	GW102451	313735	6295514	~212.5	0.30	156.5	~56.0	Open to sandstone below 53	<202.1	Hawkesbury Sandstone		*42.8	*~174.0	Pumping for water supply	
	1 Jul 1997	GW075003	313868	6295299	225.48	0.88	109.0	116.48	72-75	150.5-153.5	Hawkesbury Sandstone	90 µS/cm	*46.1	*178.5	Dol-Water monitor bore	
	7 Jul 1997	GW075004	313885	6295286	226.95	0.87	60.0	166.95	54-57	170-173	Hawkesbury Sandstone	150 μS/cm	40.11	185.94	Dol-Water monitor bore	
Former	monitoring bo	ores – no lor	nger availa	able												
MW2	20 Oct 1998	GW101675	313896	6295281	226.89	0.80	26.5 (now 20.75)	200.39 (now 206.1)	18.6-24.6	202.3-208.3	Maroota Sands (perched)		*23.75	*203.1	Obstructed at 20.75m. Dry.	
MW3	21 Oct 1998	GW101676	**9802.78	**5916.37	202.43	0.90	21.9	180.53	14.9-20.9	181.5-187.5	Maroota Sands (perched)	266	*18.95	*183.5	Mined out	
MW4	Dec 2009	GW114209	314121	6295389	~211.5	0.85	28.5	~183	19.5-28.5	~183-192	Maroota Sands		*24.1	*187.9	Mined out	

* Most recent available water levels – MW2 (2000); MW3 (2009); MW4 (2013); MW5 (2017); PB1 (1999); PB2 (2002); GW075003 (2015).

** ISG coordinates.

Italics Survey information approximate.

4.2 Historical Monitoring Program

The monitoring program undertaken to date has included:

- Water levels measured in monitoring bores both manually and using dataloggers (1998 to present);
- Water sampling from bores to enable basic water quality parameters to be measured on a regular basis (from 1998 until 2013). Routine six-monthly water sampling from all bores resumed in January 2017;
- Intermittent measurements of water levels and water quality from water in the main ponds.

The locations of all monitoring bores and other bores on the site are shown on Figure 2.

4.3 Availability of Monitoring Bores

The groundwater monitoring data cover the period 1998 to 2018. Availability of bores through this period of time is detailed in **Table 8**.

Year	MW1	MW2	MW3	MW4	MW5	MW6	MW7	MW8	MW9	MW10	MW11	MW12	MW13	PB1	PB2
1998															
1999															
2000															
2001															
2002															
2003															
2004															
2005															
2006															
2007															
2008															
2009															
2010															
2011															
2012															
2013															
2014															
2015															
2016															
2017															
2018															

Table 8: Historical Availability of Monitoring Bores – 1998 to 2018

Since 2013, only bores MW1, MW5 and MW6 have remained operational. MW2 is blocked by an obstruction above the water level, and bores MW3 and MW4 have been mined out by the quarry expansion. MW5 has been found to be obstructed about 9m above its original constructed depth, but just below the water level in the bore. MW5 has been removed from the monitoring network, as its function has now been duplicated by the newly constructed MW8.

All the available groundwater levels are presented as hydrographs on **Figures 20** and **22** to **33**. Data from old bores have been reproduced from past reports prepared by URS (formerly known as Woodward-Clyde, and now part of the Aecom Group).

The water level data includes both manual and datalogger records. Water levels are recorded manually approximately monthly. Automatic dataloggers have been installed in most bores from time to time, and set to record water level once daily, and at the end of 2016 were installed in MW1 and MW5. Dataloggers have now been installed in all monitored bores as well as on the Process Water Dam 1, Tailings Dam 2, Nursery Dam 3 and Farm Dam 4. The dataloggers have all been set to record water level at hourly intervals, so that both longer term fluctuations and diurnal fluctuations (if any) can be detected, as well as any relationship between the fluctuating water levels in the Process Dam and Tailings Dam, and the nearby monitoring bores.

4.4 Ongoing Monitoring Requirements

The Mod 2 Consent included the requirement to prepare a Groundwater Monitoring Program in consultation with Dol-Water, to be submitted for approval by the Secretary. A draft Groundwater Monitoring Program was submitted in August 2016. Following receipt of Agency comments, a revised Groundwater Monitoring Program was submitted in September 2017. Further minor alterations to this plan are currently in preparation.

Under the Consent Approval, sand extraction within the approved quarry will include predominantly Maroota Sands, but also friable sandstone from the Hawkesbury Sandstone. Accordingly, the Consent Conditions are interpreted to require the monitoring network to include both the Maroota Sands and the underlying Hawkesbury Sandstone.

The Consent requires that extraction not take place below a level 2 metres above the wet weather high groundwater level⁴ of the regional aquifer, as measured and mapped on the site. The Consent further requires that the wet weather high groundwater level be updated periodically and reported 6-monthly to DP&E (formerly DoPI) and DOI (formerly DoI-Water).

Contours of the wet weather high groundwater level, updated in April 2018, are depicted for the Maroota Sands and the Hawkesbury Sandstone on **Figures 19** and **21** respectively.

4.5 Monitoring Program

The monitoring program is described in detail in the document Groundwater Monitoring Program (Dundon Consulting, 2017), and is summarised in **Table 9.**

Impact Assessment Criteria are detailed in Table 10.

⁴ The Development Consent defines the 'Wet weather high groundwater level' as 'The rolling average of all recorded groundwater level measurements at any monitoring location on the site, as first recorded following any rainfall event of at least 50 mm over any 24-hour period, and as contour mapped using this data'.

Monitoring Bores and Ponds	Purpose	Continuous	Weekly	Three- Monthly	Six-monthly	Annually
MW1, MW6, MW7, MW8, MW9, MW10,	Ensure base level of quarry does not exceed 2m above regional wet weather high groundwater levels	Automatic piezometers with datalogger		Manual water level to confirm and calibrate datalogger		
MW11, MW12 and MW13. Process area pond (Dam 1), toilings dom	Ensure water quality of MTSGS and SBCGS are not adversely impacted				Field measure- ments of EC, TDS, pH	Lab analysis of oil and grease
tailings dam (Dam 2); nursery dam (Dam 3) and farm dam (Dam 4).	Ensure no seepage inflows (other than perched groundwater)	Daily observation to detect any seepage	If observed, sample for water quality. If measure- able, monitor volume of seepage inflows			
Bores MW9, MW12 and MW13, and future Stage bores as detailed in Consent.	Establish baseline levels of regional water table in future quarry stages	Automatic piezometer with datalogger		Manual water level to confirm and calibrate datalogger		

Table 9:	Monitoring Regime
Table 9.	womoning regime

Table 10: Impact Assessment Criteria

Potential Impact	Impact Observed	Criteria for Response Action	Response Action
Groundwater inflows to quarry	Observed seepage from the quarry walls or floor	Any observed seepage.	Investigate source to confirm or eliminate perched groundwater, or seepage from site dams.
Groundwater levels	Cumulative change in regional groundwater levels greater than the natural pre-quarrying climatic variation	Cumulative change in groundwater levels more than 10% greater than pre-quarrying natural climatic variation.	Investigate to confirm the quarry as the cause of impact. Develop a mitigation strategy and consult with DOI-Water for approval.
Groundwater quality	Change in water quality	Observed water quality that changes the beneficial use value of a water sample, exhibited by a salinity more than 20% above the long-term maximum salinity value, or pH more than 10% above or below the historical range, in two consecutive monitoring events.	Investigate to confirm the quarry as the cause of impact. Develop a mitigation strategy and consult with DOI-Water for approval.
Other groundwater users	Reported decrease in yield or groundwater level, or water quality	Reported loss of more than 10% of pre-quarrying yield; observed water quality parameter	Investigate to confirm the quarry as the cause of impact. Develop a mitigation strategy and consult with DOI-Water for approval.

5 FUTURE SAND EXTRACTION AND POST-CLOSURE REHABILITATION

The staged extraction plan as presented in the EA is shown on **Figure 34**. As at April 2018, extraction is occurring mostly in the Phase 1A, 1B and 2A areas. Future sand extraction will progress through Phases 2B; 3A and 3B; 4A, 4B and 4C; 5A and 5B; and finally 6A and 6B.

The final depth of extraction will be as dictated by the maximum depth of extraction allowed by the Consent, which is not less than 2m above the Wet Weather High Groundwater Levels (WWHGWLs) for the Maroota Sands and the Hawkesbury Sandstone. The quarry floor will comprise Maroota Sands in the north-eastern part, and Hawkesbury Sandstone in the south-western part. For consistency, the same extraction depth has been applied to both the Hawkesbury Sandstone and the Maroota Sands, although a deeper extraction of the Hawkesbury Sandstone would be permitted under the consent, due to the deeper WWHGWL for the Hawkesbury Sandstone relative to the Maroota Sands.

The currently proposed contours of final depth of extraction are shown in **Figure 35**, and range between 187 and 188mAHD. The final extraction depth may ultimately be higher in parts of the quarry, if substantial areas of clayey Maroota Sands, or other material which may be uneconomic, are revealed during future excavation.

The conceptual post-extraction rehabilitation plan has been prepared in draft form by VGT (2018). In summary,

- the existing nursery infrastructure in the north-western corner of the site will be retained;
- the Process Dam will be maintained as a permanent water storage;
- the landform will slope gently away from the tree screens along Old Northern Road towards the dam in the north-eastern corner of the site; and
- the final extracted land surface will be revegetated with locally-occurring native species.

The rehabilitated landform will overall have essentially the same shape as the final extraction landform depicted in **Figure 35**.

The water quality monitoring to date suggests that the quarry operations will continue to be benign with respect to the groundwater quality, both through to the remaining quarry life and also post-rehabilitation.

Post-rehabilitation, the groundwater in both the Maroota Sands and the Hawkesbury Sandstone are predicted to be unaffected by either the quarry operations or the final landform. There may be a very small downward component of leakage from the water storage occupying the remnant Process Dam that may cause a slight mounding effect on the Maroota Sands water table. However, as the fines backfilling the deepest parts of the Process Dam are apparently of such low permeability as to be effectively preventing any significant leakage from the current Process Dam, it is anticipated that any leakage from the final dam will be very low, and less than the potential losses from the existing Nursery Dam 3 and Farm Dam 4.

6 GROUNDWATER MANAGEMENT IMPROVEMENT PROGRAM

It is anticipated that the expanded monitoring network may provide opportunities over time for groundwater improvement measures.

However, at the present time, there are no obvious groundwater improvement measures.

Possible future actions may include:

- Backfilling with clays any excavation found to be below the wet weather high groundwater levels of either the Maroota Sands or the Hawkesbury Sandstone as appropriate. At the present time, all areas of the quarry that were previously excavated below this level have been backfilled with tailings, which are believed to be effectively impermeable.
- Containment of all quarry affected water within the quarry water management system.
- Post-quarry rehabilitation measures (yet to be determined).

7 SUMMARY AND CONCLUSIONS

The groundwater study has included a review of all previous investigations and monitoring records extending back to 1998, as well as a program of work undertaken in December 2016 and January 2017, and monitoring data collected since that time. The recent program included the installation of seven new monitoring bores.

The available reports from the nearby sand quarrying operations of Dixon Sands and PF Formation (both located to the west of the Roberts Road quarry site, have also been evaluated for relevance to the Roberts Road quarry operations. These reports are those that are on the public record, and were able to be downloaded from the respective companies' websites.

Groundwater is present in both the Maroota Sands and the underlying/adjacent Hawkesbury Sandstone. The Maroota Sands is a paleochannel deposit present within a paleovalley incised into the Hawkesbury Sandstone surface in the Tertiary time.

There are numerous occurrences of perched groundwater in both the Maroota Sands and the Hawkesbury Sandstone. The perched groundwater in the Maroota Sands is in some instances perched above the upper surface of the Hawkesbury Sandstone where it shallows (on the flanks of the paleovalley) and rises above the regional groundwater level of the Maroota Sands. However, there is also perched groundwater present in the Maroota Sands at zones well above the Hawkesbury Sandstone, which is believed to be perched above less permeable parts of the Maroota Sands. Some of the perched groundwater may also be artificially elevated by seepage from one or more of the site dams, all of which have water levels that are higher than the nearby groundwater levels.

There is also evidence of perching within the Hawkesbury Sandstone, possibly due to the presence of less permeable shale or clayey interbeds within the sandstone sequence.

Accordingly, there is only limited presence of the regionally extensive Maroota Sands groundwater table within the central portion of the site, within the deeper parts of the paleovalley. This regional water table is observed in monitoring bores MW6, MW10 and MW11, and was previously monitored in former bores MW3 and MW4. The regional water table level as measured in August 2017 was approximately in the range 184 mAHD to 186 mAHD. Across the western third or so of the site, and east of the main Process Dam, the top of the Hawkesbury Sandstone lies above this elevation, and any groundwater present in the Maroota Sands in that part of the site is believed to be perched. Hawkesbury Sandstone outcrops along the eastern side of the process dam.

The Hawkesbury Sandstone regional water table (more correctly the potentiometric surface) is observed in only three bores, PB1, PB2 and GW75003, and is at approximately 175 mAHD to 180 mAHD, with an apparent gradient to the northwest. However, the water levels in all three bores are old measurements, from 2015 in the case of GW75003 and from 2003 or earlier in the case of PB1 and PB2.

Other reported groundwater levels from the Hawkesbury Sandstone are believed to be from perched aquifer zones within the sandstone.

Groundwater in both the Maroota Sands and the Hawkesbury Sandstone is of low salinity. The Maroota Sands groundwater is acidic, with pH generally in the range 3 to 6, while the Hawkesbury Sandstone pH is closer to neutral, in the range 6 to 7.

There is evidence for seepage from at least one of the site dams. All dam water levels are higher than the nearby groundwater, and seepage from the dams may account for some of the observed perched groundwater within the site.

All of the new monitoring bores have been equipped with dataloggers, as well as the four site dams, and they have been set to record at hourly interval. The currently installed monitoring network is

comprehensive and is considered adequate for ongoing monitoring for both climatic (rainfall recharge) effects and to detect any possible influences from the quarrying operations.

8 REFERENCES

ANZECC, 2000. *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.* By Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resources Management Council of Australia and New Zealand (ARMCANZ), dated October 2000.

Australian Groundwater Technologies (AGT), 2015. *Hodgson Quarry Groundwater Assessment, Roberts Road, Maroota.* Report prepared 9 April 2015.

Bureau of Meteorology. Daily rainfall data from Stations 67014 (Maroota – Old Telegraph Road); 061119 (Wiseman's Ferry – Old PO); 067086 (Dural – Old Northern Rd).

Dundon Consulting Pty Ltd, 2018. *Groundwater Monitoring Program.* Draft report prepared August 2016, and updated October 2017 and April 2018.

Dundon Consulting Pty Ltd, 2018. *Groundwater Management Plan.* Draft report prepared September 2017, and updated April 2018.

Minister of Planning and Environment, 2016. *Development Consent DA 267-11-99, Modification.* Dated 18 March 2016.

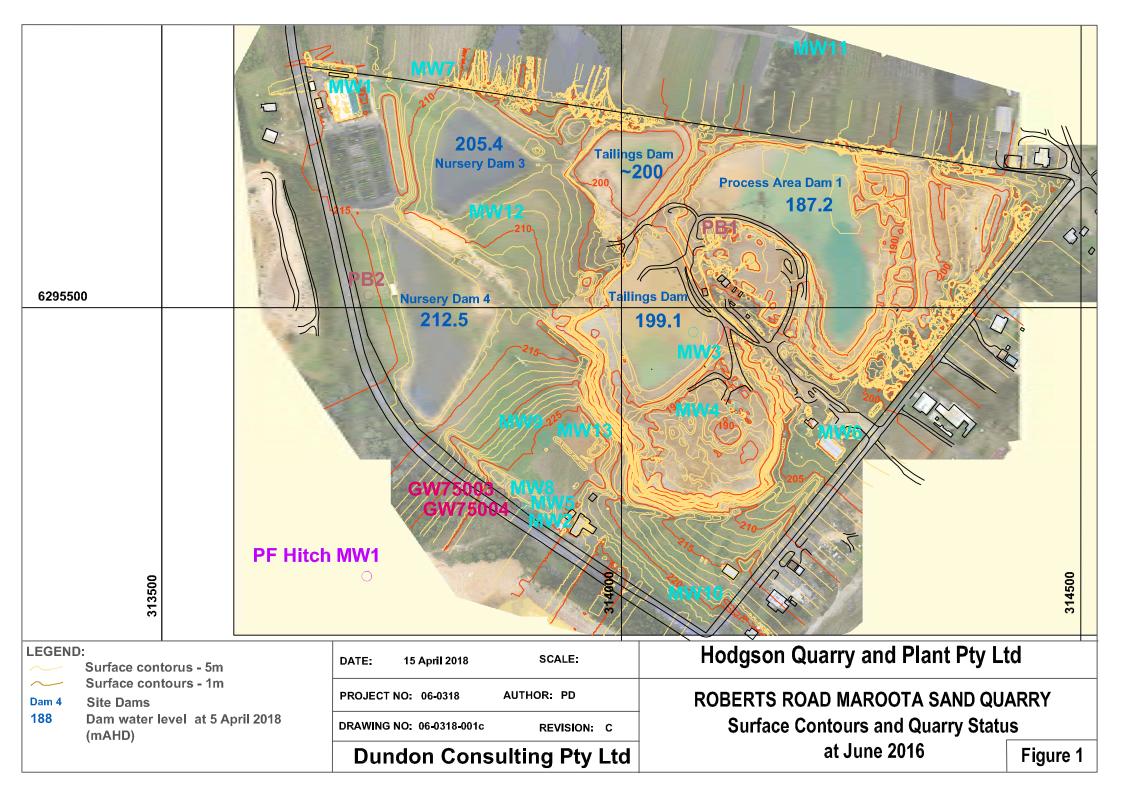
URS, 2004. January 2004 Data Loggers Downloading. Letter report dated 10 February 2004.

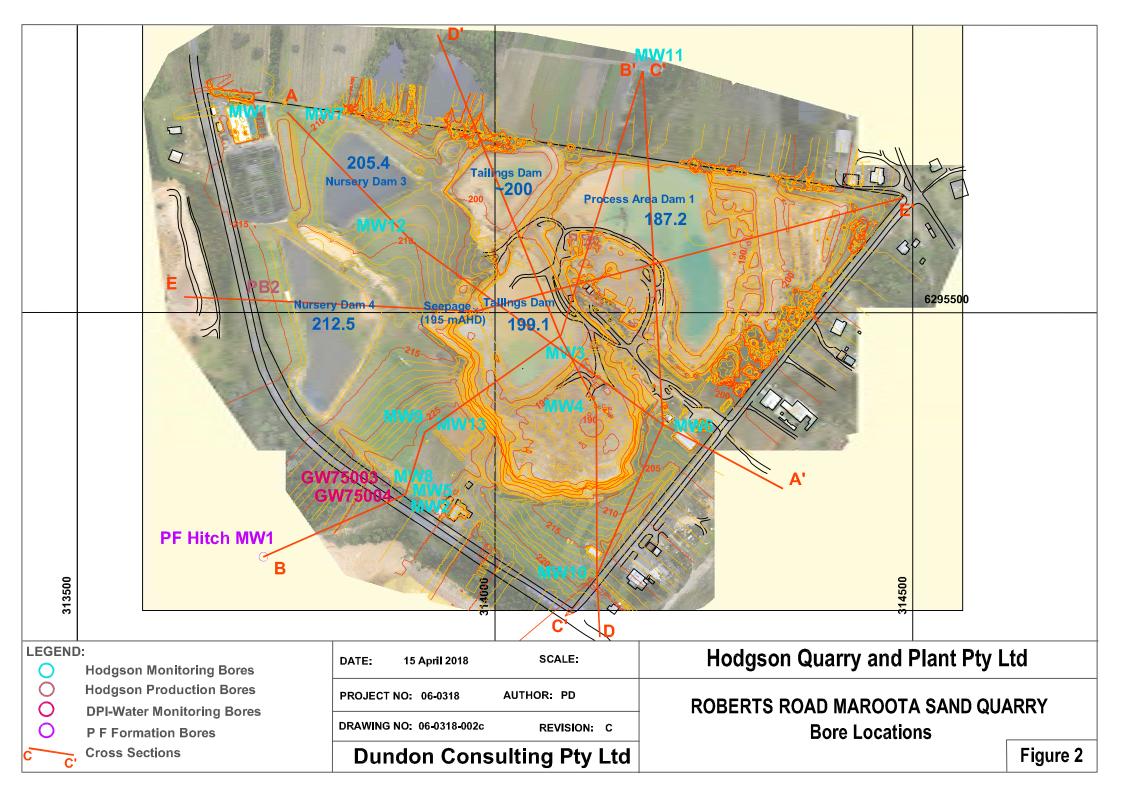
URS, 2005. June 2005 Data Loggers Downloading. Letter report dated 11 July 2005.

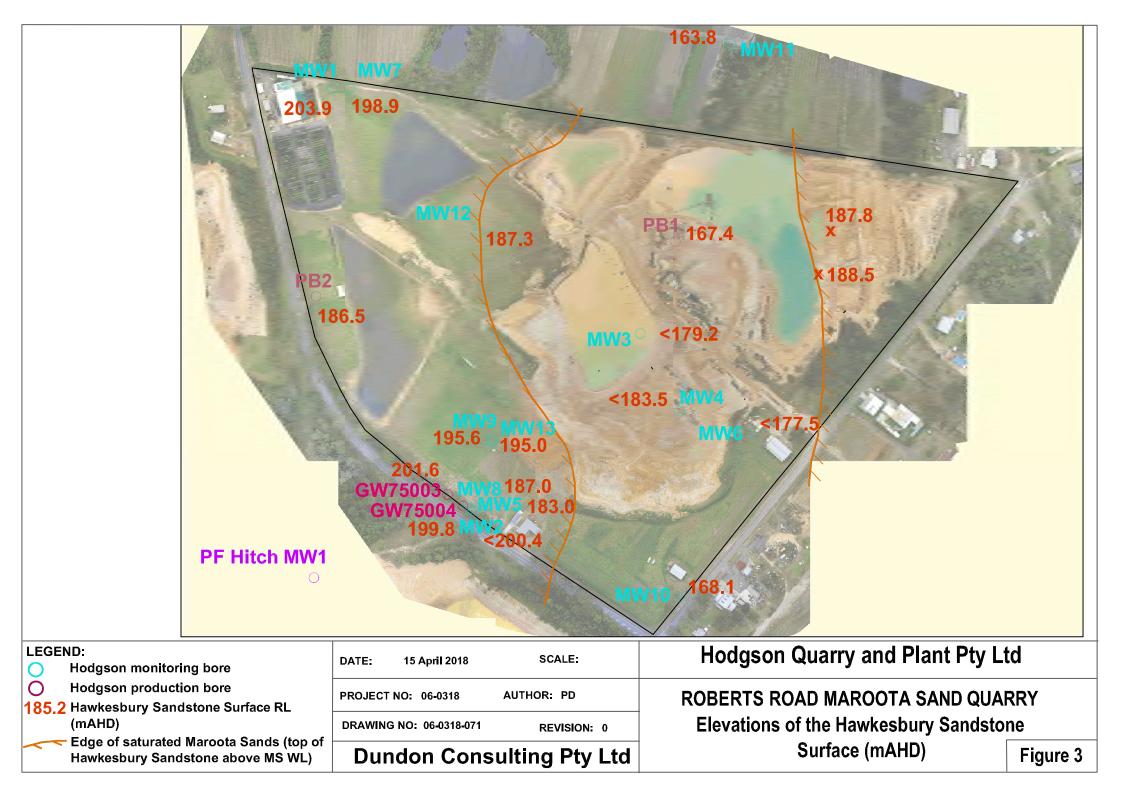
URS, 2006. *July 2006 Semester Data Loggers Downloading*. Letter report dated 10 February 2006.

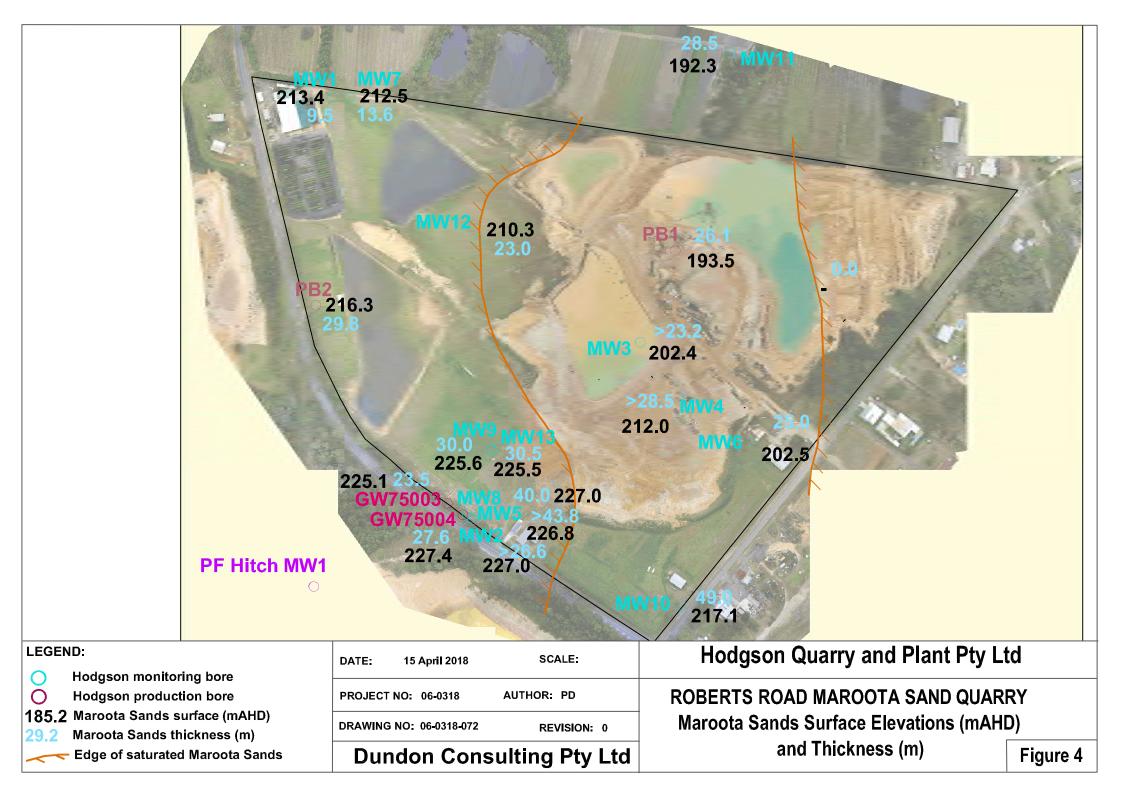
URS, 2007. June 2007 Data Loggers Downloading. Letter report dated 16 July 2007.

URS, 2008. June 2008 Data Loggers Downloading. Letter report dated 17 July 2008.

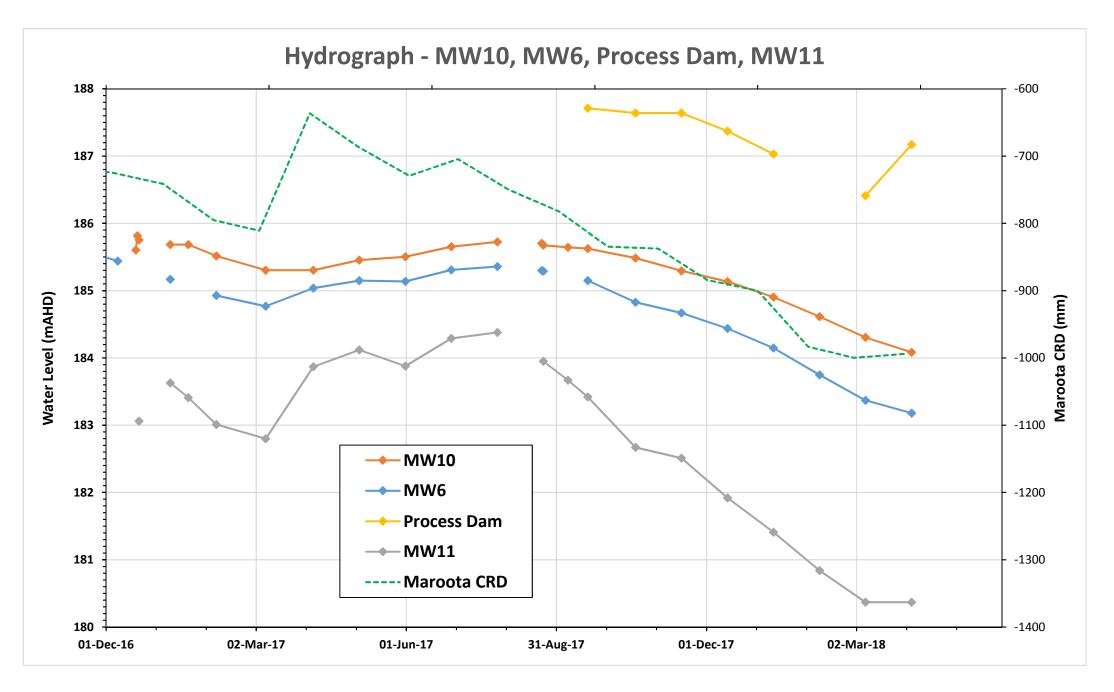
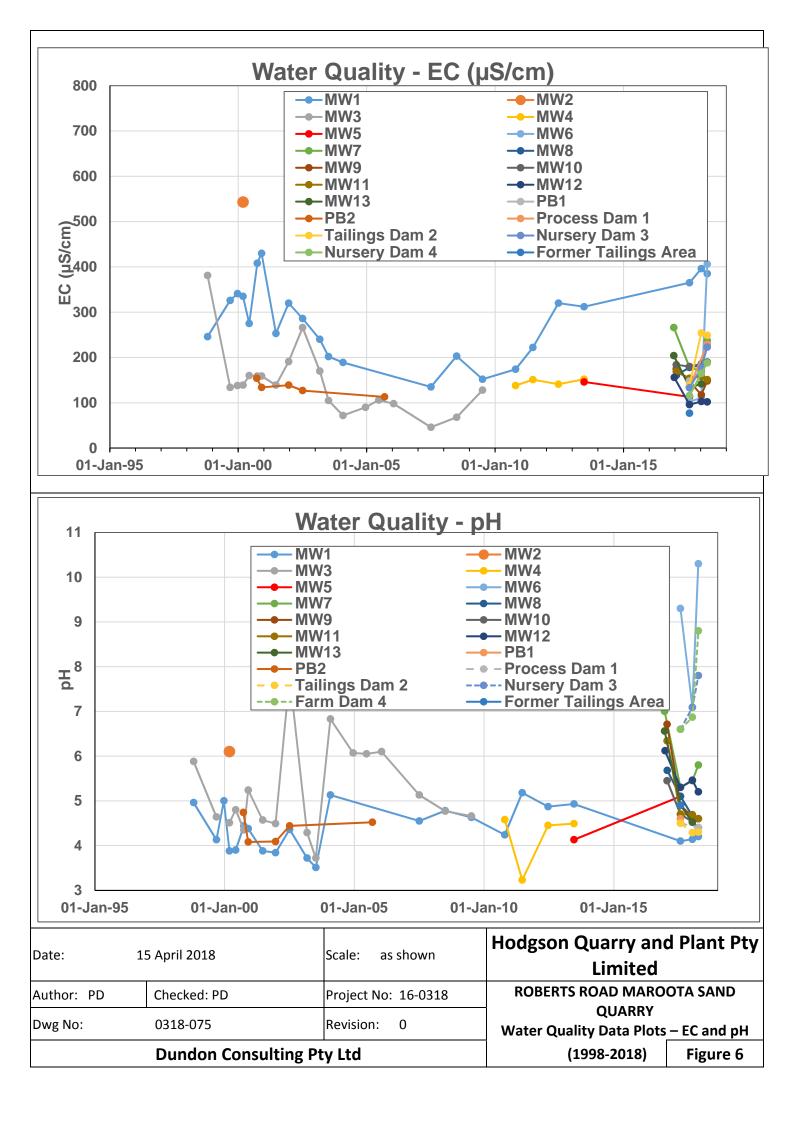
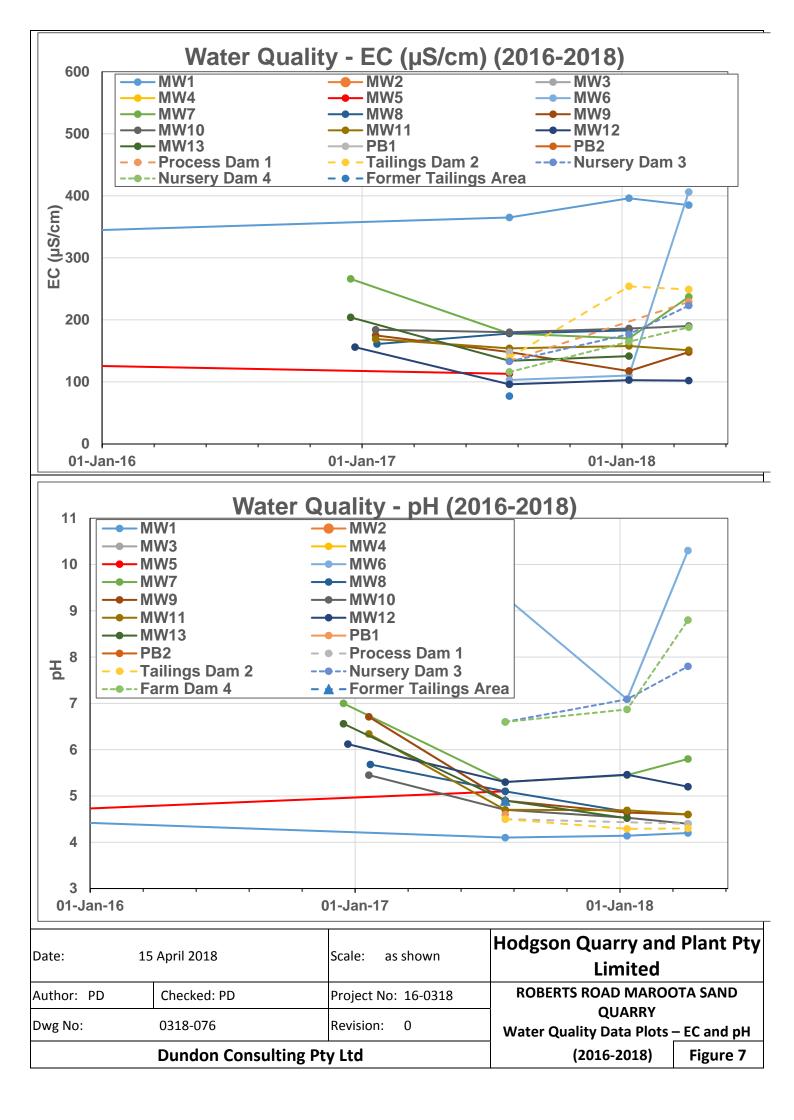
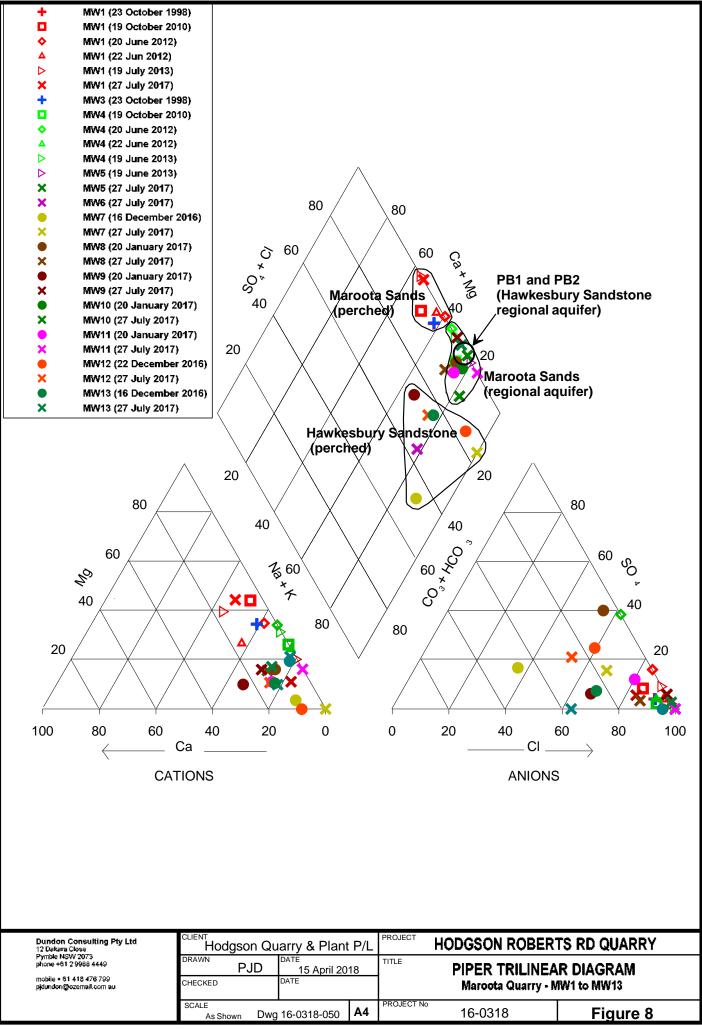

URS, 2010. October 2010 Groundwater Management Plan. Letter report dated 28 October 2010.

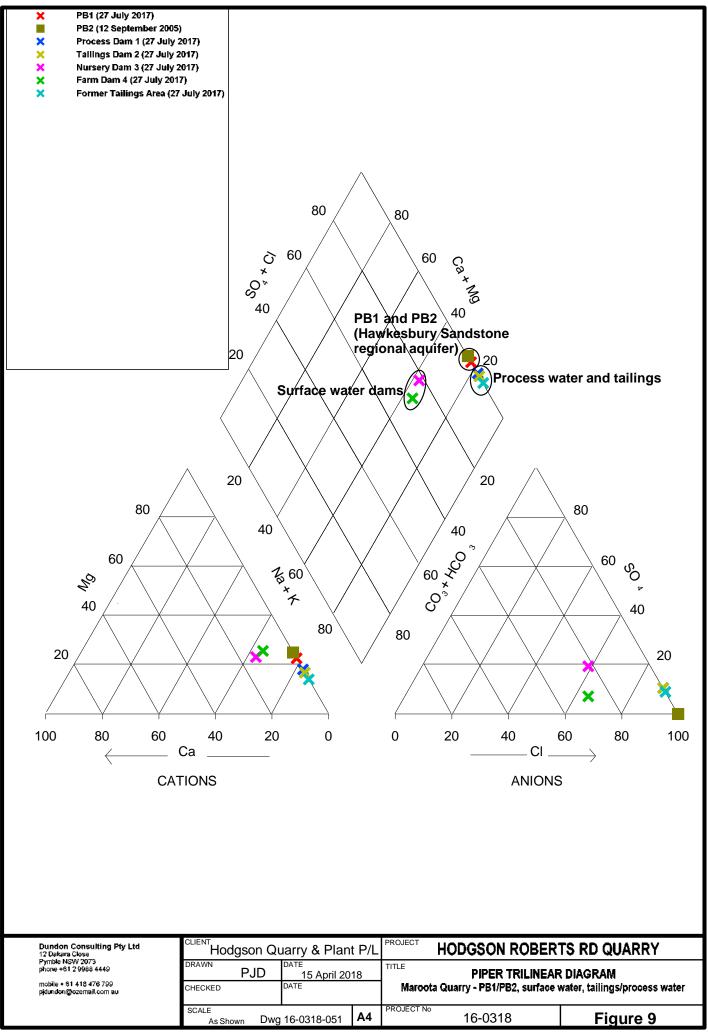

URS, 2012. *Roberts Road 2012 Groundwater Management Plan.* Letter report dated 25 June 2012.

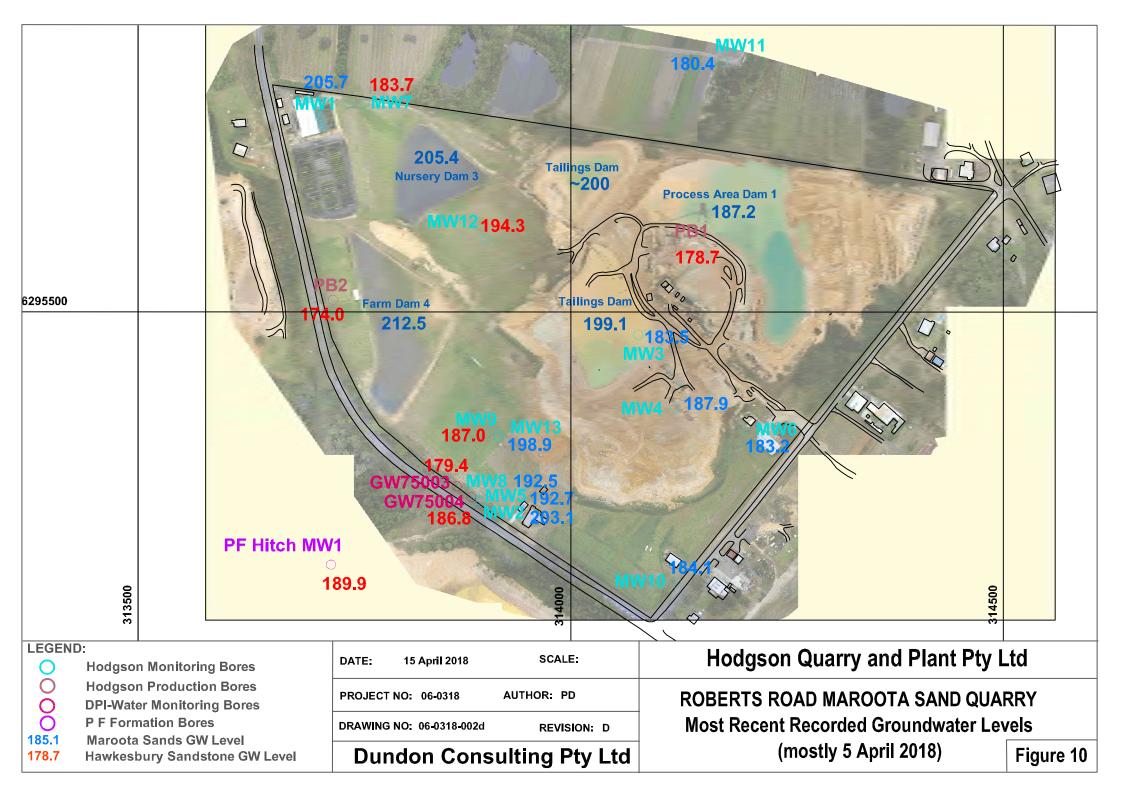

URS, 2013. *Report - Roberts Road, Maroota, NSW – 2013 Groundwater Management Plan.* Report dated 16 July 2013.

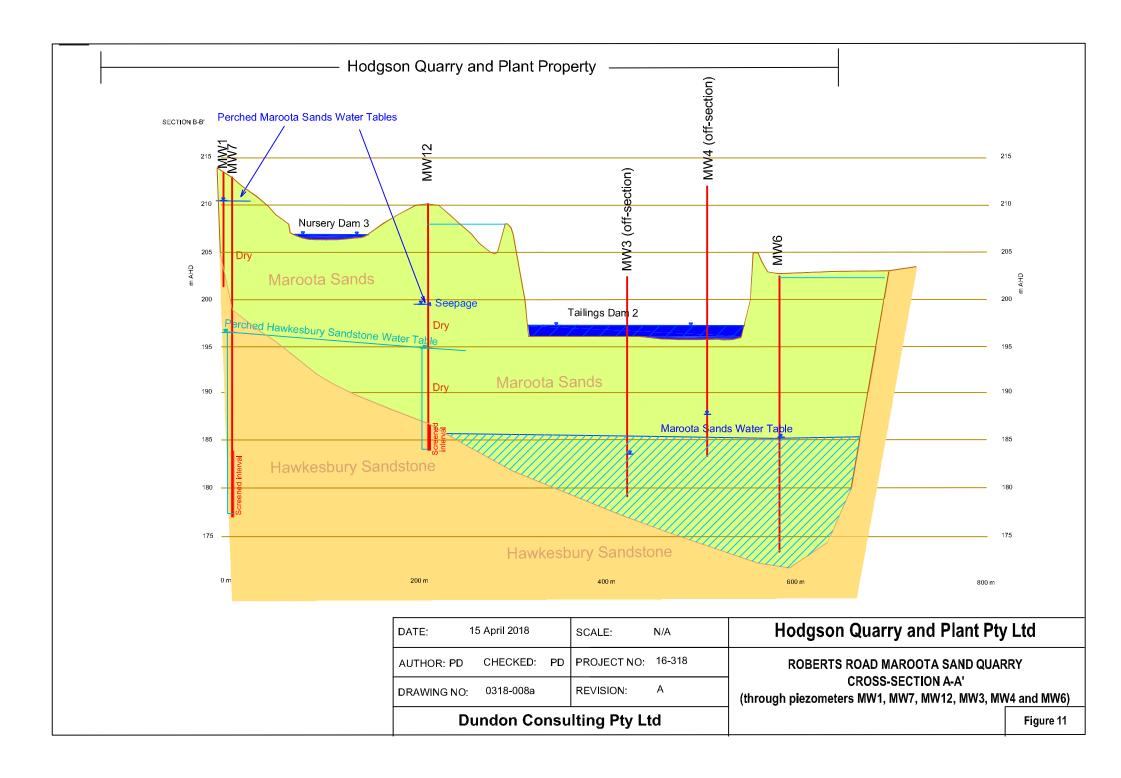

VGT, 2017. Surface Water Management Plan, Maroota Quarry, via Maroota. Report dated May 2016, updated October 2017.

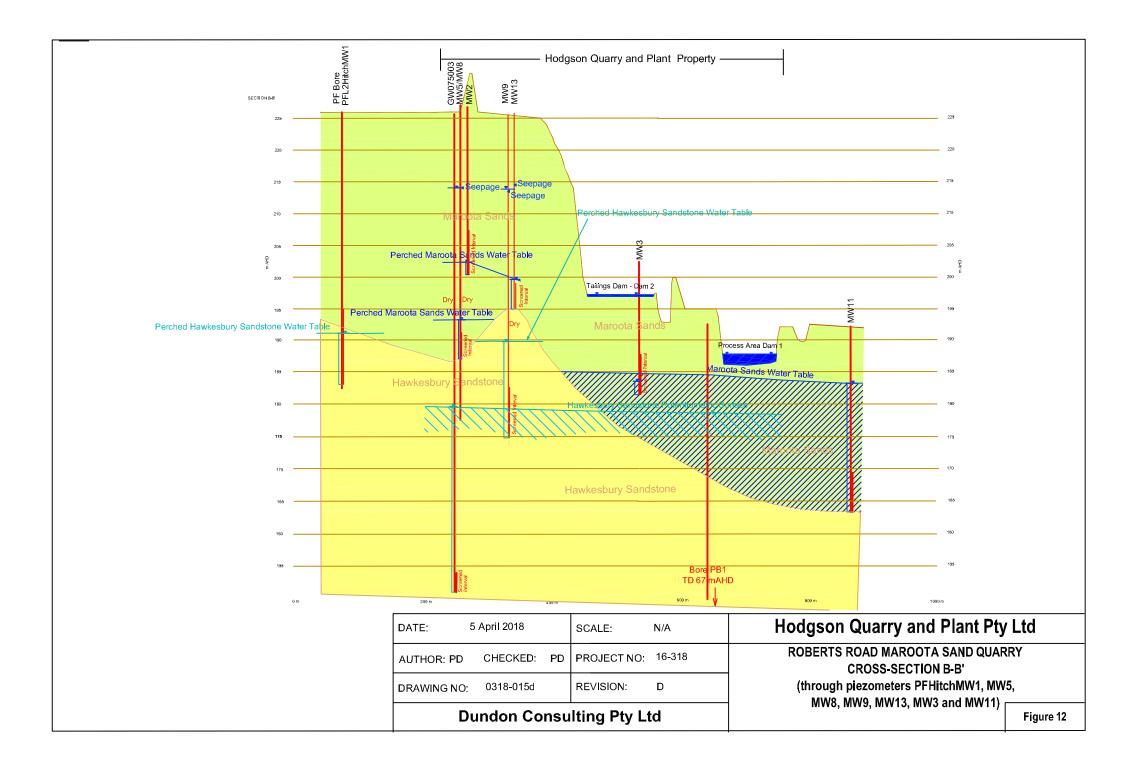
Woodward-Clyde, 1999. Lots 1 and 2 DP228308, Lot 2 DP312327, Maroota, Development Application, Groundwater Impact Assessment. Report dated 4 June 1999.

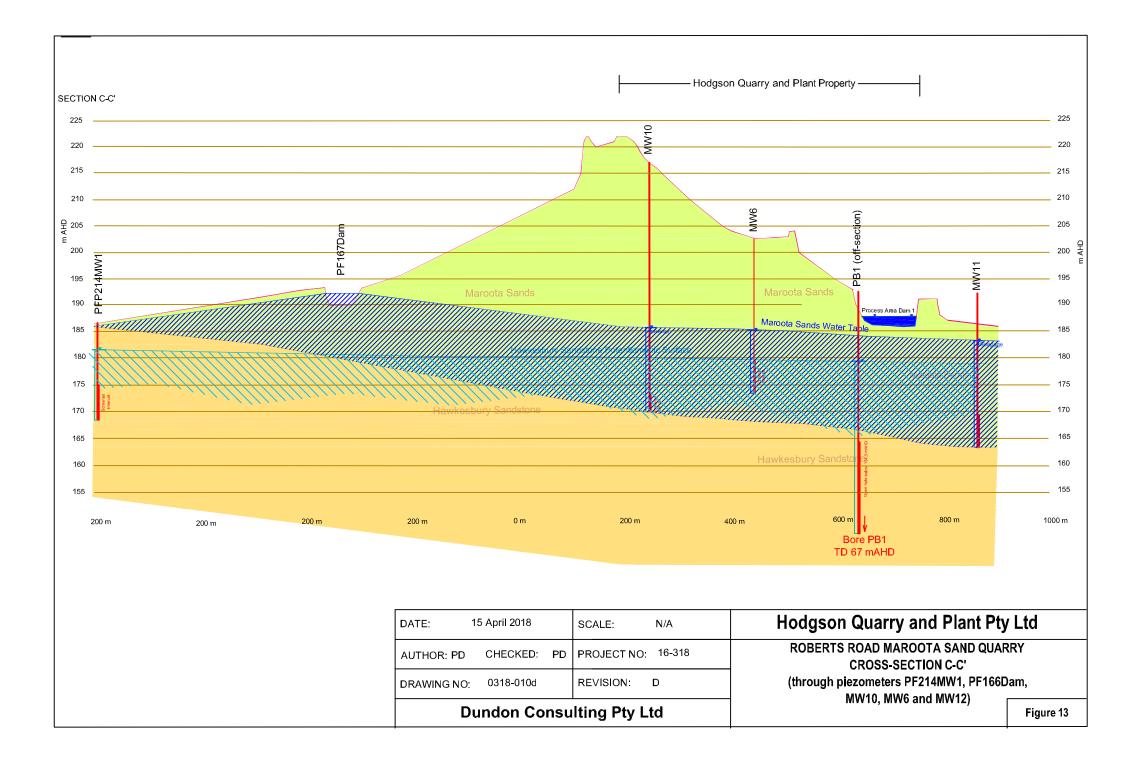





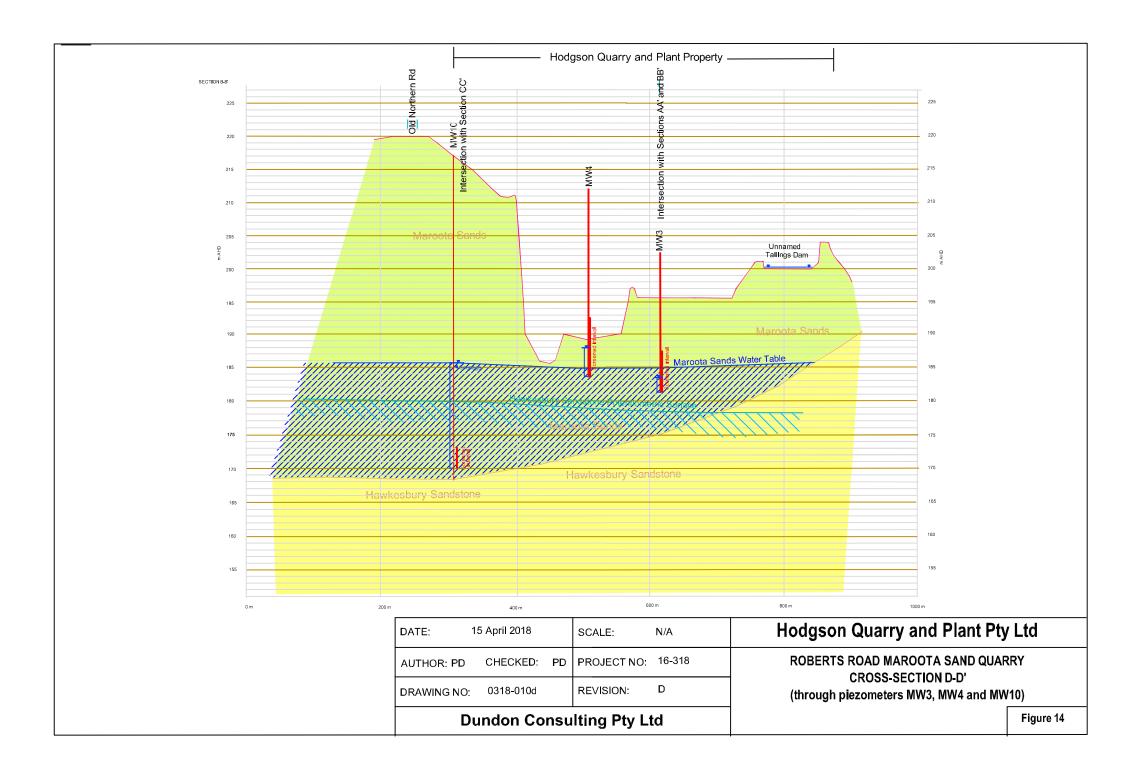

Figure 5: Composite Hydrograph - MW10, MW6, Process Dam and MW11

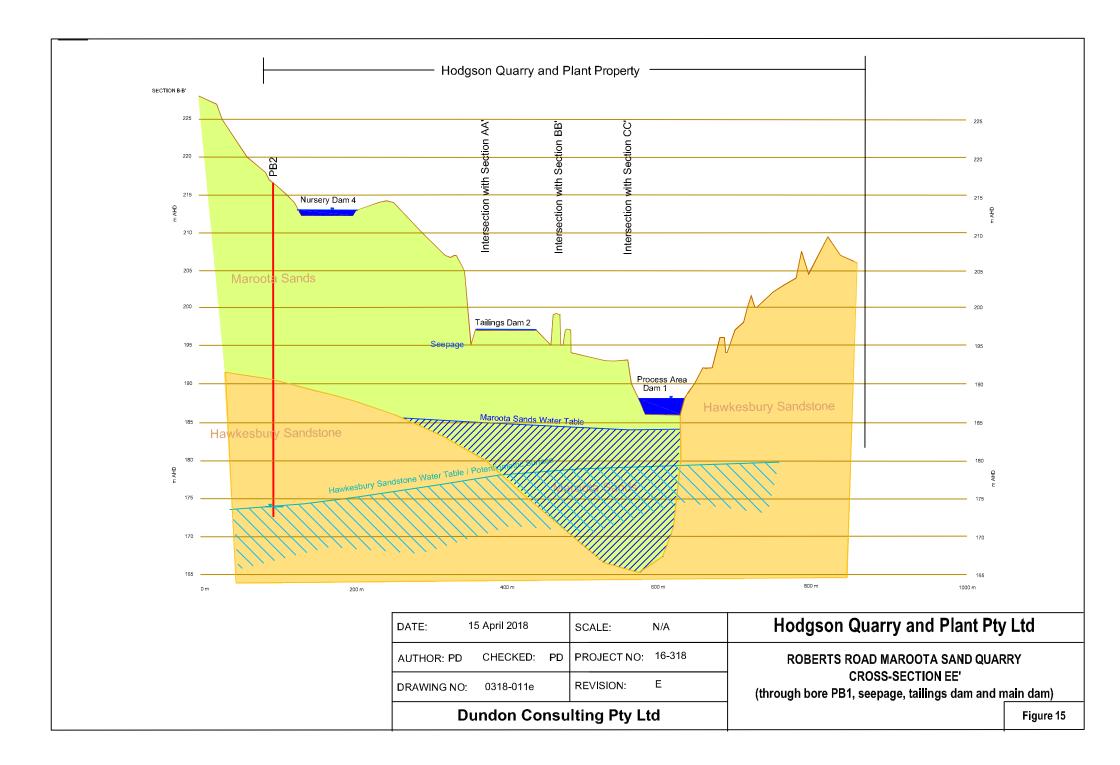


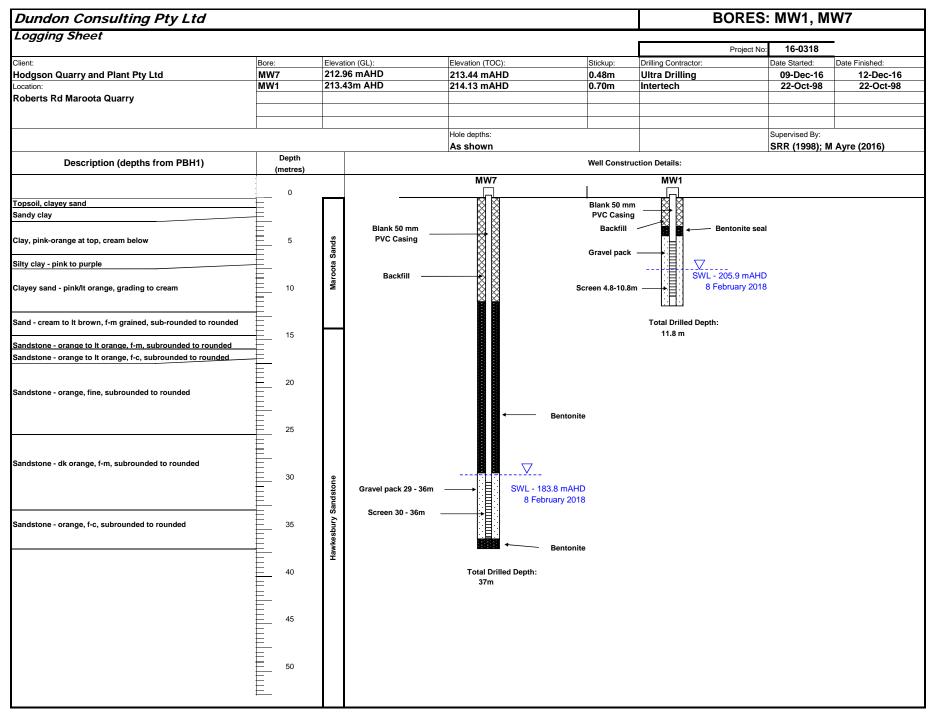


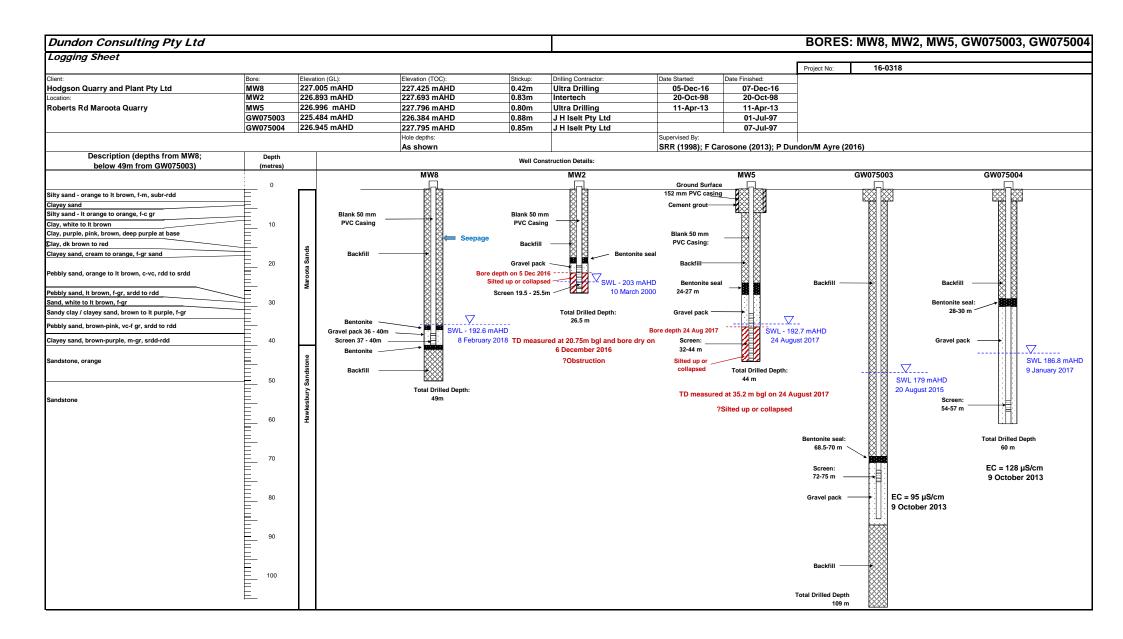

c:\...\16-0318\MW1-MW13\piper.grt




c:\...\16-0318\PBs-surface-process\piper.grt







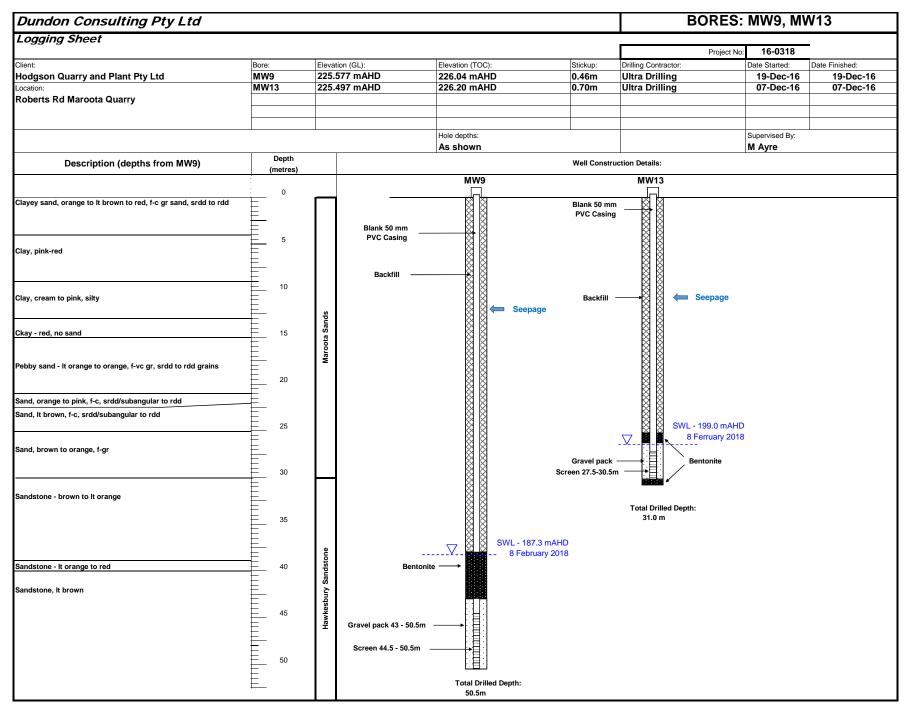
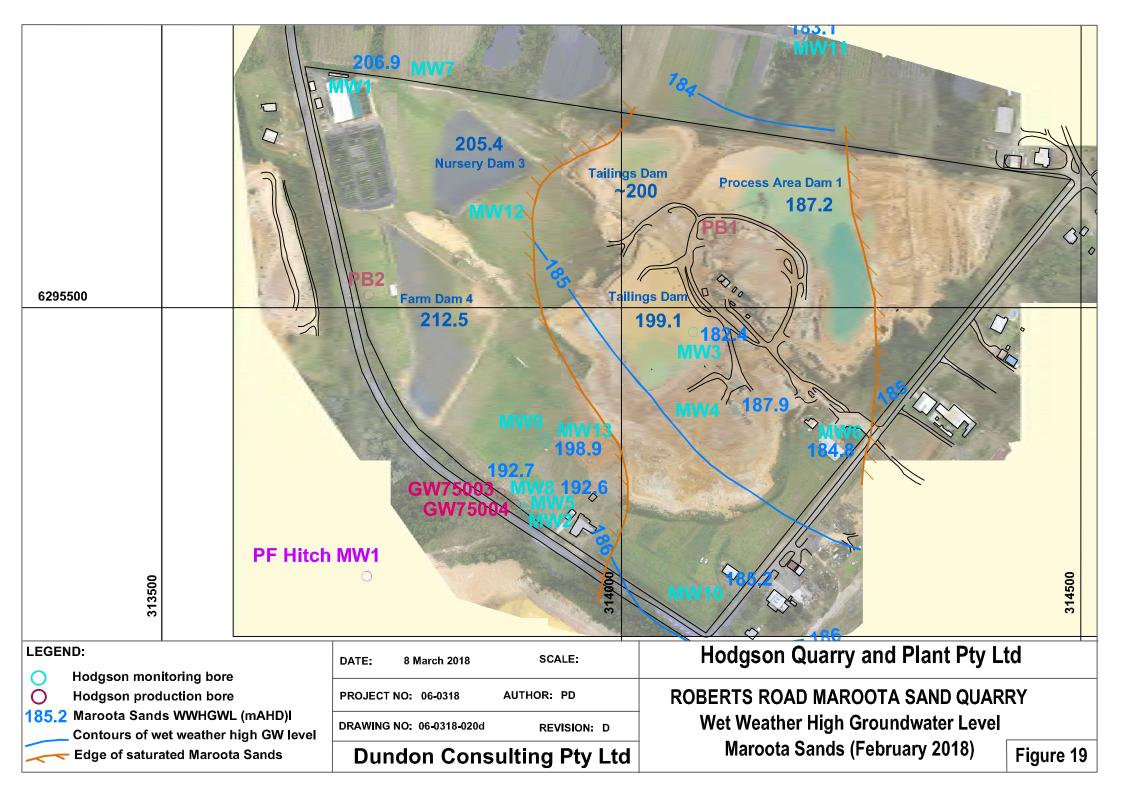



Figure 18: Composite Bore Logs - MW9 and MW13

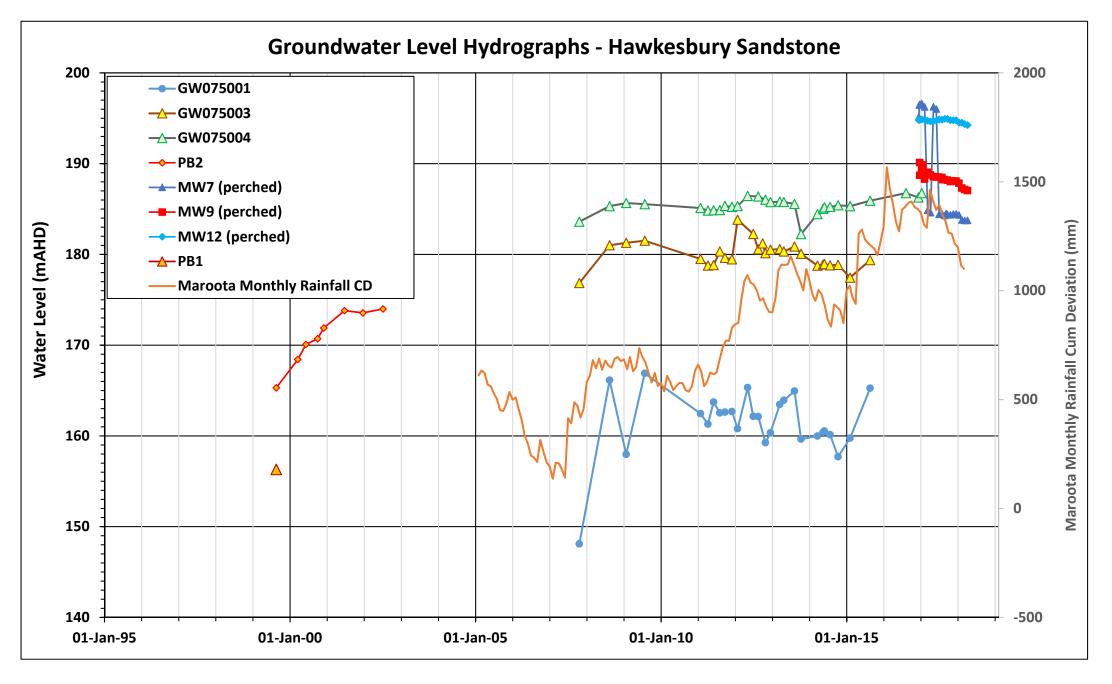
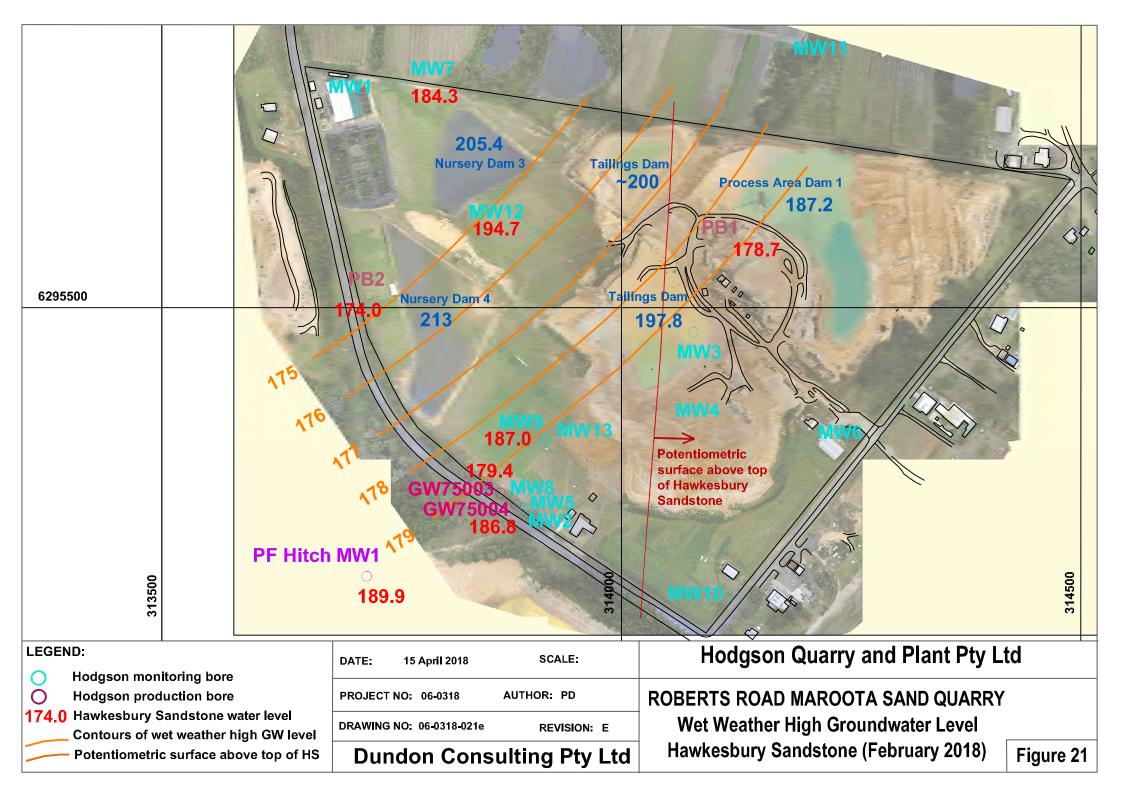



Figure 20: Bore Water Level Hydrographs - Hawkesbury Sandstone Bores

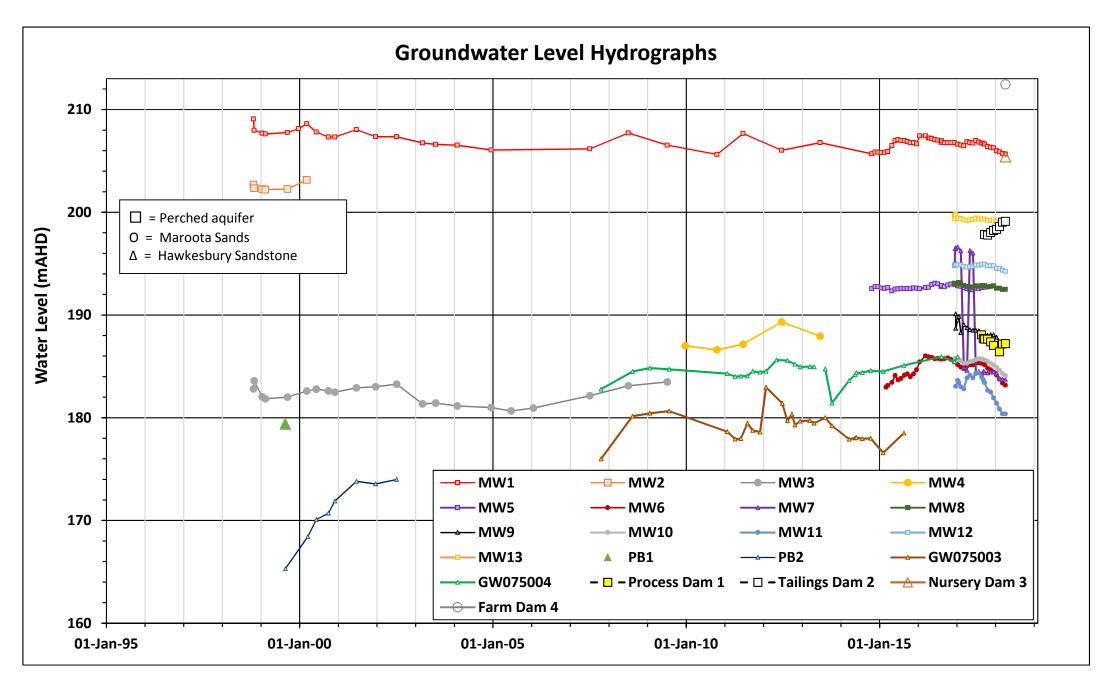


Figure 22: Bore Water Level Hydrographs - Composite Plot

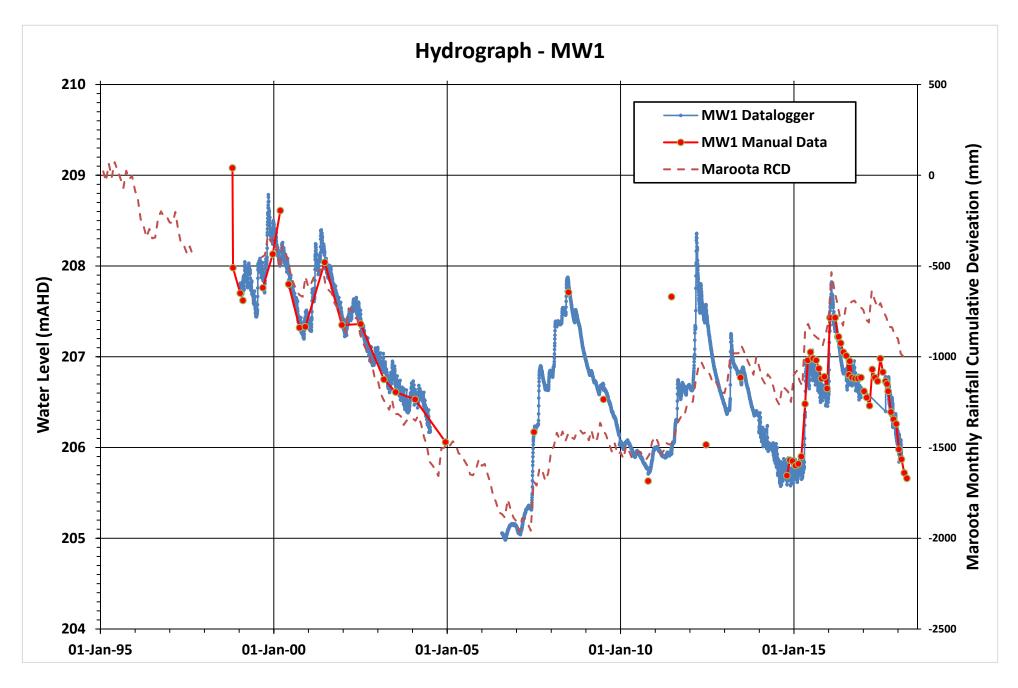


Figure 23: Bore Water Level Hydrograph - MW1

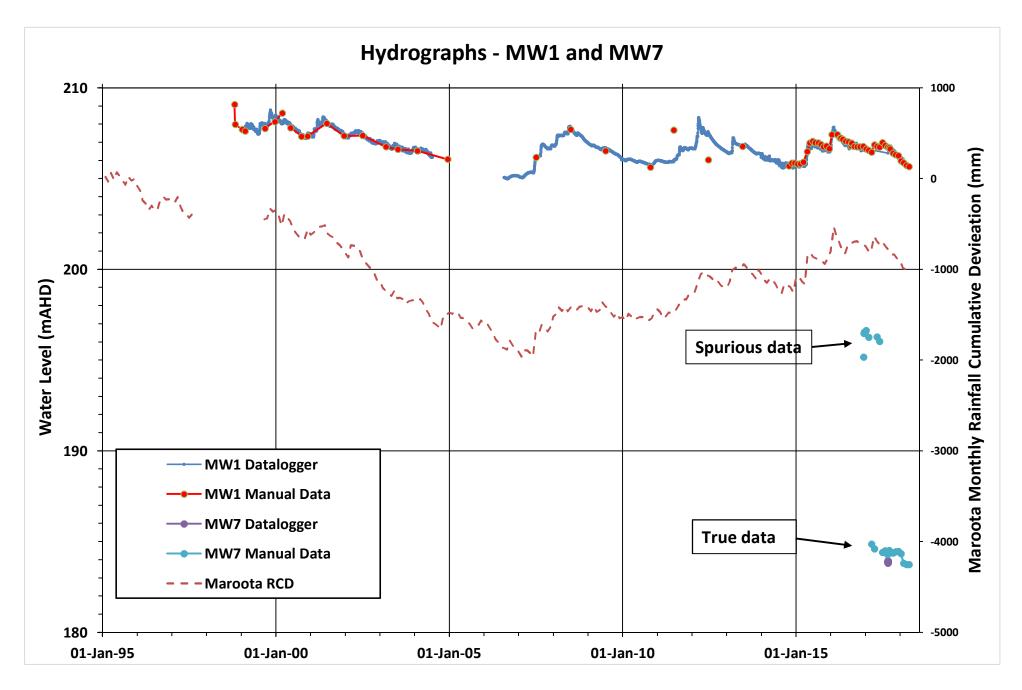


Figure 24: Bore Water Level Hydrographs - MW1 and MW7

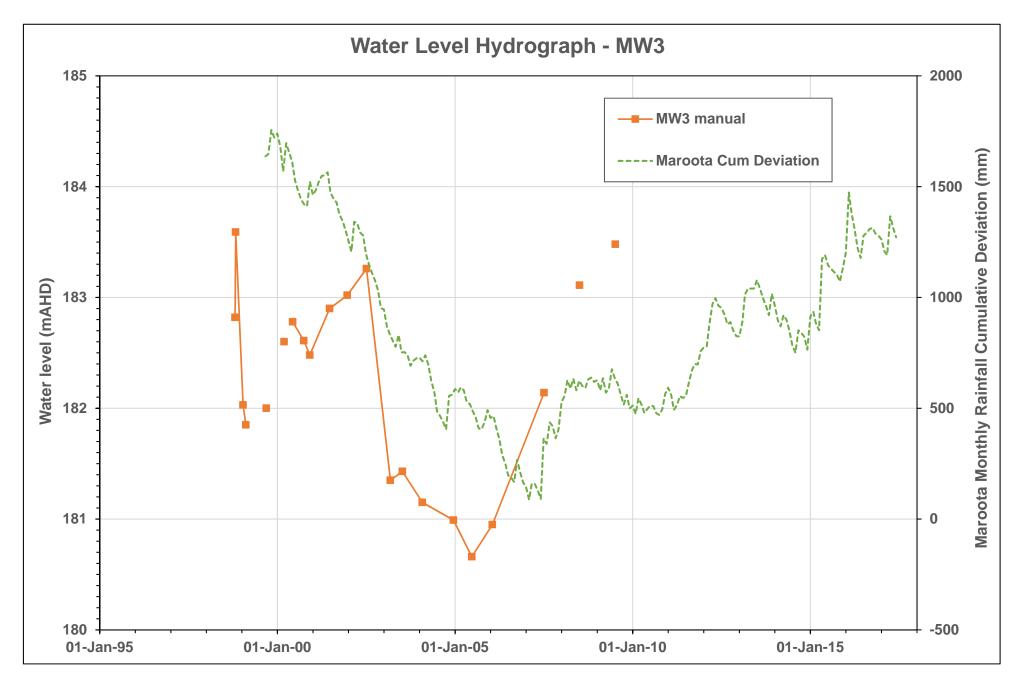


Figure 25: Water Level Hydrograph - MW3

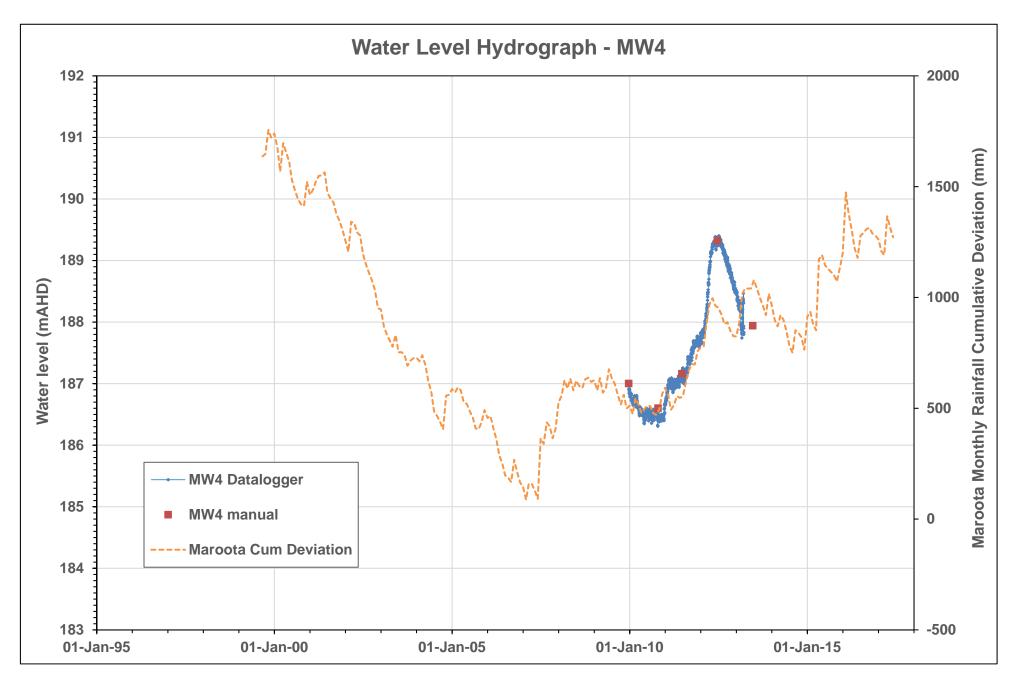


Figure 26: Water Level Hydrograph - MW4

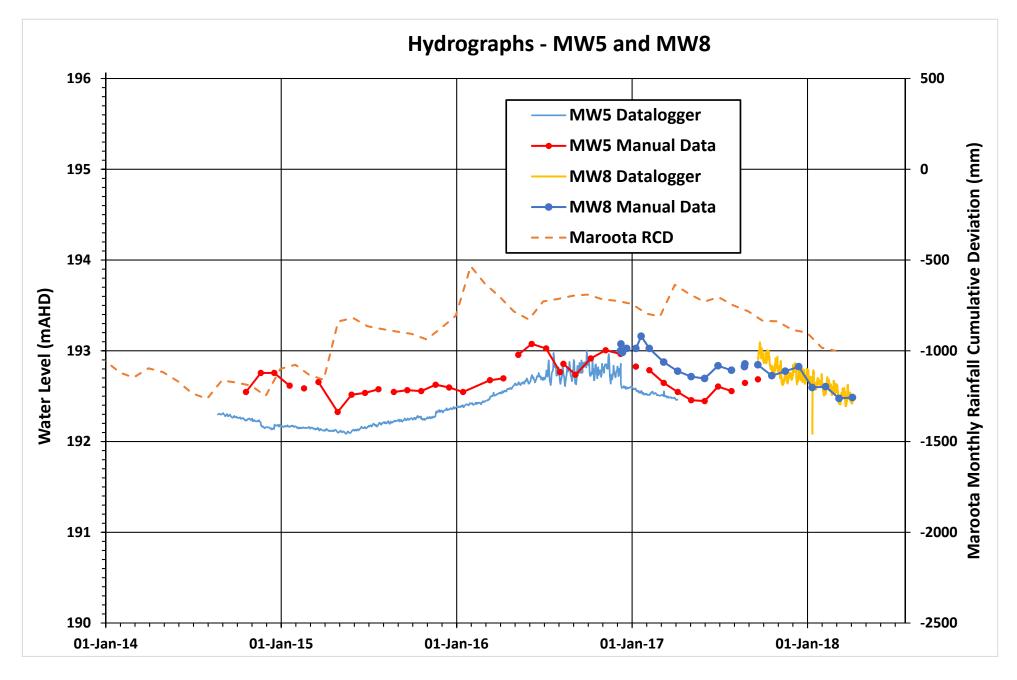


Figure 27: Bore Water Level Hydrographs - MW5 and MW8

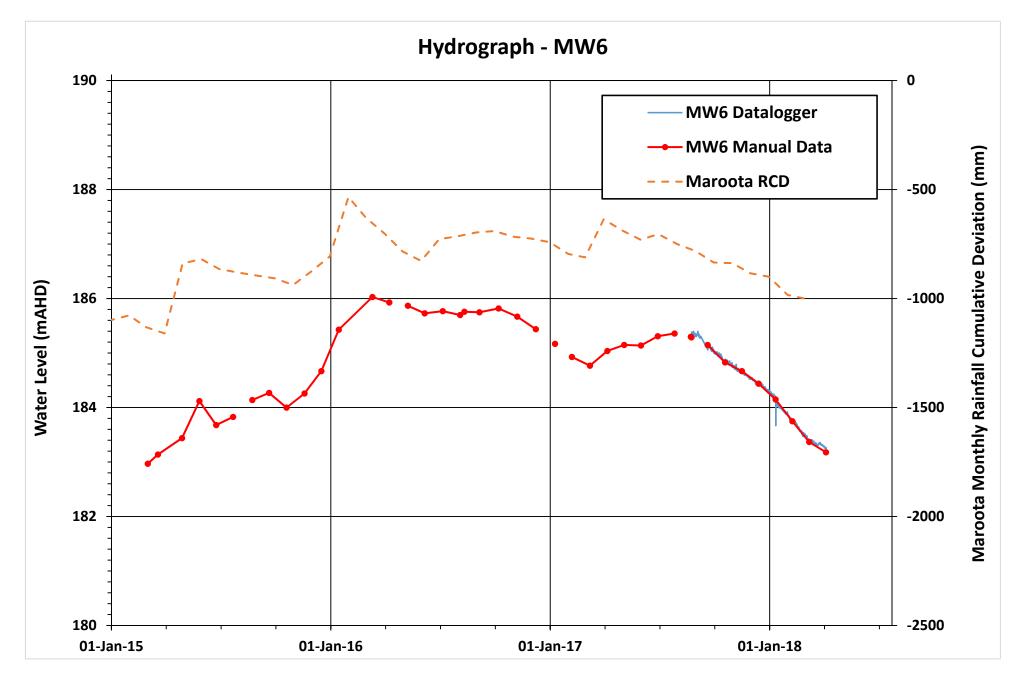


Figure 28: Water Level Hydrograph - MW6

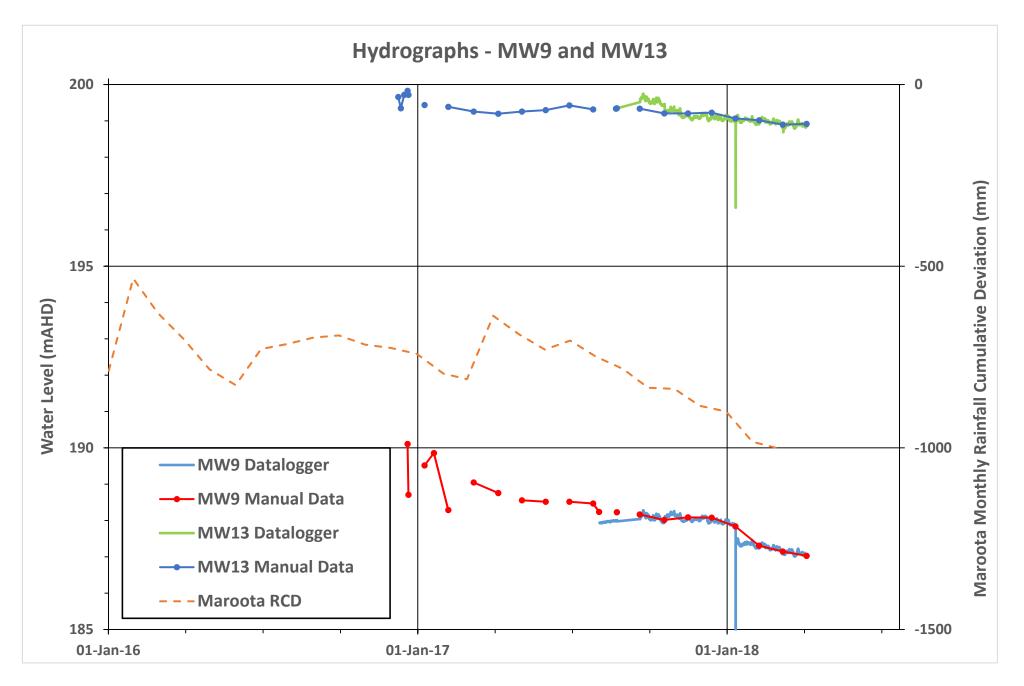


Figure 29: Bore Water Level Hydrographs - MW9 and MW13

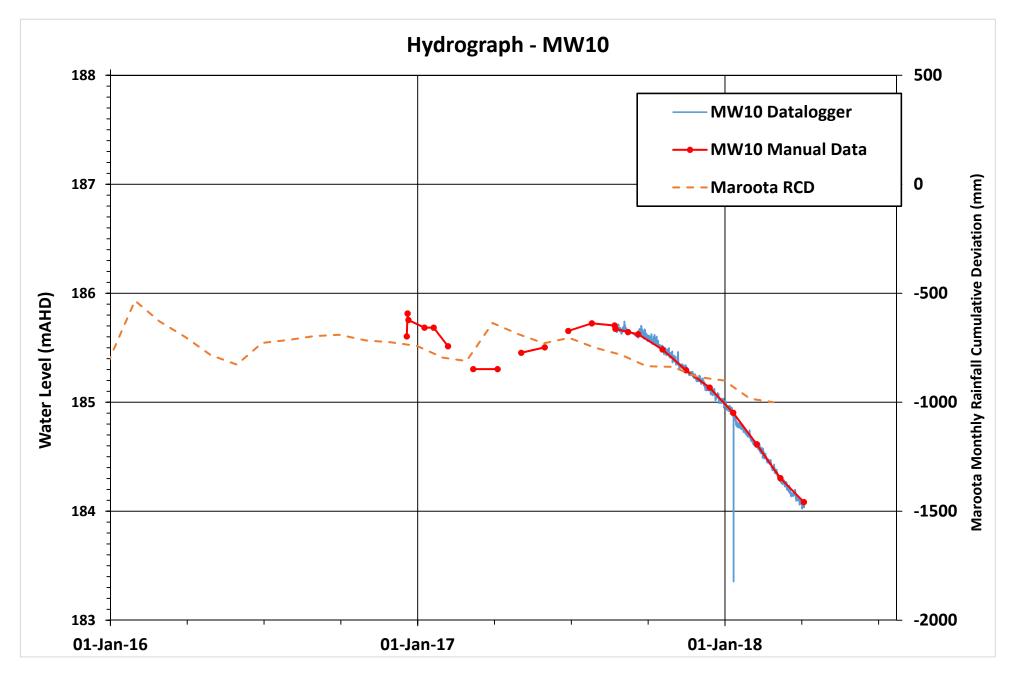


Figure 30: Bore Water Level Hydrograph - MW10

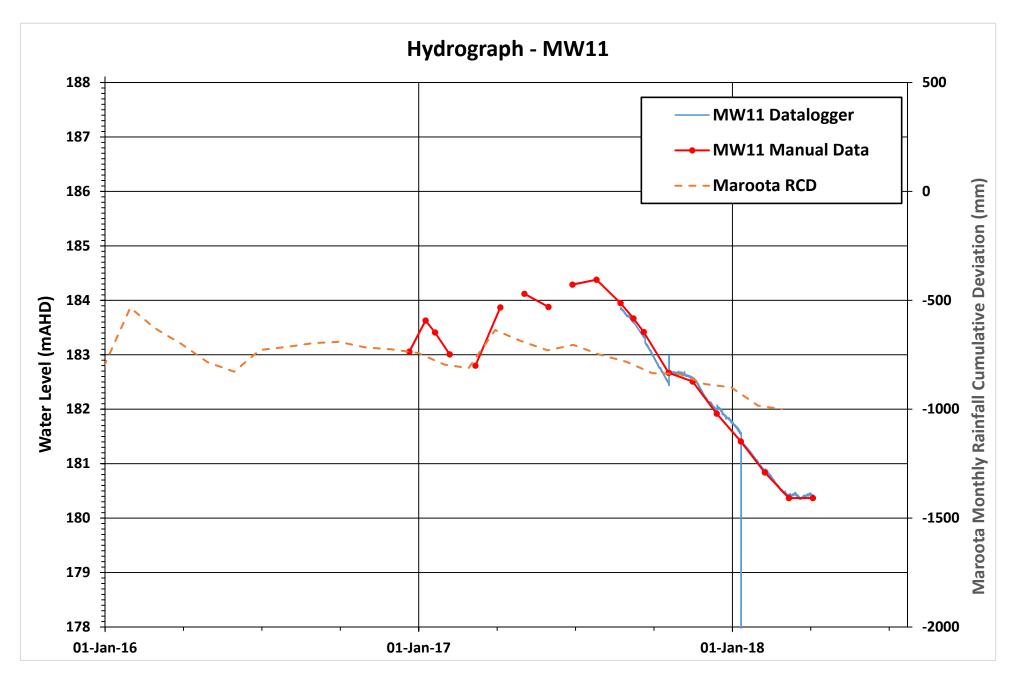


Figure 31: Bore Water Level Hydrograph - MW11

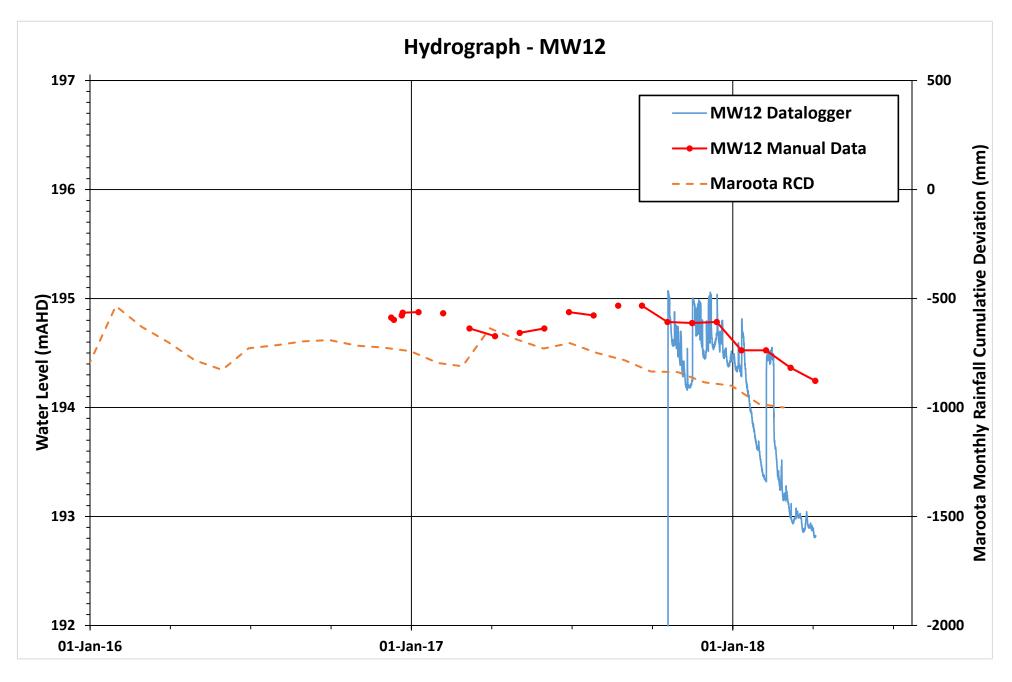


Figure 32: Bore Water Level Hydrograph - MW12

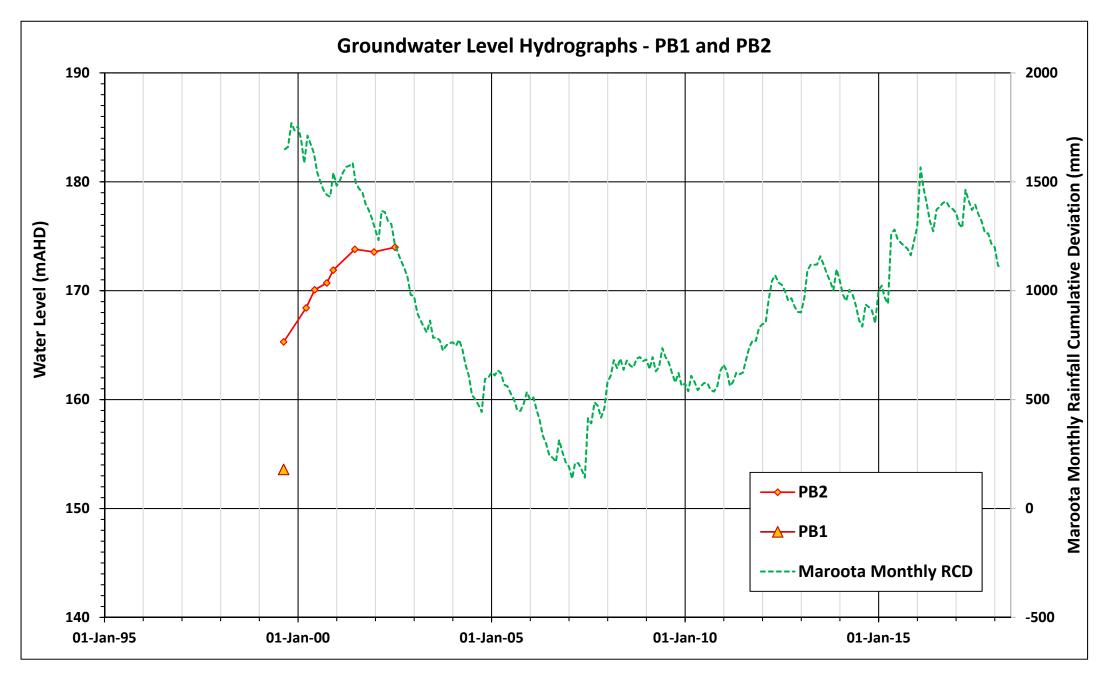
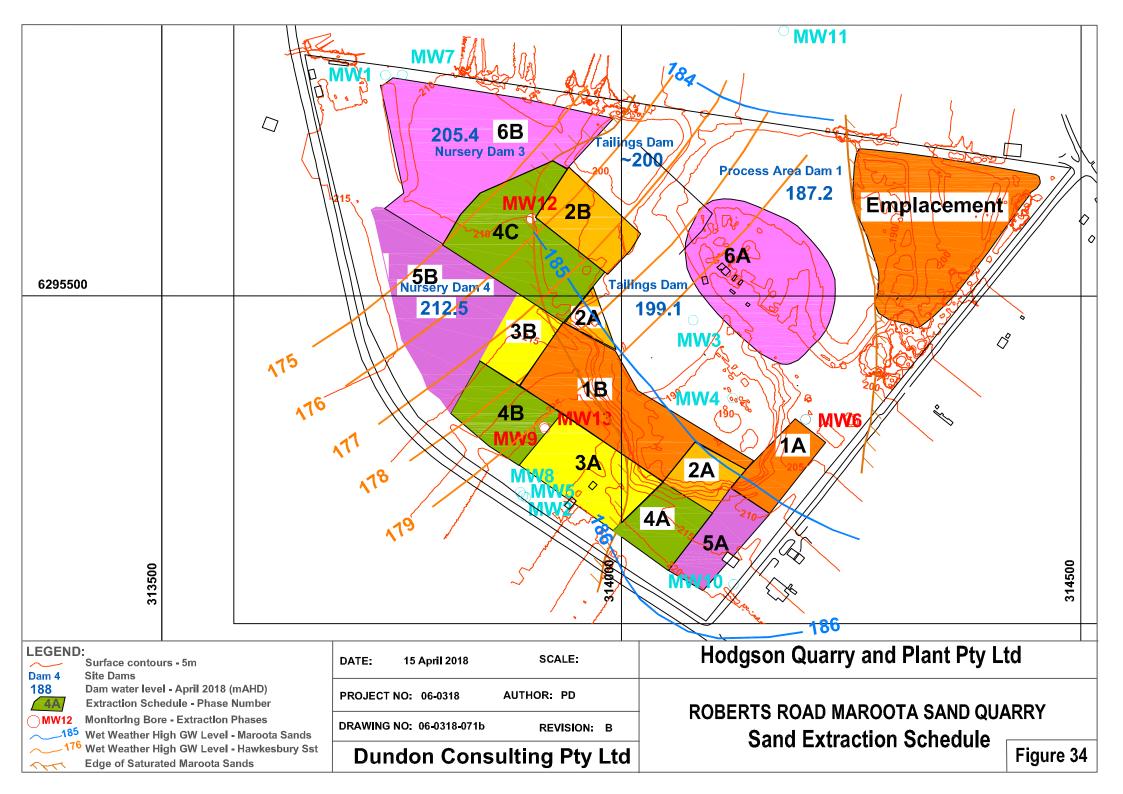
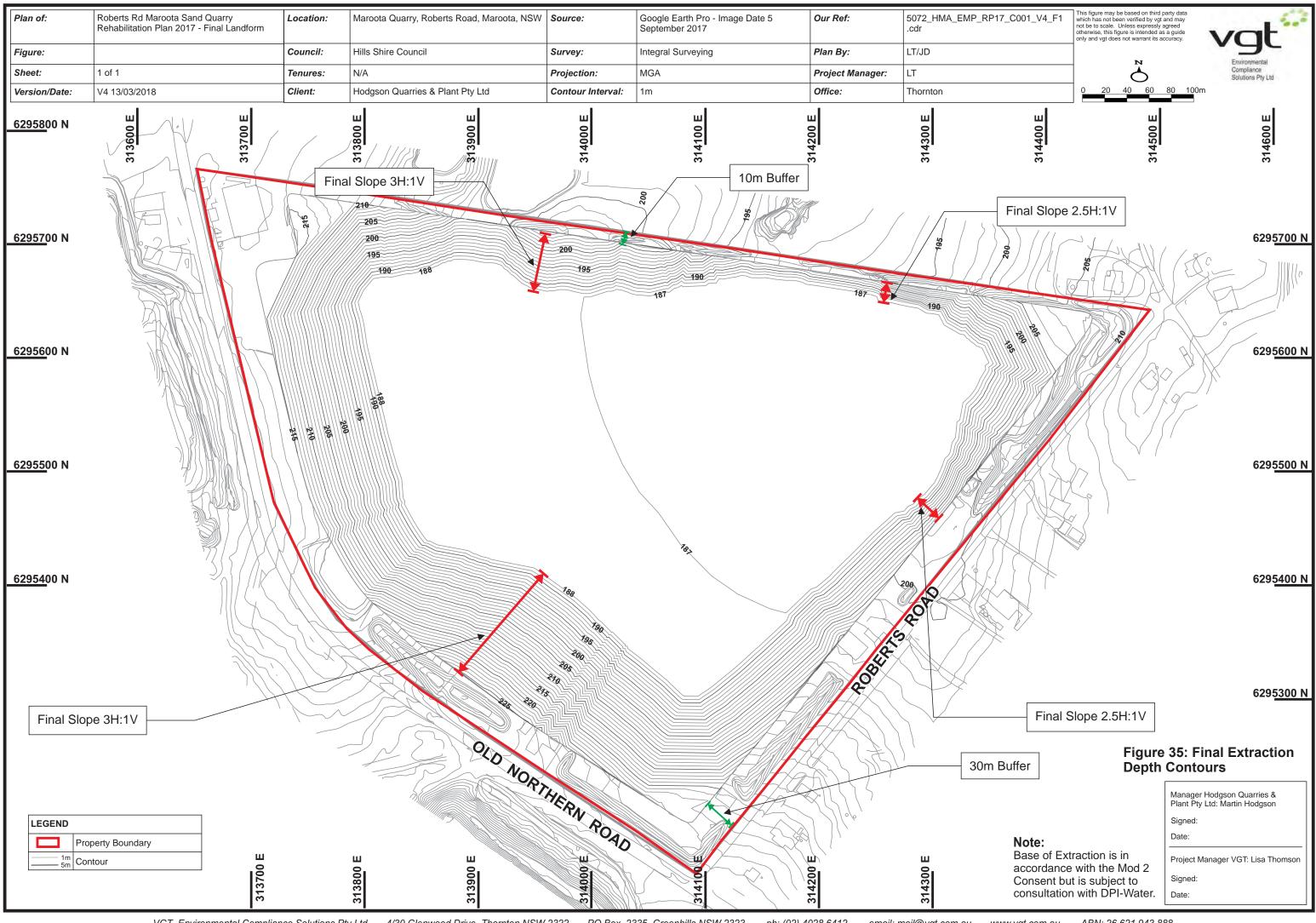




Figure 33: Bore Water Level Hydrographs - PB1 and PB2

APPENDIX A

BORE LOGS – MONITORING BORES AND PRODUCTION BORES

Woodward-Clyde

Borehole No: PT84MW1

	uarrametera		0000000		narrand)		annon an de commune a data par a paga de commune de la						tion was	Sector and the sector of the s	2,45 4,54 5,65				neet: f	of	1
	IEN.							ental Planning	+						NUM			A86020			
E .	OJE							ctive Industry	•									22/10/6			
8	CAT							n Rd & Robert	s Rd, M	4aroo	ia						D:	22/10/€	98		
					0.000		Interte		deg ernen også den regener 1. som	-		47% ¥221.40	alara no fanti	in she w	BED I		*******	SRR		n.ramoos.eo	
ę	ll Mo						h 750	Hole Angle: §		deg.		re				100 20.40		: 213.43			AHD
(and the second	illing			. 01	998.200 mil			Orientation:	9 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977	deg.	UU) Q.				22.49	N	nia kanplaistan ang papag		lS	10
101	lling) कि	ومعمد	D.		1		al Propert	<u>es</u>			<u>۲</u>	1	111		Hecor	T		ion Infor	r~~~~		
	(ance)	101		Ê	Graphic Log	Classification	Matarial	Description			L c	sity sity			(u	COMRESSIE	57004	nstruction	men	Dia	grain
Method	DG SIS	02	с,	Depth (m)	phic	sific		ticity/particle size				Sist.	Ē	Sampling	Bug dd	ļ				<u>ر</u>	.
Net	Casing (no rest	e a	Naier	Dep	6	E S		condary/minor com				Consists Ref. Der	Sca	Saf	Testing PID (ppm)						
						CL		ND/sandy S1LT, top y, brown	osoli, lov	and the paper with the paper with					****				X		X
rillin,	170mm			1_			silty CL/	Y, medium plasticit	y, orang)8										Į.	
Air Drilling	0/1			ŀ			brown ~ some _ to sub~.	gravel fragments (angular)	rounded									-			XX
				2-	Ē			ght grey and red-	brown				· -				ŧ	∃ackfill—			\boxtimes
							iron-oxi	dised bands								-					
				3-				·				.	-			50ma	РУС	Casing		*	X
				4-												ber	ntonil	te seal—			
							~ 4,5m	mainly light grey, c	ayey										#24	2	
				5-			grave!/g silica su	ravelly clay , with p~rounded gravel	quəriz												
			\$										-								
ŋ			86	6-	10	GC		RAVEL, fine to mee					-			2mm gre	avel t	oackfill			
Oráliár			6/10/			СН	\ brown, li	quartz gravel,brow on-oxidised, sub-r												1	
Mud			69.2	7-			CLAY, m	edium plasticity, lio	ht grev]			~								
Rotary Mud Drilling			5.34n an 28/10/98				with som sub-rou	e gravel (3~4mm)													
В			H I	8-									,								
			z																	-	
				9~								•						1m PVC			
					<u> </u>								-			Class		achine Slotted		111	
		Ø		10-			light gre	ONE, extremely wea y, fine to medium g	rained				- 								
		Ø					– slow p	sing in strength wit rogress with blade												E	
			1	11-			10.5m						- 							10(20.9).	
		Ø		-						ļ			-					\$4[AD		e	
				12													ĩ	D 11.8m		:L	lil
								e Discontinued at 12 investigation)	2.0m												
				t3-																	
				14																	
				-	ATTEN COMMENT										-						
				. 15-				an a													
	uced		SR	<u>R</u>											Doct	iment Not is	:/A8	6/486020%	9/1/log	s/HW	'l.fog
្រោខ	ked B	<u>ŧχ:</u>]															

Woodward-Clyde PT84MW

Sheet: 1 of 2

Borehole No:

			Sheet: 1 of 2
CLIENT:	Nexus Environmental Planning Pty Ltd	JOB NUMBER:	A8802019/1
ROJECT:	Proposed Extractive Industry, PT84	DATE COMMENCED): 20/10/98
OCATION:		DATE COMPLETED	: 20/10/98
	TRACTOR: Intertech	LOGGED BY:	SAR
) iill Model:		e Size: (50mm	RL: 228.8 m AHC
Irilling Fluid		ords: E 9637.10	N 5698.78 ISG
Irilling Info.	Material Properties	Field Records/Constru	uction Information
(ance)	0 5	Comments/	Construction Nell Diagram
Ean	(IIII) Colour, secondary/minor components	Rei Densib Scale Sampling PIO (ppm) PIO (ppm)	
Method Casing Penetra Penetra Mater	Image: Second and the second and t	Ret Dens Scale Sampling Testing PID (ppm	
an Cara An Cara	යී සී සී colour, secondary/minor components 238		
	CL sitty SAND/sandy SILT, topsoli, low		
	plasticity, brown silty CLAY, low plasticity, brown		
₹			
	2 SNU SAND medium orained red-brown		Backfill
	SAND, medium grained, red-brown		
	4-100		
	5-0: SAND, medium grained, yellow brown	*	
	of with some iron-oxidised bands		Backtill-
	SAND, medium grained, light brown		
	6		
	CLAY, medium to high plasticity, light		Backfill
	7 CH grey and red-brown		
	SAND; fine grained, fight grey / CLAY, medium to high plasticity, light		
	grey with some red-brown bands		
	No. of the second se		
	10-3		
	13~1,		
		50mm P1	/C Casing
			<u> </u>
duced By: SRI	B Í	Document Not is:/	A88/A8602019/1/logs/MH2.log

🚱 Woodward-Clyde 🏳

Borehole No: PT84MW2

Sheet: 2 of [2] Nexus Environmental Planning Pty Ltd CLIENT; JOB NUMBER: A8602019/1 PROJECT: Proposed Extractive Industry, PT84 DATE COMMENCED: 20/10/98 onr Old Northern Rd & Roberts Rd, Maroota DATE COMPLETED: 20/10/98 LOCATION: SRR ORILL CONTRACTOR: Intertech LOGGED BY: RL: 228.8 Orill Model: Intertech 750 Hole Angle: 80 deg. 8ore Size: 150mm m AHD dea. Co-ords: E 9637.10 N 5698.76 ISG Drilling Fluid: Blogel Orientation: Field Records/Construction Information Drilling Info. Material Properties Comments/Construction Nell Diagram Classification 60<u>-</u>1 Testing PIO (ppm) Ē Material Description Penetratia Sampling Graphic I Method Casing Depth Scale ÷ Water type, plasticity/particle size, Yoist Cond Rel. 1 colour, secondary/minor components শ্য SAND, fine to medium grained, light XXXXXXXXX XXXXXXXXXXX grey ò 16-17 ż - medium to coarse grained from 17.5m (coarser with depth) r bentonite seal-18-19-20-Casing Advancer è ċ 2mm gravel backfill-21 ċ ò 22. GRAVEL, fine to medium grained Ω quartz gravel, brown and grey, sub-rounded 23. 0 ۵ 50mm PVC-24 Class 18, Machine Ţ ۵ Slotted 25 29/10/98 ۵ ۵ 26sump 24.52m on TD 26.50m Borehole Discontinued at 20.5m 27~ (limit of investigation) ĩő ц. 28-59 Document No: s:/A86/A8602019/Miogs/NH2.log Produced By: SRR Checked By:

Woodward-Clyde

рT AA

Borehole No:

1		Anatoria de la composición de la compos		-						فالمحادث والمحادث			entration	ര <u>്നാന് അ</u> ശാസ	ىرىنى رومى مەرومىرىكىتىتە مەھەرىي	tan da ana	Line Volume of the second second	heet: i	of	2
3	.IE							Ital Planning Pty							BER:		A88020	• •		
ě.	ROJ							live Industry, PT							MMENCE			-		
								Rd & Roberts Rd	, Maro(>ia					MPLETE		-	8		
-		No-eliseent		****			Interteo				****	-	na serie de la companya	GED		-	SRR	DOM-DATE OF STREET		district and sources
E	111 M						h 750	Hole Angle: 90	deg.		ore				hnm		: 202,43			AHD
				1: 8	ang na kana kana kana kana kana kana kan		Rammermoon an ann an airpeann	Orientation:	deg.	<u> </u>	0-0		nin ain	an a	02.78	N	5916,3		îS	G
Dri	illing T		10, 1	1	M		al Propertie	3	<u> </u>		·····	Fie	eid	Reco	rds/Const)	
		ancel		E	Į S	Classification				1	S2 22			÷	Comments,	/Con	struction	\ \	Dlag	118m
g	1	1.50		5		i i i		lescription		ere Soot	ster		De la	ling (ppm)						
Method	asit	Penetra	Nater	Depth	Granhie Loo	lass.		sity/particle size, indary/minor componen	4.0	0151	Lonsi Rel 1	Scale	Sampling	Testing PID (ppi						1
~			-							j≈c		10	5	⊢~ 6.		-	**************************************			L
0							 SINY SANL plasticity,)/sandy SILT, topsoil, i brown	он /				1.							8
Air Drilling	7.0mm				E		silty CLAY	, low plasticity, orange	······			-						8		8
10	2				E		brown ∽Increasi	ng stiffness with depth				~						8		8
14			-		E	3								•						8
				2.	E			artz silica gravel band.	3			-						8		8
		B			Ē	111	(2~4mm)			ł								X		Ø
			}	3.	Ē												_			X
-					Ē		gravelly Ci	LAY, low plasticity, yel	0₩									X		X
		is.			E		brown with quartz gra	rounded to sub-angul	ar		ļ					12	ack fill	X		X
				4-	E		. some rea	d∽brown banding		1										X
		B	:		E		depth	ng gravel content with												X
		S)		5-			-			ĺ		ļ						X		X
AMMAN AND AND AND AND AND AND AND AND AND A					E													X		X
	ľ			6	\equiv									Ì				X		X
				Û	Ē]					-	×		X
					Vy	160	clayey 6R	AVEL, medium grained a gravel (3-4mm), bro]]						XXXXXXXXXXXXXXXXXXXX		X
				7-	Ķ		silty clay n	a geaver (s∽∞annn), bro natrix				-		ļ				ă		X
2			Ì		4	SW		rse grained, light grey,	na belana na bana arana ana			1						Ø		8
Se li Be				8-			silica sand,	sub~rounded				, ,						8		8
Mud Drilling					Ē		 grading t depth 	to medium grained with				1						8		8
					7	SC		₩D, medium gralned,										8		8
Rotary				9.~	1		yellow-bro								50am P\	VC €	asing		-#	8
<u>т</u>					É	SW	SAND, COAL	se grained, light grey	with		to the form	- in the second		Ì				\otimes		X
	Ľ			10-				vel fragments,				1						\bigotimes		X
				-			SOD-rounoe	90												3
				1-~														\boxtimes		X
				, ,								1	1					\otimes		X
				-			~ from 11.5n	n, fine grained			ol name							Ø		X
				12-			~ from 12.0	m, medium to coarse			Upon Carbon	-}								8
							grained with sub-rounde	h some quartz gravel ed (3-4mm)				}		1	benta	onite	seal			
				i 3-			and invertee	- for surger		ł						_				
												-jiri					1			9
				-									ł	ľ						<u> </u>
				14~		İ				1		Ĩ								<i>.</i>
				.15-			Marinahil Lizzani Kendulana panananan											[:]		<u> </u>
Predu	bea	By:	SRI	~~~	<u> </u>			• • •				-		Docus	ent Not s:/	ABS/	AREDOOL	/ /in die	anamo Altar	2100

Checked By:

Document No: st/AB6/AB602010/1/logs/NW3.log

Woodward-Clyde

Sheet: 2 of 2 CLIENT: Nexus Environmental Planning Pty Ltd JOB NUMBER: A8602019/1 PROJECT: Proposed Extractive Industry, PT84 DATE COMMENCED: 21/10/98 LOCATION: cnr Old Northern Rd & Roberts Rd, Maroota DATE COMPLETED: 21/10/98 DRILL CONTRACTOR: Interlech LOGGED BY: SRA Drill Model: Intertech 750 Hole Angle: 80 dea. Bore Size: 150mm RL: 202.43 m AHD Drilling Fluid: Biogel Orientation: deg. Co-ords: E 9802.78 N 5918.37 156 Orilling Info. Material Properties Field Records/Construction Information Sonce Tonce Classification **Graphic Log** Comments/Construction Well Diagram (B) Tesling PID (ppm) Moistigre Condition Consistenc Rel, Bensit Material Description Penetration Penetration Sampling Method Casing Depth Water Scale type, plasticity/particle size, colour, secondary/minor components ςī ~ 15.5~15.7m, medium plasticity, light grey clay band 16-- from 16.5m, coarse grained 17 -2mm gravel backfill-18-Rotary Mud Driffing Ì 19-50mm PVC-Class 18, Machine at 18.84m on 29/10/88 Slotted 20 Ğ₩ GRAVEL, fine to medium grained, red-brown iron-oxidsed/cemented 21 CH CLAY, medium to high plasticity, sumo ž red-brown and grey 22 TD 2190m-GN GRAVEL, fine to medium grained Ď quartz gravel, brown and grey, sub-rounded (3~4mm) I 23ø Borehole Discontinued at 23,2m (limit of investigation) 24 25-26--27 28-29

Produced By: SRR Checked By:

Document No: st/A86/A8602019/1/logs/NW3.log

Borehole No:

PROJECT :	HB Maroota Monitoring Bore		DA	JOB NO.: TE STARTED:	43167795 21/12/2009
LOCATION: SUPERVISOI	Roberts Road, Maroota R F.Carosone			COMPLETED:	22/12/2009
DRILLED BY	: Intertech Drilling Services	METHOD:	Mud rotary	DIAMETER:	140 mm
RIG:	Intertech 850	TOTAL DEPTH :	28.5 m	R.L. CONCRETE:	mAHD
DATUM: EASTING:	0.57 m above concrete/ground 314121	SWL: NORTHING:	m b.datum 6295389	R.L.STEEL PLATI R.L. SWL :	: mahd
EASTING:	······································		0293389		
	WELL NUMBER	Remarks	Depth	Bore Constru	etion
	Linisiogical Log	Remarks	(m)	Dore conserv	
					— Datum — 152 unm monument _ Concrete pad
0 - 0.5	SOIL: brown, sandy.				
0.5-6	SAND: orange/brown, fine, clayey, sorted subrounded quartz grains becoming lighter colour below 3 m.		1		 sand backfill
			2		200 mm HFA hole
			3		152 mm diam. steel
					casing Rigid foam seal
			4		Rigid toan sea
			5		
6 - 6.9	SAND: orange, gravelly medium/coarse subangular quartz grains		6		
6.9 - 8	SAND: grey, gravelly, medium/coarse subangular quartz grains.		7	←	PVC Blank Casing. 60mm OD, 50mm ID
					cl 18
8-9	SAND: orange, gravelly medium/coarse subangular quartz grains.		8	8	
9 - 10	CLAY: grey, soft, sandy.		9	8 • 10	- bentonite pellets seal
10 - 12	CLAY: grey and orange.		10		
				10	
			11		
	ORAVEL: grey, sandy, with some clay, fine, subrounded, clear and white quartz grains.		12		– backfill
	and mine doop of Status.		13	↓	- vackim
14 - 15	CLAY: grey and red, layered, some sand.		14		140 mm diam.hole
1 - 17	CLAY: grey and white, soft, some sand,		15		
			16		
	GRAVEL: grey and white with some white clay, 2 -5 mm		17	-	2 mm washed sand
	quarz grains.		18		gravel pack
			19		
20 - 25.5	SAND: red, gravelly medium/coarse subangular quartz grains.		20	19.5	
			21		
					PVC screens
			22		60mm OD, 50mm fD cl 18, 0.45 mm slot
			23		
			24		
			25		
5.5 - 27.5 5	SAND: grey, gravelly, angular to subangular quarts grains				
			26		
			27		
7.5 - 28.5	fronstone, red with dark red clay, very hard.		28		
8.5 1	Bottom of the hole		42 	28.5	bottom cap
	· · · · · · · · · · · · · · · · · · ·	1	29		bottom of the hole

URS

1

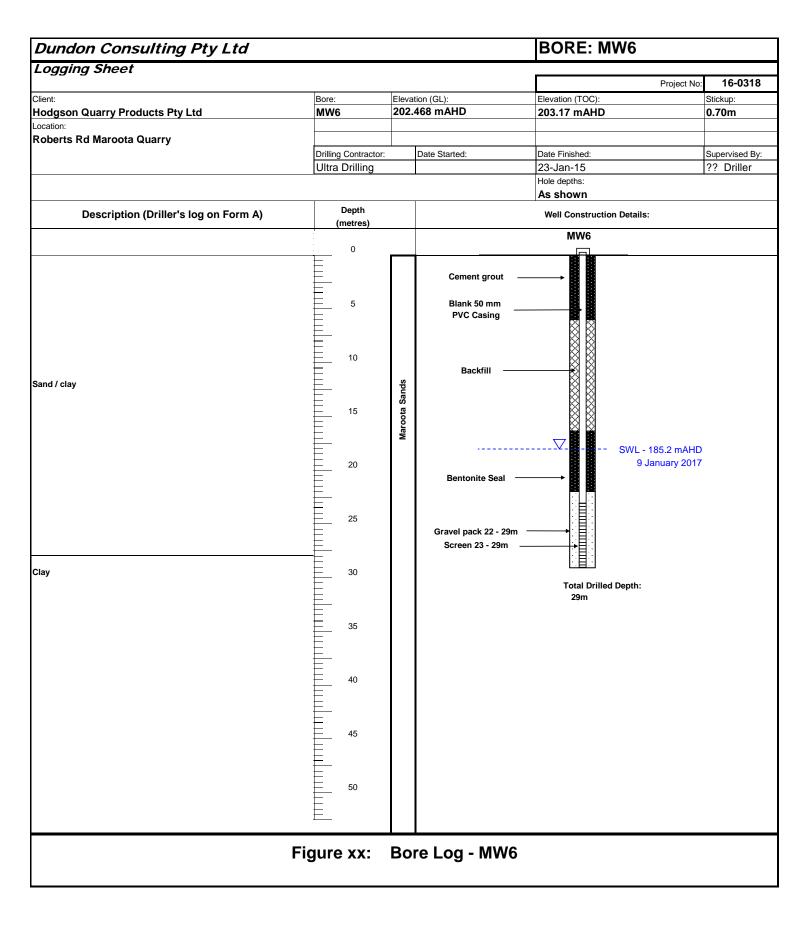
1

1

N

I

I


1

D.

18

0

Hodgson Quarries and Plant Roberts Road, Maroota F.Carosone			JOB NO.: STARTED: MPLETED:	43167954 11/04/2013 11/04/2013
Ultra Drilling Mayhew 1000 0.73 m above concrete/ground 313896	METHOD: TOTAL DEPTH : SWL: NORTHING:	Air rotary 44 m 34.6m b.datum 6295313	DIAMETER: R.L. CONCRETE: R.L.STEEL PLATE: R.L. SWL :	120mm mAHD mAHD
WELL NUMBER	R: PT84MW5			
Lithological Log	Remarks	Depth (m)	Bore Construct	tion
				Datum 152 mm monument Concrete pad
SAND: red/orange, fine to medium rounded quartyz grains, clayey		1 2 3		cement
SAND + CLAY: grey and brown, fine gtrained with grey clay		4 5 6	-	-152 mm diam. PVC casing
CLAY; grey, brown and dark red, stiff, dry		8 9 10		
SAND: red, dark red, iron stained, fine, sorted, subrounded to rounded quartz grains		12 13 14	•	PVC Blank Casing, 60mm OD, 50mm ID cl 18
SAND: grey, light grey and buff coloured, fine, sorted, subrounded		15		
SAND: orange to dark orange, fine to medium, sorted, subrounded quartz grains		17 18 19	-	backfill
GRAVEL: orange, Fe stained, medium to coarse, subrounded, with white poorly sorted quartz grains. Becoming fine @ 26 m		20 21 22 23 24		
		25 26 27	-	120 mm diam.hole
		29 30		bentonite pellets seal
SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay.		32 33 34 35	-	- 2 mm washed sand gravel pack
		37 38 39 40 41	-	PVC screens 60mm OD, 50mm ID cl 18, 0.45 mm slot
Bottom of the hole		42 43 44		bottom cap bottom of the hole
	Mayhew 1000 0.73 m above concrete/ground 313896 WELL NUMBER Lithological Log SAND: red/orange,fine to medium rounded quartyz grains, clayey SAND + CLAY: grey and brown, fine gtrained with grey clay CLAY: grey, brown and dark red, stiff, dry SAND: red, dark red, iron stained, fine, sorted, subrounded to rounded quartz grains SAND: grey, light grey and buff coloured, fine, sorted, subrounded to rounded quartz grains SAND: orange to dark orange, fine to medium, sorted, subrounded quartz grains SAND: orange to dark orange, fine to medium, sorted, subrounded quartz grains SAND: orange, Fe stained, medium to coarse, subrounded, with white poorly sorted quartz grains. Becoming fine @ 26 m	Mayhew 1000 TOTAL DEPTH : 0.73 m above concrete/ground SWL: 313896 NORTHING: WELL NUMBER: PT84MW55 Lithological Log Remarks SAND: red/orange, fine to medium rounded quartyz grains, clayey SAND + CLAY: grey and brown, fine gtrained with grey clay CLAY: grey, brown and dark red, stiff, dry SAND: red, dark red, iron stained, fine, sorted, subrounded to rounded quartz grains SAND: red, dark red, iron stained, fine, sorted, subrounded to rounded quartz grains SAND: grey, light grey and buff coloured, fine, sorted, subrounded to rounded quartz grains GRAVEL: orange, Fe stained, medium to coarse, subrounded, with white poorly sorted quartz grains. Becoming fine @ 26 m SAND: gray/brown, fine to medium, subrounded to subangular	Mayhew 1000 0.73 m above concrete/ground 313896 NORTHING: 6295313 WELL NUMBER: PT84MWS Lithological Log Remarks Depth (m) SAND: red/orange,fine to medium rounded quartyz grains, clayey SAND: red/orange,fine to medium rounded quarty grains, clayey SAND: red/orange,fine to medium, sorted, subrounded to rounded quartz grains SAND: red/orange, fine to medium, sorted, subrounded to rounded quartz grains SAND: red/orange, fine to medium, sorted, subrounded to rounded quartz grains SAND: red/orange, fine to medium, sorted, subrounded to rounded quartz grains. Becoming fine @ 26 m SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular some clear quartz grains. Traces of grey clay. SAND: gray/ brown, fine to medium, subrounded to subangular SAND: gray/ brown, fine to medium to coarse, subrounded to subangular SAND: gray/ brown, fine to medium to coarse, subrounded to s	Mayhew 1000 Or 37 m above concrete/ground 313896 NORTHING: 6295313 Remarks MELL NUMBER: PT84MW5 MELL NUMBER: PT84MW5 MELL NUMBER: PT84MW5 SAND: red/orange, fine to medium rounded quarty grains, clayey SAND: red/orange, fine to medium rounded quarty grains, clayey SAND: red/orange, fine to medium rounded quarty grains, clayey SAND: red/orange, fine to medium, sorted, subrounded to rounded quart grains SAND: red, dark red, into stained, fine, sorted, subrounded to rounded quart grains SAND: red/orange, fine to medium, sorted, subrounded quart grains SAND: red/orange, fine to medium, sorted, subrounded quart grains SAND: red/orange, fine to medium, sorted, subrounded quart grains SAND: gray, brown, fine to medium, sorted, subrounded quart grains SAND: gray, brown, fine to medium, sorted, subrounded quart grains SAND: gray, brown, fine to medium, sorted, SAND: gray, b

Name of Hole: MW7

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA

Date Commenced: 09/12/2016 Date Completed: 09/12/2016 Surface RL: 212.9m AHD Collar Height: 0.48m Coordinates: 313761 6295740 Drilling Contractor: Ultra Drilling Waterbores

Page:1of 2

ne to grains sand, 1.5m colour change
Some sand
ed, sub 7.2m Colour change
ded to Water injected
ded to
rained,
redium Feruginised ns Chips at top of
ned, sequence
iined,
led to

Logged By: MA	Checked By: GT (12/1/2017)	Version: 2801_HMA_DO_LOG_MW7_V2				

Name of Hole: MW7

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA

Date Commenced: 09/12/2016 Date Completed: 09/12/2016 Surface RL: 212.9m AHD Collar Height: 0.48m Coordinates: 313761 6295740 Drilling Contractor: Ultra Drilling Waterbores

Page:2of 2

Drill Type	Elevation (RL)	Depth (m)	Piezometer Design	Photo Log	Graphic Log	Description	Additional Information
	191 — 190 —	— 21 — 22		A + CT 100 [Y]		Sandstone-orange, fine grained, subrounded to rounded grains	
	189 —	— 23		the X			
	188 —	— 24					
	187 —	— 25		CX-C			
Bit	186 —	— 26					
Hammer Bit	185 —	— 27		RA.			
Han	184 —	— 28					
	183 —	— 29				Conditional dark grange find to medium project	
	182 —	— 30				Sandstone- dark orange, fine to medium grained, subrounded to rounded grains	
	181 —	— 31		eren Tette			
				-			
	180 —	— 32		- Junit			
	179 —	— 33		No. 10			
	178 —	— 34					
	177 —	— 35				Sandstone- orange, fine to coarse grained,	
	176 —	— 36		-6	1	subrounded to rounded grains	
	175 —	— 37		Constant of the			
	174 —	— 38				Hole Terminated in Hawkebury Sandstone	
ther In	formation:					vices. Survey conducted post exploration. olour, sample recovery and lithololgical analysis.	
ogged	By: MA				ecked By: GT		G_MW7_V2

Name of Hole: MW8

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA

Date Commenced: 5/12/2016 Date Completed: 6/12/2016 Surface RL: 227.005m Collar Height: 0.42m Coordinates: 313889 6295287 Drilling Contractor: Ultra Drilling Waterbores

Page:1of3

Drill Type	Elevation (RL)		Piezometer Design	Photo Log	Graphic Log	Description	Additional Information
	227 226 —	0		dam-m		Silty Sand- orange to light brown, fine to medium grained, subrounded to rounded grains	Feruginised fragments and
	225 —	2		ANSAR ANSAR		Silty Sand- orange, fine to medium grained, subrounded to rounded grains	some clay Feruginised fragments and some clay
	224 —	- 3		- And	········	Clayey Sand- orange to light orange, fine grained, subrounded to rounded	
	223 — 222 —	4 5				Silty Sand- light orange to orange, fine to coarse grained subrounded to rounded	Hammer bit not firing
	221 —	6				Silty Sand- orange, fine to coarse grained, subrounded to rounded grains	Hammer bit not firing
	220 —			NER		Clay- white to light brown	Hammer bit not firing
	219 — 218 —	8		Criste B		Clay- purple to pink	
Hammer Bit	217 —	9 10				Clay- Deep purple	
Hami	216 — 215 —	+ 11 + 12				Clay-Purple to light brown	Water seepage @ 13m
	214 —	13		ERS I	 	Clay- Deep purple	Hammer bit not firing
	213 —	14				Clay- light brown to purple	Hammer bit not firing
	212 —	15				Clay- dark brown to red	Hammer bit not firing
	211 —	16			··· <u>···</u> ··	Clayey Sand- cream to orange, fine grained, subrounded to rounded grains	Hammer bit not firing
	210 —	17			· · · · · · · · · · · · · · · · · · ·		
	209 —	18		2424	••••		
	208 — 207	19 20		CLER'S	••••		

Logged By: MA	Checked By: GT (12/01/2017)	2801_HMA_DO_LOG_MW8_V2			

Name of Hole: MW8

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA

Date Commenced: 5/12/2016 Date Completed: 6/12/2016 Surface RL: 227.005m Collar Height: 0.42m Coordinates: 313889 6295287 Drilling Contractor: Ultra Drilling Waterbores

Page:2of3

Drill Type	Elevation Depth Pie (RL) (m) De	ezometer Photo esign Log	Graphic Log	Description	Additional Information
	206 21 205 22 204 23 203 24 202 25 201 26 200 27			Pebbly Sand - orange to light brown, coarse to very coarse, rounded to subrounded	Hammer bit not firing to 20.5m, some clay
	199 28 198 29		· · · · · · · · · · · · · · · · · · ·	Pebbly Sand- light brown, fine grained, subrounded to rounded grains	Some clay
Hammer Bit	197 — 30	······································		Sand- white to light brown, fine grained, subrounded to rounded	Some clay
Ť	196 — 31		······································	Sandy Clay- brown to light purple, fine grained, subrounded to rounded	Water injected
	195 32 194 33		······································	Clayey Sand- brown to light brown, fine grained, subrounded to rounded	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·	Pebbly Sand- brown to pink, very coarse to fine , subrounded to rounded	Feruginised fragments
	190 37		· · · ·		
	189 38 188 39			Clayey Sand- brown to purple, medium grained, subrounded to rounded grains	Hardness increasing
	187 40		1 <u></u> 		

Logged By: MA	Checked By: GT (12/01/2017)	2801_HMA_DO_LOG_MW8_V2			

Name of Hole: MW8

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Location: Off Roberts Road, Maroota, NSW Logged by: MA

Design

Drill Elevation Depth Piezometer

(m)

MAROOTA

Graphic

Log

Photo

Log

Date Commenced: 5/12/2016 Date Completed: 6/12/2016 Surface RL: 227.005m Collar Height: 0.42m Coordinates: 313889 6295287 Drilling Contractor: Ultra Drilling Waterbores

Description

Additional

Information

Page:3of3

Туре (RL) 186 -- 41 185 -- 42 - 43 184 -Hammer Bit 44 183 -Interbedded shale Sandstone - orange laminations 182 -45 181 -- 46 180 -- 47 179 -- 48 - 49 178 — Hole Terminated in Hawkesbury Sandstone 177 — 50 176 — 51 175 ____ 52 Other Information: GPS Coordinates sourced from handheld devices. Survey conducted post exploration.

Stratum contacts determined by hardness, colour, sample recovery and lithololgical analysis.

Logged By: MA	Checked By: GT (12/01/2017)	2801_HMA_DO_LOG_MW8_V2

Name of Hole: MW9

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313916 6295355 Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA Date Commenced: 19/12/2016 Date Completed: 19/12/2016 Surface RL:225.577 m Collar Height: 0.52m Coordinates: 313916 6295355 Drilling Contractor: Ultra Drilling Waterbores

Page1of3

Drill Type	Elevation (RL)	Depth (m)	Piezometer Design	Photo Log	Graph Loç		Additional Information
Auger	225 —	0		NON-	··· <u>···</u> ···	Clayey Sand- orange to brown, fine to coarse grained, subrounded to rounded grains	Topsoil 0 - 0.3m
	224 —	2		AND IN COLUMN	· · · · · · · · · · · · · · · · · · ·	Clayey sand- light brown to red, coarse grained, subrounded to rounded grains	Feruginised chips
	223 —	- 3			· · · · · · · · · · · · · · · · · · ·	Clayey Sand- red to light orange, fine to coarse grained, subrounded to rounded grains	
	222 —	4		and a state	· · · · · · · · · · · · · · · · · · ·	Clayey Sand- red to light brown, fine to coarse grained, rounded to subrounded grains	Feruginised Chips
	221 —	- 4 - 5				Clay- Pink to red	Some cream clay
Bit	220 —	6					
Blade Bit	219 — 218 —	7				Clay- Pink to red	Some silt
	217 —	- 8 - 9		C.M.			
	216 — 215 — 214 — 213 —					Clay- Cream to pink- silty	Water seapage @12m
	212 — 211 —		4			Clay- Red, no sand	
er Bit	210 — 209 —		6			Pebbly Sand- light orange, fine to very coarse grained, subrounded to rounded grains	
Hammer Bit	208 — 207 — 206 —	1 1 1 2	8 8 8	A SA		Pebbly Sand- orange to light orange, fine to very coarse grained, subrounded to rounded grains	

Logged By: MA	Checked By GT (12/01/2017)	Version: 2801_HMA_DO_LOG_MW9

Name of Hole: MW9

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313916 6295355 Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA Date Commenced: 19/12/2016 Date Completed: 19/12/2016 Surface RL:225.577 m Collar Height: 0.52m Coordinates: 313916 6295355 Drilling Contractor: Ultra Drilling Waterbores

Page2of3

Drill Type		pth Piezome m) Design	ter Photo Log	Graphic Log	Description	Additional Information
	205 — 204 —	21	Area Carl	· · · · · · · · · · · · · · · · · · ·	Sand- orange to pink, fine to coarse grained, subrounded/subangular to rounded grains	
	203 — 202 — 201 —	- 22 23			Sand- light brown, fine to coarse grained, subrounded/subangular to rounded grains	Feruginised chips
Hammer Bit	200 —	- 25 - 26 - 27 - 28 - 29 - 30			Sand- brown to orange, fine grained	Feruginised chips
Hamm	195	- 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38			Sandstone- brown to light orange	Hardness progressively increasing
	186 —	- 39 🗙 🕺	and the second		Sandstone- light orange to red	

Logged By: MA	Checked By GT (12/01/2017)	Version: 2801_HMA_DO_LOG_MW9

Name of Hole: MW9

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313916 6295355 Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA Date Commenced: 19/12/2016 Date Completed: 19/12/2016 Surface RL:225.577 m Collar Height: 0.52m Coordinates: 313916 6295355 Drilling Contractor: Ultra Drilling Waterbores

Page3of3

Drill Elevation Depth Piezometer Type (RL) (m) Design	Photo Graphic Log Log	Description	Additional Information
185		Sandstone- light brown	Water injeted @49m
175 51 51 174	Но	le Terminated in Hawkesbury Sandstone	
└─ 52			
	wursed from handheld devices	urvey conducted post exploration.	
Other Information: GPS Coordinates so Stratum contacts de	etermined by hardness, colour, s	ample recovery and lithololgical analysis.	

Name of Hole: MW10

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 314122 6295186 Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA Date Commenced: 12/12/2016 Date Completed: 14/12/2016 Surface RL: 217.124m Collar Height: 0.49m Coordinates: 314122 6295186 Drilling Contractor: Ultra Drilling Waterbores

Page:1 of 3

Drill [Type	Elevation (RL)	Depth (m)	Piezometer Design	· Photo Log	Graphi Log		Additional Information
Auger	217	0		Hart		Silty Clay - Orange to grey	Topsoil 0-0.2m
	215 —	2				Clay- red to cream, no sand	
	214 —	- 3		STA'		Clay- red, no sand	Some Silt
	213 — 212 — 211 —					Clay- cream to red, no sand	Some Silt
	210 —	7				Clay- red to orange, no sand	
Blade Bit	209 —	8		R.		Clay- pink to cream, no sand	
B	208 —	9		AST P		Clay- pink to purple, no sand	Some Silt
	207 —			- And		Sand- light orange, fine grained, subrounded to rounded grains	Some Clay
	206 — 205 — 204 —		2				
	203 — 202 —	1	3 4 5			Sand- dark orange, fine to very coarse, grained, subrounded/subangular to rounded grains	Not hammering @ 18m
	201 —	- 1	6	and the second			
	200 —	- 1	7				
er Bit	199 —	1		No.			
Hammer Bit	198 — 197	1 2	9	S Stand	· · · · ·		

Logged By: MA	Checked By: GT (12/01/2017)	Date: 2801_HMA_DO_LOG_MW10_V2

Name of Hole: MW10

(RL)

Project Number: 2801

Туре

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 314122 6295186 Location: Off Roberts Road, Maroota, NSW Logged by: MA

Drill Elevation Depth Piezometer

(m)

Design

MAROOTA Date Commenced: 12/12/2016 Date Completed: 14/12/2016 Surface RL: 217.124m Collar Height: 0.49m Coordinates: 314122 6295186 Drilling Contractor: Ultra Drilling Waterbores

Graphic

Log

Photo

Log

Page:2 of 3
Additional
Information

			•		
	196 — 21		。 。 。 。	Pebbly Sand- orange to red, coarse to very coarse, subrounded to rounded grains	Not hammering
	195 — 22				
	194 — 23				
	193 — 24			Sand- cream to light orange, fine to medium grained, subrounded/subangular to rounded grains	Not hammering
	192 — 25				
	191 — 26			Sand- orange, fine to coarse grained, subrounded/subangular to rounded	Not hammering
	190 — 27		••••	Dahlah Qanda ninkta anang fina ta yang sang	
			•••	Pebbly Sand- pink to orange, fine to very coarse grained, subangular to rounded grains	Not hammering, minor clay bands
	189 — 28	·	· · ·	<u> </u>	
Hammer Bit	188 — 29		•••	Pebbly Sand- pink to cream, coarse to very coarse, subrounded to rounded grains	Not hammering, minor clay bands
l m	187 — 30		• • •	Pebbly Sand- Pink to light brown, coarse to very	
Ha	196 21		•••	coarse grained, subrounded to rounded grains	Hammering
	186 <u>31</u> 185 <u>32</u>		· · ·	Pebbly Sand- pink to red, coarse to very coarse grained, subangular/subrounded to rounded	
	105 52		· · ·	grains	
	184 — 33		••••		
	183 — 34		· • .		
	182 35		. 0	Pebbly Sand- pink to red, coarse to very coarse grained, subangular/subrounded to rounded Wate grains	Water seepage
	181 — 36		• •	9. 2000	
	180 37		· · ·		
	179 — 38		•••		
	178 — 39		•••		
	177 40		••••		

Logged By: MA	Checked By: GT (12/01/2017)	Date: 2801_HMA_DO_LOG_MW10_V2

Name of Hole: MW10

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 314122 6295186 Location: Off Roberts Road, Maroota, NSW Logged by: MA

Date Commenced: 12/12/2016 Date Completed: 14/12/2016 Surface RL: 217.124m Collar Height: 0.49m Drilling Contractor: Ultra Drilling Waterbores

MAROOTA

Additional

Page:3 of 3

Graphic Photo **Drill Elevation Depth Piezometer** Description Information Log Log Type Design (m) (RL) 176 Δ. Pebbly Sand- brown, coarse to very coarse grained, subrounded to rounded grains 175 174 43 Hammer Bit 173 44 \sim 172 45 С 171 46 Pebbly Sand- red, coarse to very coarse grained, subangular/subrounded to rounded grains 170 0 169 Pebbly Sand- pink to orange, some very coarse to coarse grains, subrounded to rounded 168 40 Hole Terminated in Hawkesbury Sandstone as 167 50 determined by drill penetration rates and colour change in drill water. No sample retained 166 51 165 -- 52 Other Information: GPS Coordinates sourced from handheld devices. Survey conducted post exploration. Stratum contacts determined by hardness, colour, sample recovery and lithololgical analysis.

Logged By: MA Checked By: GT (12/01/2017) Date: 2801 HMA DO LOG MW10 V2

Name of Hole: MW11

MAROOTA Date Commenced: 20/12/2016 Date Completed: 21/12/2016

Vote Environmental Compliance Solutions

Page:1of2

 Project Number: 2801
 Surface RL: 192.349m

 Client: Hodgson Quarry Products
 Collar Height: 0.7m

 Project: Drilling Operations/ Groundwater Study Coordinates: 314176 6295788

 Location: Off Roberts Road, Maroota, NSW
 Drilling Contractor: Ultra Drilling Waterbores

 Logged by: MA

Drill Type		Depth (m)	Piezometer Design	Photo Log	Graphic Log	Description	Additional Information
	192 —			San Co		Sand- light brown to grey, fine to very coarse grained,	
Blade Bit	191 — 190 —	2				Sand- brown to orange, fine to very coarse grained, subrounded to rounded grains	
	189 — 188 —	3 4				Sand- orange, fine to very coarse grained, subrounded to rounded grains	
	187 — 186 —	- 5 - 6	= = 🕅			Pebbly Sand- orange to brown, fine to very coarse, rounded to subrounded	
	185 — 184 —					Pebbly Sand- red, coarse to very coarse grained, subrounded to rounded grains	
r Bit	183 — 182 — 181 —				· · · · · · · · · · · · · · · · · · ·	Pebbly Sand- orange, coarse to very coarse grained, subrounded to rounded grains	
Hammer Bit	180 — 179 —		3			Sand- red, coarse to very coarse grained, subrounded to rounded grains	
	178 — 177 — 176 —	1 1 1	4 5 6			Sand- orange, coarse to very coarse grained, subrounded to rounded grains	
	175 — 174 —	1 1 1	7			Sand- orange, coarse to very coarse grained, subrounded to rounded grains	
	173 —	-		\$2.64	· · · ·	Clay- White, some medium to fine grained sand	

Logged By: MA	Checked By: GT (12/01/2017)	Version: 2801_HMA_DO_LOG_MW11_V2

Name of Hole: MW11

MAROOTA Date Commenced: 20/12/2016 Date Completed: 21/12/2016 Surface RL: 192.349m Collar Height: 0.7m

Page:2of2

 Project Number: 2801
 Surface RL: 192.349m

 Client: Hodgson Quarry Products
 Collar Height: 0.7m

 Project: Drilling Operations/ Groundwater Study
 Coordinates: 314176 6295788

 Location: Off Roberts Road, Maroota, NSW
 Drilling Contractor: Ultra Drilling Waterbores

 Logged by: MA
 Maroota, NSW

Drill Type	Elevation (RL)	Depth (m)	Piezometer Design	· Photo Log	Graphic Log	Description	Additional Information
					•	Dobbly Sand brown coarse to yory coarse	

		172 —		Contraction of the second	••••	Pebbly Sand- brown, coarse to very coarse subrounded/subangular to rounded grains	
		171 —	— 21 — 22				
		170 —	— 23			Clay- purple to pink	
	Bit	169 —	— 24				
	Hammer E	168 —	— 25			Pebbly Sand- pink to orange coarse to very coarse grained, subrounded to rounded grains	
	Han	167 —	— 26				
		166 —				Pebbly Sand- light brown, coarse to very coarse grained, subrounded to rounded	
		165 —	- 27		· · · ·		
		164 —	— 28		· · · ·	Pebbly Sand- light brown, coarse to very coarse grained, subrounded to rounded	
-	I	163 —	- 29			Sandstone-orange, coarse to very coarse grained, subrounded to rounded clasts	
		l	— 30-			Hole terminated in Hawkesbury Sandstone	

Logged By: MA	Checked By: GT (12/01/2017)	Version: 2801_HMA_DO_LOG_MW11_V2

Name of Hole:MW12

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313902 6295583 Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA Date Commenced: 08/12/2016 Date Completed: 08/12/2016 Surface RL: 210.275m Collar Height: 0.48m

Drilling Contractor: Ultra Drilling Waterbores

Page:1	of 2
dditional	

Drill Type	Elevation De (RL) (I		Piezomete Design	er Photo Log	Graphic Log	Description	Additional Information
	210	0		CALE OF		Sand- orange to dark orange coarse to very coarse grained, subrounded to	
	209	- 2				rounded grains Sand- dark orange, fine to coarse grained, subrounded to rounded grains	Feruginised chips, some clay bands
	207 —	- 3		1000		Sand- orange to red, fine to coarse grained, subrounded to rounded	Feruginised chips
	206 —	- 4		C.W.		Sand- red to cream, fine to medium grained, subrounded to rounded grains	Feruginised chips
Blade	205	- 5		Carlos and a second		Silty Sand- cream to light orange, fine to medium grained, subrounded to rounded grains	
Bla	204 —	- 6		The case			
	203 —	- 7				Sand- cream, fine to medium grained,	
	202 —	- 8		CR. CA		rounded to subrounded grains	
	201 —	- 9					
	200 —	- 10				Sand- cream to pink fine to medium grained, subrounded to rounded grains	Water seepage
	199 —	- 11		GEN.		Sand- pink to light brown, fine grained, subrounded to rounded grains	
	198	- 12 - 13		a the			
	197	- 14		0.0			
ier Bit	195 —	- 15		and a		Sand- cream to light brown, very coarse to coarse grained, subrounded to rounded grains	
Hammer Bit	194 —	- 16		The			
	193 —	- 17		1 Si		Sand- cream to light brown, coarse to very	
	192 —	- 18		ALC REAL		coarse, rounded to subrounded grains	
	191 —	- 19					
	190	_ 20					

Logged By: MA	Checked By GT (12/01/2017)	Version: 2801_HMA_DO_LOG_MW12_V2

Name of Hole:MW12

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313902 6295583 Location: Off Roberts Road, Maroota, NSW Logged by: MA

MAROOTA Date Commenced: 08/12/2016 Date Completed: 08/12/2016 Surface RL: 210.275m Collar Height: 0.48m Coordinates: 313902 6295583 Drilling Contractor: Ultra Drilling Waterbores

Page:2of2

Туре		Depth (m)	Piezometer Design	Photo Log	Graphic Log	Descri	otion	Additional Information
ir Bit	189 — 188 — 187 —	— 21 — 22 — 23				Sand- brown to light bro subrounded to	own, fine to coarse, o rounded	Not Hammering
Hammer Bit	186 — 185 — 185 — 184 —	24				Sandstone- grey to brow grained, subrounded	wn, fine to medium to rounded grains	Shale laminations, hard
	183 —	20				Hole Terminated in Haw	kesbury Sandstone	
)ther I	nformation					ces. Survey conducted post lour, sample recovery and lit		

Name of Hole:MW13

(RL)

Project Number: 2801

Type

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313915 6295358 Location: Off Roberts Road, Maroota, NSW Logged by: MA

Drill Elevation Depth Piezometer

(m)

Desian

MAROOTA Date Commenced: 07/12/2016 Date Completed: 07/12/2016 Surface RL: 225.497 m Collar Height: 0.46m

Graphic

Log

Photo

Log

Drilling Contractor: Ultra Drilling Waterbores

Description

Additional

Information

Page 1 of 2

212 0 Silty Sand- orange to light orange, medium to coarse grained, round to subrounded 211 1 grains Some Feruginised Silty Sand- red to orange, medium to chips coarse grained, round to subrounded grains 210 2 Silty Sand- deep red to red, fine to medium grained, rounded to subrounded 209 3 Clayey Sand- red to light brown, fine to very coarse grained, rounded to subrounded 208 Δ grains Clay- white, some fine grain sand 207 5 Clay- cream to pink Some silt 206 6 205 7 204 8 203 9 Hammer Bit Some Feruginised Clay- purple to pink chips 202 10 201 11 200 12 199 13 Clay-pink to cream 198 Silty Clay- red to purple 197 15 Sand- orange, coarse to very coarse Sand @15.2 grained, rounded to subrounded grains 196 16 Pebbly Sand- orange, coarse to very coarse, rounded to subrounded 195 17 Sand- white to light orange, medium grained, subrounded to rounded 194 18

Sand- white to light orange, coarse to very 193 19 coarse, rounded to subrounded 192 20

Other Information: GPS Coordinates sourced from handheld devices. Survey conducted post exploration. Stratum contacts determined by hardness, colour, sample recovery and lithological analysis.

Logged By: MA Checked By Version: 2801 HMA DO LOG MW13 V2

Name of Hole:MW13

Project Number: 2801

Client: Hodgson Quarry Products and Plant Project: Drilling Operations/ Groundwater Study Coordinates: 313915 6295358 Location: Off Roberts Road, Maroota, NSW Logged by: MA

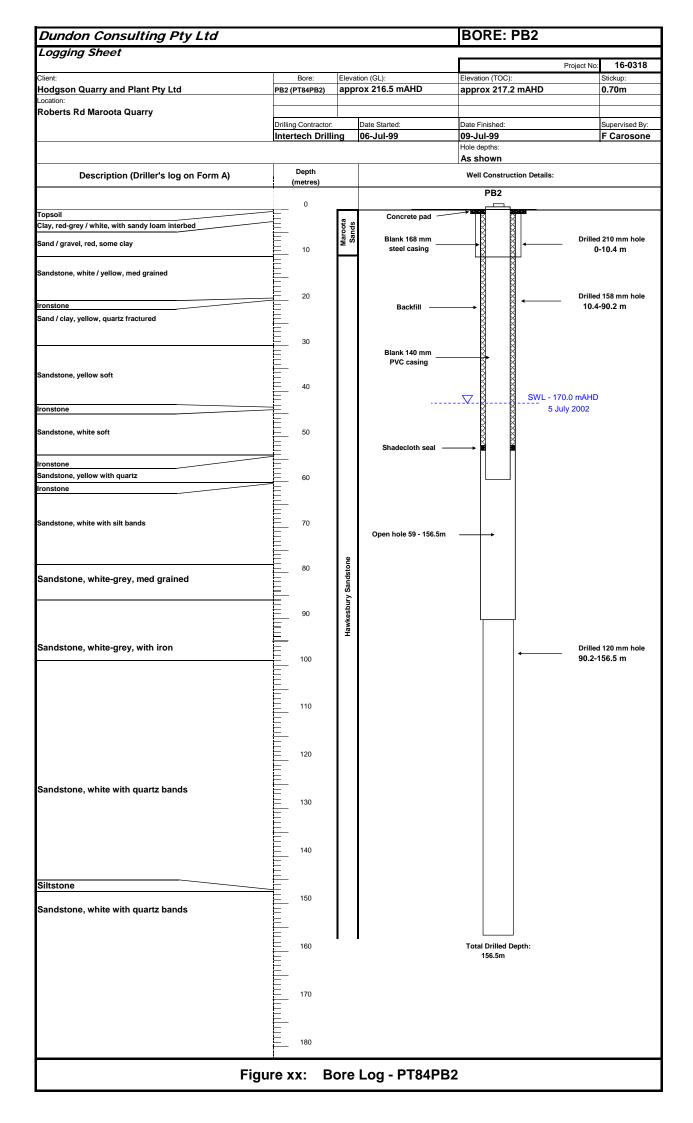
MAROOTA Date Commenced: 07/12/2016 Date Completed: 07/12/2016 Surface RL: 225.497 m Collar Height: 0.46m

Drilling Contractor: Ultra Drilling Waterbores

Drill I Type	Elevation (RL)		Piezometer Design	Photo Log	Graphic Log	Description	Additional Information
	191 —	_ 2	1	-m	· · · · ·	Pebbly Sand- red to light brown, fine to very coarse grained, rounded to subrounded grains	Some clay bands
	190 —	_ 2	2H H.		· • •	Pebbly Sand-light brown, fine to coarse grained, rounded to subrounded grains	
	190	2				Sand- light brown to pink, fine grained	
	189 —	- 2	3 8	A C			
Bit	188 —	_ 2	4	State of the second sec		Sand- white to cream, fine grained	Water seepage @ 25m
Hammer Bit	187 —	_ 2	5	114			
Ha	186 —	_ 2	6			Sand- orange to light orange, medium to coarse grained, round to subrounded grains	
	185 —					course grained, round to subrounded grains	
	184 —	2		VITER .		Cond orongo to light red medium to come	
	183 —	2				Sand- orange to light red, medium to coarse grained, rounded to subrounded/subangular	
	182 —					Sand- orange to light red, medium to coarse grained, rounded to subrounded/subangular	Increasing hardness
	-181	- 3	1 ******			Hawkesbury Sandstone- white to light orange, fine grained*	
	180 —	<u> </u>	2			Hole terminated	
	179 —	— 3	3				
	178 —	- 3	4				
	177 —	— 3	5				
	176 —	— з	6				
	175 —	- 3	7				
	174 —	L 3	8				
Other II	nformation					vices. Survey conducted post exploration. colour, sample recovery and lithololgical analysis.	
.ogged	By: MA			Checked	Ву	Version: 2801_HMA_DO_	LOG_MW13_V2

		WO	ODWAH	RD - CLYDE	e
LOCA	CT : Dr.Martin EIS, Process Water Supply TION: Roberts Road, Maroota, NSW VISOR: Fabio Carosone	- ·		JOB NO.: TE STARTED: COMPLETED:	A8602019.2 28.6.1999 6.7.1999
	e e e e e e e e e e e e e e e e e e e	METHOD: TOTAL DEPTH : SWL: NORTHING:	air/muđ 126 m 14.8m b.g.	DIAMETER: R.L. GROUND: R.L.DATUM: R.L. SWL :	158 ភាគា កា កា កា
	WELL NUMBER:	PT84PB1			
<u></u>	Lithological Log	Remarks	Depth (m)	Bore Constr	ruction
0-1.5 1.5-3 -8) 4.8-7 7-9 9-11.3 11.3-11.5 11.5-17.3	CLAY: grey mottled purple and brown, moist, plastic	blade biı	5 10 / 15 20 25		158 mm Steel Casing Concrete pad Backfill 200mm dia.hole Steel casing, 158mm ID 168 mm OD Welded joints
17.3-18 18-20 20-23.5 23.5-24 24-24.2	@12m grey brown CLAY: red-brown, high sand content CLAY: grey-red and orange, moist, plastic, with some brown red sand CLAY: grey, light grey, plastic CLAY: light brown, yellow and mottled purple. Some grit at 24m FERRICRETE: dark brown/red, hard	D.H.Hammer	30	28.5 28.85	base of 200 mm hole Base of casing

11.2-11.2	PERRICKE / E: bark red, naro			- 国		
11.5-17.3	CLAY: grey mottled purple and brown, moist, plastic		25			
	@12m grey brown		1			
17,3-18	CLAY: red-brown, high sand content		1		28.5	base of 200 mm hole
18-20	CLAY: grey-red and orange, moist, plastic, with some brown red sand		30	1 1	28.85	Base of casing
20-23.5	CLAY: grey, light grey, plastic	D,H.Hammer	[
23.5-24	CLAY: light brown, yellow and mottled purple. Some grit at 24m					
24-24.2	FERRICRETE: dark brown/red, hard		35			
24.2-26.1	CLAY: as @ 23.5-24	Ĺ		Į Į		
26.1-34	SANDSTONE: grey, fine/med qtz grains, weathered, clayey	r				158 mm hole
	@27 m white grey, @27.5m harder		40	1 1		D.H.Hammer
3)	FERRICRETE: dark brown/red. hard					
34,1+41 1	SANDSTONE; grey white, fine to med., subang /subrd, sorted qtz grains					
41-42	CLAY: light grey and purple		45			
42-16	SANDSTONE: as @ 34.1-41			}		
46-48	FERRICRETE: brown, in several thinner bands				←	 open hole
48-51	SANDSTONE: as above		50			
3 1-58	SANDSTONE: brown, and orange, fine grained, med hard					
	@53m grey white					
	@56m yellow brown, iron-rich bands, fine/med.		55			
58-58.5	SILTSTONE: grey/black, harder than above, fine grained					
58.5-59.5	SANDSTONE: grey, medium grained					
59.5-62.5	SILTSTONE: dark grey, shaley, fine grained, hard		60			
62.5-66	SANDSTONE: orange, fine to medium grains					
					ļ	
			65		Į.	
66-68	SANDSTONE: grey, white, fine to medium					
68-74	SANDSTONE: yellow, iron-rich, medium					
			70			
			· · · · · · · · · · · · · · · · · · ·			
			ļ			
74-78	SANDSTONE: yellow, iron-rich, white and brown		75			
	er = - = + er - orgenerer neurstelleritete and ere ert					. []
78-84	SANDSTONE: dark grey, bard					Ļ
	@79.5m light orange/brown		80]	, , , , , , , , , , , , , , , , , , ,
			<u> </u>		_ <u></u>	


\$:\A8602019.2\PT84P81\10/11/99\FC

	WOODWARD - CLYDE						
PROJECT : Dr. Martin ElS, Process Water Supply LOCATION: Roberts Road, Maroota, NSW SUPERVISOR: Fabio Carosone	•••••••		JOB NO.: E STARTED: COMPLETED:	A8602019.2 28.6.1999 6.7.1999			
INSTALLED BY: Intertech Drilling Services RIG: Intertech 750 DATUM m.above concrete/ground EASTING:	METHOD: TOTAL DEPTH : SWL: NORTHING:	air/mud 126.1 m m b.d.	DIAMETER: R.L. GROUND: R.L.DATUM: R.L. SWL :	158 mm m m m			
WELL NUMBER	: PT84PB1						
Lithological Log	Remarks	Depth (m)	Bore Const	ruction			
 34-102 SANDSTONE: grey, hard/medium hard @86m iron-rich bands) @90m some grey clay @96m minor iron rich bands 		85 90 7 95 100					
firmer. @104m milky whitegravel pebbles (2 mm) @112m some coarse qiz pebbles @115m some coarse qiz pebbles		105 110 115 120		open hole 158 mm hole D.H.Hammer			
		125					
126.1 Bottom of the hole		130 135 140 145 150	L 126.1	Bouom of the hole			

LOCA	CT : Dr.Martin EIS, Process Water Supply TION: Roberts Road, Maroota, NSW RVISOR: Fabio Carosone			JOB NO.: E STARTED: COMPLETED:	A8602019.2 6.7.1999 9.7.1999	
	5	METHOD: TOTAL DEPTH : SWL: NORTHING:	air 156.5m 50.9m b.g.	DIAMETER: R.L. GROUND: R.L.DATUM: R.L. SWL ;	158 mm m m m	
	WELL NUMBER	: PT84PB2				
	Lithological Log	Remarks	Depth (m)	Bore Const.	ruction	
					158 mm Steel Casing	
					Concrete pad	
0-0.5	TOPSOIL: sandy loam, red brown					
0.5-1.5	CLAY: red, sandy, some ferricrete		5		200mm dia hole	
1.5-2	CLAY: grey/white, stiff SAND: red, weakly cemented, hard band	blade bit			 Steel casing, 158mm ID 	
)] 2.5-2.7	CLAY: white/grey, stiff				168 mm OD	
2.7-4	SAND: red/orange, fine to medium, sorted qt2 grains. Some clay		10	ШШ	welded joints	
.+-4.1	CLAY: grey/white, stiff, dry	D.H.Hammer	1	10.4	base of 200mm casing	
4.1-5 5-5.5	SAND; as above with thin iron cemented bands CLAY; grey/white	D.A.Aammer	15			
5.5-9	SAND: orange, med/fine, sorted, subrnd qtz grains					
9-10.2	CLAY: yellow/orange, stiff, with thin layers of gravel					
	@10.2m hard		20	←	- Backfill	
10.2-15.5						
15-18	SANDSTONE: yellow/brown, firm, some orange clay @17m some ferricrete bands		25			
18-25	SANDSTONE: grey with coarse gtz pebbles and iron cement					
i	@19.5m ferricrete, 5 cm layers					
25-31	SANDSTONE: much as above, with very coarse qtz gravel pebbles		30			
	with iron stains and cement. Weakly cemented, soft					
31-32 32-36.5	CLAY: grey, soft, plastic CLAY: dark red and yellow matrix, gravelly		35			
36.5-41.5	some grey clay and ferricrete, poor sample, unconsolidated.soft	Í				
	· · · · · · · · · · · · · · · · · · ·			│	158 mm hole	
,			40		D.H.Hammer	
() 	SANDSTONE: grey/dark grey, harder and ferricrete bands					
43-45	©42m red purple colour CLAY: grey and purple, stiff		45			
	@43.5m ferricrete bands					
45-49. 5	CLAY: red/orange			│	125 mm PVC casing	
	@48.5m ferricrete bands		50		spigousocket glued	
49.5-54	SANDSTONE: grey, fine grained, some light yellow colour				abody alash aval	
5 4 A S	@S3.5m ferricrete bands SANDSTONE: grey and yellow, medium, sorted, subrad qtz grains.		55	2 2 53	shade cloth seal	
54-60.5	gravelly bands, minor ferricrete bands					
			60	59 <u>-</u> 5	base of PVC casing	
50.5-63.5	SILTSTONE: grey/dark grey, sublaminar and hard					
			66			
53.5-66 56-66.5	SANDSTONE: yellow/grey, harder SANDSTONE: red, with ferricrete bands, medium grained		65			
56 .5- 70	SANDSTONE: grey/yellow, as above					
0-75.5	SILTSTONE: grey/dark grey, laminar		70			
				<	158 mm hole	
			75		D.H.Hammer	
5.5-78.5	SANDSTONE: grey/while, medium grained					
8.5-83	SILTSTONE: grey/dark grey, as above		80			

APPENDIX B

BORE LOGS – DPI-WATER MONITORING BORES

NSW Office of Water Work Summary

GW075003

Licence:

Licence Status:

Authorised Purpose (s): Intended Purpose(s): MONITORING BORE

Final Depth: 109.00 m

Drilled Depth: 109.00 m

Standing Water Level (m): Salinity Description: Fresh

Yield (L/s):

Work Type: Bore Work Status: Instrumented Construct.Method: Rotary Owner Type: NSW Office of Water

Commenced Date: Completion Date: 01/07/1997

Contractor Name: JH ISELT PTY LTD Driller: John Hans Iselt Assistant Driller:

Property:

GWMA: GW Zone:

Site Details

Site Chosen By:

	Form A: Licensed:	County CUMBERLAND	Parish MAROOTA	Cadastre LT2 DP228308
Region: 10 - Sydney South Coas	t CMA Map:	9031-2S		
River Basin: 212 - HAWKESBURY RI Area/District:	IVER Grid Zone:		Scale:	
Elevation: 225.34 m (A.H.D.) Elevation R.L. at W.L.M.Pt. Source:	•	6295298.400 313869.800		33°27'56.2"S 150°59'49.5"E
GS Map: -	MGA Zone:	56	Coordinate	PR.,ACC.MAP

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From	То	Outside	Outside Inside		Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	3.00	200			Rotary Air
1		Hole	Hole	3.00	24.00	160			Rotary Air
1		Backfill	Backfill	0.00	24.00				
2		Hole	Hole	0.00	3.00	200			Rotary
2		Hole	Hole	3.00	109.00	160			Rotary
2		Backfill	Backfill	3.00	68.50				
2		Annulus	Waterworn/Rounded	70.00	86.00	160			Graded
2		Backfill	Backfill	86.00	109.00				
2	1	Casing	P.V.C.	-0.75	84.50	90	80		Seated on Bottom, Screwed and Glued
2	1	Opening	Screen	72.00	75.00	90		1	PVC Class 12, , A: 0.50mm

Source:

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
55.00	55.50	0.50	Unknown	50.00	60.00	0.05	60.00		
72.50	74.00	1.50	Unknown	45.00	80.00	0.45	80.00		
82.00	83.00	1.00	Unknown	47.80	109.00	0.25	109.00	01:00:00	

Drillers Loa

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)	-	-	
0.00	0.20	0.20	Topsoil	Topsoil	
0.20	3.30		Sandy Clay	Clay	
3.30	6.40	3.10	Clay White	Clay	
6.40	14.60		Clay Red	Clay	
14.60	23.70	9.10	Sand Coarse	Sand	
23.70	55.00	31.30	Sandstone Yellow	Sandstone	
55.00	55.50	0.50	Sandstone Yellow WB	Sandstone	
55.50	70.00	14.50	Sandstone Yellow	Sandstone	
70.00	72.50	2.50	Mudstone Grey	Mudstone	
72.50	74.00	1.50	Sandstone Grey WB	Sandstone	
74.00	82.00	8.00	Sandstone Yellow	Sandstone	
82.00	83.00	1.00	Sandstone Yellow WB	Sandstone	
83.00	93.70	10.70	Sandstone Yellow	Sandstone	
93.70	95.50		Shale/Mudstone	Mudstone	
95.50	100.50		Sandstone Grey	Sandstone	
100.50	104.00	3.50	Mudstone Grey	Mudstone	
104.00	109.00	5.00	Sandstone Yellow	Sandstone	

Remarks

01/07/1997: Form A Remarks:

Rem: Backfilled from 109m to 86m, Bento Plug from 86m to 84.5m, Gravel pack from 84.5m to 70m, Bento Plug from 70m to 68.5m, Backfilled to 3m, Bento Plug from 3m to 1m.

Hole 1 Abandoned due to loss of circulation through gravel layers.

01/08/1997: Hole 1 Abandoned due to loss of circulation through gravel layers.

11/02/1998: Drilled depth 109 m. Slotted depth 72 - 75 m.

11/02/1998: Top of PVC casing 226.339 metres AHD RL Ground = 225.459m

Top of PVC casing used as zero reference point.

11/02/1998: New equipment installed.

Dataflow model 392 datalogger in, s/n 42236

Dataflow 3 metre capacitance sensor in, s/n unknown.

26/02/1999: Sensor calibrated.

Calibrated slope -3005

Calibrated offset 10961.5

26/02/1999: Sensor o-ring set to 45.7 m. below PVC casing.

20/03/2001: Logging interval changed to 12 hours.

29/05/2002: Datalogger/sensor replaced.

Dataflow model 392 datalogger out, s/n 42236

Dataflow 3 metre capacitance sensor out, s/n unknown

Diver TD sensor/datalogger in, s/n 29122

29/05/2002: Sensor tip set to 48.14 m. below PVC casing.

29/05/2004: 0.1 m. data resolution from this point.

22/09/2004: Access too site restricted by dumping of guarry spoil 75004.jpg

- 22/09/2004: Data collection
- 07/05/2005: data collection

08/03/2006: Loggers removed for cal check 14/03/2006: Logger re installed post cal check

13/07/2006: Combo lock installed (7232)

13/07/2006: GW075003 - From Parramatta take Windsor Rd too BaulkHam Hills

Turn right into OLD Northern RD at Bull & Bush Hotel

Follow Old Northern Rd, through Castle Hill, Dural, Glenorie & Sth Maroota continue towards Maroota

At Roberts Rd go approx 20m further along Old Northern Rd and turn right into second gate near cottage.

Turn left and follow along fence line for approx 20m

Bore (yellow standpipe) is located near fence line.

Access to this site requires the completion of "Site Induction/sign in-out" from the Sand Mine operator located in Roberts Rd, Maroota.

HB Maroota Pty Ltd C/- Ralph Betts P O Box 1778 GOSFORD NSW 2250

Ph 4368-4357 Mobile 0409-912536 Email hbresources@bigpond.com 13/07/2006: Access to this site requires the completion of "Site Induction" from Sand Mining company located in Roberts Rd, Maroota 27/11/2006: Conc pad too steel flange plate 0.585m Conc pad too PVC 8.885 27/11/2006: Download 02 19/10/2007: D/L #3; Dip SWL=49.49 (to PVC); EC=89; Temp=18.7 12/08/2008: Downloaded; Dip SWL=45.33m(to PVC); EC=97; Temp=18.7 12/08/2008: Sensor level set to 51.32m below PVC 22/01/2009: Downloaded; Dip SWL=45.06m(to PVC); EC=98; Temp=18.9 24/07/2009: Downloaded; Dip SWL=44.83m(to PVC); EC=99; Temp=18.7 24/01/2011: Site visited - Upon arrival Water Level = 46.84m EC = 99m/S Temp = 19.2 deg Instrument changed OUT: Baro S/N A5792 IN: Diver S/N 29123. Actual depth of sensor measured = 51.27m 07/04/2011: Site visited - Upon arrival Water Level = 47.57m EC = 95u/S Temp = 18.7 deg Instrument changed OUT: Baro S/N A5792 IN: Solinst S/N 63425. 01/06/2011: Site visited - Water level = 47.52m EC = 98U/m Temp = 18.6Deg Instrument swapped - OUT = Baro S/N 63425 IN = Solinst S/N 63830 02/08/2011: Site visited - Upon arrival Water Level = 46.011m EC = 99u/S Temp = 18.9 deg 21/09/2011: Site visited - Upon arrival Water Level = 46.718m EC = 99u/S Temp = 18.9 deg Logger Swapped as it gave a range of 0 - 4.096m? Tried to change the range to 0cm - 1000cm but failed to stick. OUT: solinst logger S/N 63830 IN: Diver logger S/N D3891 29/11/2011: Site visited - Upon arrival Water Level = 46.880m EC = 102u/S Temp = 18.9 deg 24/01/2012: Site visited - Upon arrival Water Level = 42.525m EC = 102u/S Temp = 18.7 deg 02/05/2012: Site visited - Upon arrival Water Level = 44.090m EC = 107u/S Temp = 18.7 deg 26/06/2012: Site visited - Upon arrival Water Level = 45.784m EC = 168u/S Temp = 18.5 deg 14/08/2012: Site visited - Upon arrival Water Level = 45.132m EC = 162u/S Temp = 18.6 deg 26/09/2012: Primary Client changed from GWSE to GWA on 26/09/2012. 24/10/2012: Site visited - Upon arrival Water Level = 46.202m EC = 161u/S Temp = 18.5 deg LOGGEr FAILED to DOWNLOAD Diver Baro logger removed S/No. = D3891 Troll logger installed S/No. = 320670 12/12/2012: Routine Site visit - Upon arrival Water Level = 45.823m EC = 117u/s Temp = 18.7 deg 14/03/2013: Routine Site visit - Upon arrival Water Level = 45.747m EC = 115u/s Temp = 18.9 deg 23/04/2013: Routine Site visit - Upon arrival Water Level = 46.023m EC = 115u/s Temp = 18.7 deg 06/08/2013: Routine Site visit - Upon arrival Water Level = 45.471m EC = 106u/s Temp = 18.7 deg Last logger level = 46.081m, Last logged Temp = 17.9 deg 09/10/2013: Routine Site visit - Upon arrival Water Level = 46.266m EC = 95u/s Temp = 18.7 deg Last logger level = 45.400m, Last logged Temp = 18.4 deg 20/03/2014: Routine Site visit: SWL = 47.585 m EC = 92u/s Temp = 18.8 deg Last logger level = 46.162m, Last logged Temp = 18.4 deg 15/05/2014: Routine Site visit: SWL = 47.448 m EC = 93 u/s Temp = 18.7 deg Last logger level = 47.608 m, Last logged Temp = 19.9 deg 27/05/2014: Routine Site visit: SWL = 47.405 m EC = 98 u/s Temp = 18.9 deg Last logger level = N/A m, Last logged Temp = N/A deg Cable extended 6m to approx 51m 22/07/2014: Routine Site visit: SWL = 47.535 m EC = 96 u/s Temp = 18.6 deg Last logger level = 47.403 m, Last logged Temp = 18.4 deg 09/10/2014: Regular site visit: SWL = 47.490 m Measured EC = 96 us/cm Measured Temp = 18.7 deg Last logged level= 47.526 m Last logged temp = 18.4 deg. Logger time 1 hour fast. Adjusted in editing. 04/02/2015: Regular site visit: SWL = 48.900 m Measured EC = 125 us/cm Measured Temp = 18.7 deg Last logged level= 47.940 m Last logged temp = 18.4 deg. Logger time 1 hour behind. Adjusted in editing. 20/08/2015: Regular site visit: SWL = 46.970 m Measured EC = 156 us/cm Measured Temp = 18.6 deg

*** End of GW075003 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW075004

Licence:

Licence Status:

Authorised Purpose (s): Intended Purpose(s): MONITORING BORE

Final Depth: 60.00 m

Drilled Depth: 60.00 m

(m):

Standing Water Level

Salinity Description: Fresh

Yield (L/s):

Work Type: Bore Work Status: Instrumented Construct.Method: Rotary Owner Type: NSW Office of Water

Commenced Date: Completion Date: 07/07/1997

Contractor Name: JH ISELT PTY LTD Driller: John Hans Iselt Assistant Driller:

Property:

GWMA: GW Zone:

Site Details

Site Chosen By:

		Form A: Licensed:	County CUMBERLAND	Parish MAROOTA	Cadastre LT2 DP228308
Region:	10 - Sydney South Coast	CMA Map:	9031-2S		
River Basin: Area/District:	212 - HAWKESBURY RIVER	Grid Zone:		Scale:	
	227.76 m (A.H.D.) R.L. at W.L.M.Pt.		6295287.700 313890.200		33°27'56.6"S 150°59'50.3"E
GS Map:	-	MGA Zone:	56	Coordinate	PR.,ACC.MAP

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component		From (m)	To (m)		Inside Diameter (mm)	Interval	Details
				0.00	04.00		(1111)		
1		Hole	Hole	0.00	24.00	200			Rotary
1		Hole	Hole	24.00	60.00	160			Rotary
1		Backfill	Backfill	3.00	28.00				
1		Annulus	Waterworn/Rounded	30.00	60.00				Graded
1	1	Casing	P.V.C.	-0.75	60.00	90	80		Seated on Bottom, Screwed
									and Glued
1	1	Opening	Screen	54.00	57.00	90		1	PVC Class 12, , A: 0.50mm

Water Bearing Zones

	<u> </u>				
		WBZ Type			
 		I		 1	

http://allwaterdata.water.nsw.gov.au/wgen/users/839111327//gw075004.wsr.htm

Source:

 From (m)	-	Thickness (m)		-		(L/s)	Hole Depth (m)		Salinity (mg/L)
53.00	54.00	1.00	Unknown	44.80	60.00	0.20	60.00	01:00:00	

Drillers Loa

			Drillers Description	Geological Material	Comments
(m)	(m)	(m)		<u></u>	
0.00	0.40	0.40	Topsoil	Topsoil	
0.40	7.50	7.10	Sand Coarse	Sand	
7.50	9.00	1.50	Clay Red/White	Clay	
9.00	15.50	6.50	Gravel Fine	Gravel	
15.50	19.70	4.20	Clay Red	Clay	
19.70	24.70	5.00	Gravel Fine	Gravel	
24.70	28.00	3.30	Sand Coarse	Sand	
28.00	32.50	4.50	Sandstone White	Sandstone	
32.50	37.90	5.40	Ironstone	Ironstone	
37.90	38.50	0.60	Clay Red/White	Clay	
38.50	53.00	14.50	Sandstone Yellow	Sandstone	
53.00	54.00	1.00	Sandstone Yellow WB	Sandstone	
54.00	60.00	6.00	Sandstone Yellow	Sandstone	

Remarks

07/07/1997: Form A Remarks:

Rem: Gravel pack from 30m to 60m, Bento plug from 30m to 28m, Backfill from 38m to 3m, Bento Plug from 3m to 1m

03/12/1997: Drilled depth 60 m. Slotted depth 54 - 57 m.

03/12/1997: Top of PVC casing = 227.764 metres AHD RL Ground = 226.894m

Top of PVC casing used as zero reference point.

04/02/1998: New equipment installed.

Dataflow model 392 datalogger in, s/n 42226

Dataflow 3 metre capacitance sensor in, s/n unknown 26/02/1999: Sensor calibrated.

Calibrated slope -2807

Calibrated offset 9654.299

26/02/1999: Sensor o-ring set to 43.11 m. below PVC casing.

03/05/2000: Logging interval set to 3 hours.

20/03/2001: Datalogger replaced.

Dataflow model 392 datalogger out, s/n 42226

Dataflow model 392 datalogger in, s/n 43231

20/03/2001: Logging interval changed to 12 hours.

29/05/2002: Datalogger/sensor replaced.

Dataflow model 392 datalogger out, s/n 43231

Dataflow 3 metre capacitance sensor out, s/n unknown Diver TD sensor/datalogger in, s/n 29093

Diver Barometric sensor/datalogger in, 27720

29/05/2002: Sensort tip set to 46.13 m. below PVC casing.

29/05/2004: 0.1 m. data resolution from this point.

- 22/09/2004: data collection
- 07/05/2005: data collection

08/03/2006: Logger removed for cal check

14/03/2006: loggers re installed post cal check

13/07/2006: new set level for sensor 51.30m 13/07/2006: GW075004 - From Parramatta take Windsor Rd too BaulkHam Hills

Turn right into OLD Northern RD at Bull & Bush Hotel

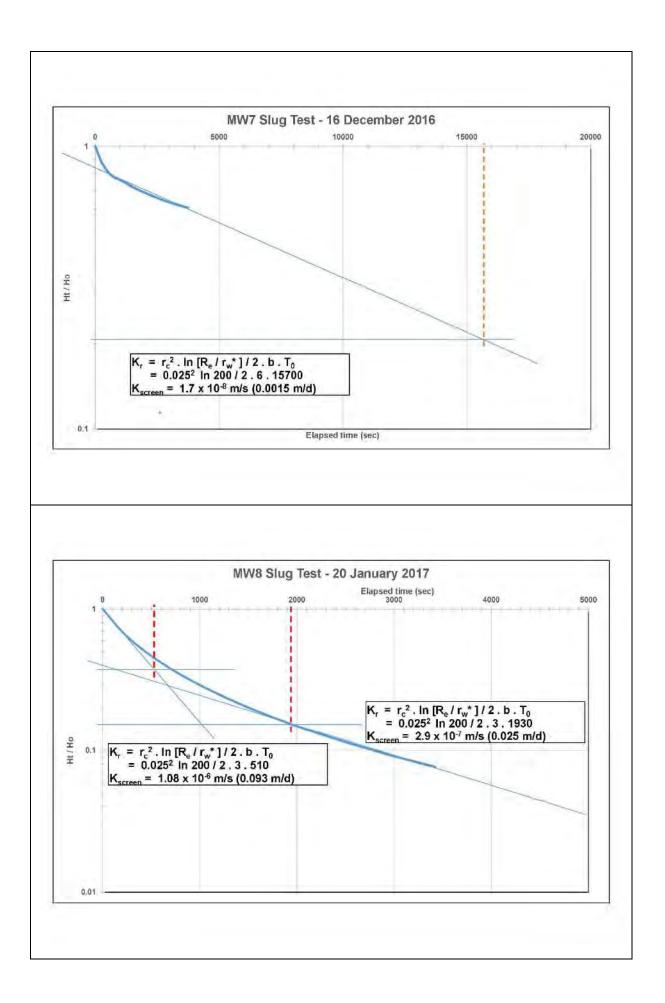
Follow Old Northern Rd, through Castle Hill, Dural, Glenorie & Sth Maroota continue towards Maroota At Roberts Rd go approx 20m further along Old Northern Rd and turn right into second gate near cottage.

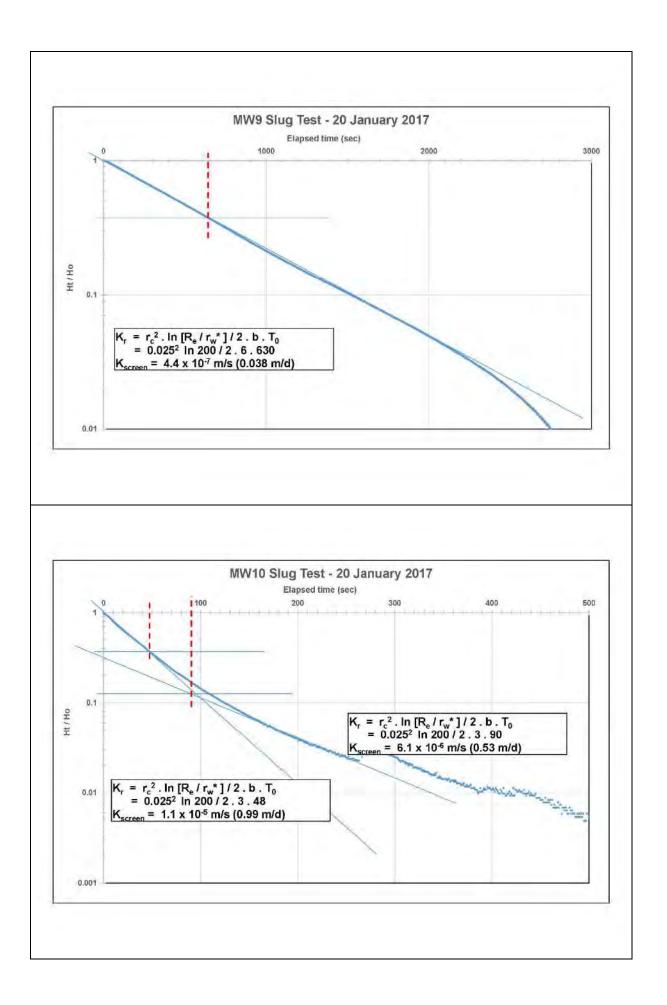
Turn left and follow along fence line for approx 20m

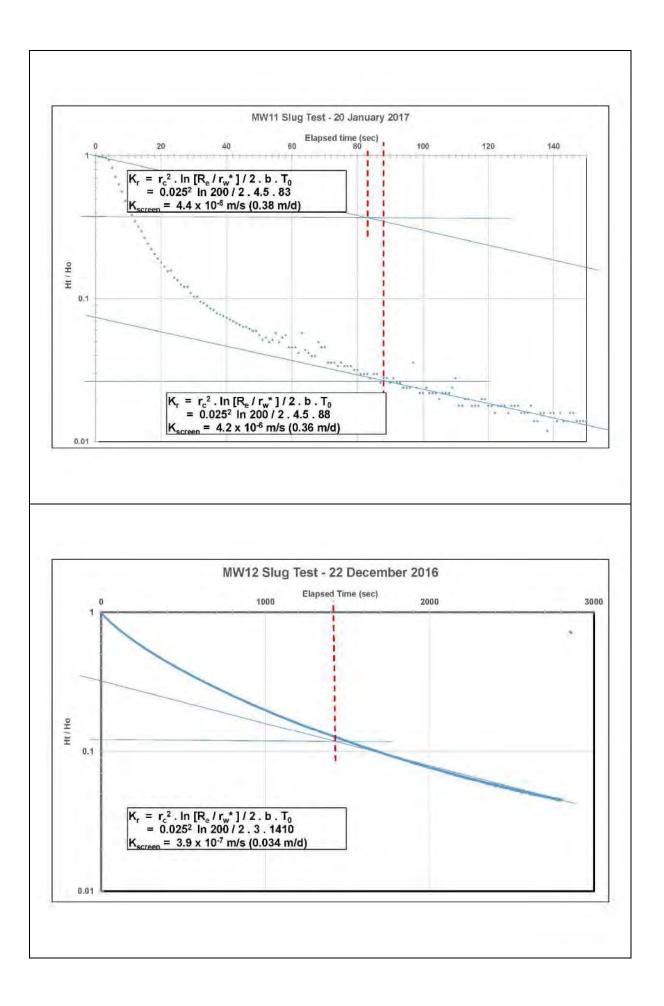
Bore (yellow standpipe) is located near fence line.

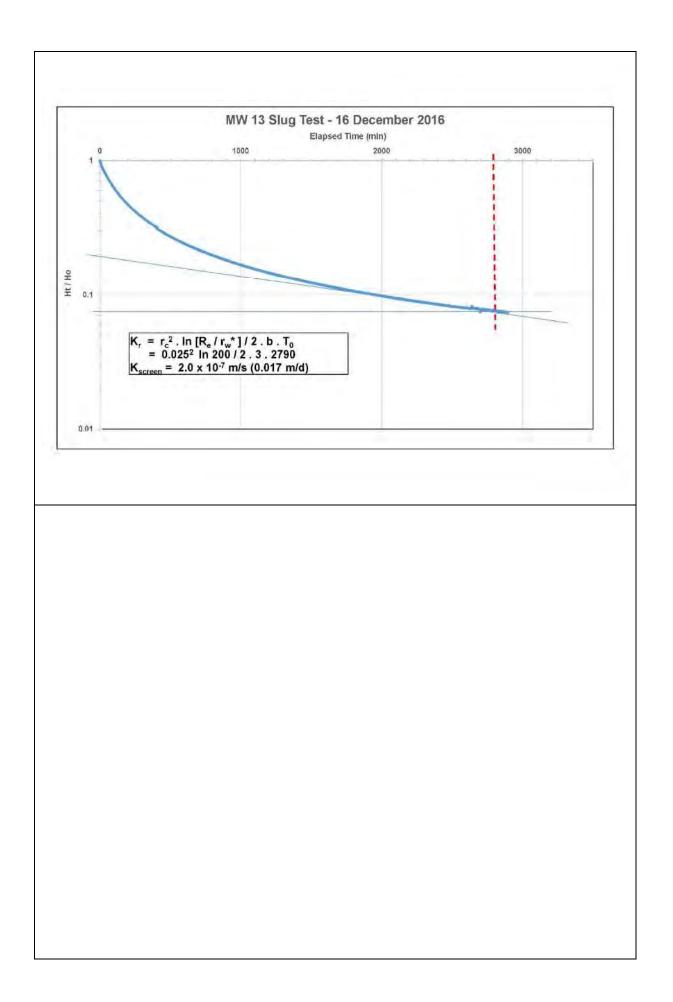
Access to this site requires the completion of "Site Induction/sign in-out" from the Sand Mine operator located in Roberts Rd, Maroota.

HB Maroota Pty Ltd C/- Ralph Betts P O Box 1778 GOSFORD NSW 2250 Ph 4368-4357 Mobile 0409-912536 Email hbresources@bigpond.com 13/07/2006: Access to this site requires the completion of "Site Induction" from Sand Mining company located in Roberts Rd, Maroota 13/07/2006: Combo lock installed (7232) 27/11/2006: cONC PAD TOO STEEL FLANGE PALTE 0.565m Conc Pad too PVC 0.855m 27/11/2006: Download 02 19/10/2007: D/L #3; Dip SWL=44.16 m (to pVC); EC=150; Temp =18.7 12/08/2008: Downloaded; Dip SWL=42.45m (to PVC); EC=166; Temp =18.7


22/01/2009: Downloaded; Dip SWL=42.10m (to PVC); EC=159; Temp =18.7 24/07/2009: Downloaded; Dip SWL=42.23m (to PVC); EC=147; Temp =18.7 24/01/2011: Site visited - Upon arrival Water Level = 42.65m EC = 152m/S Temp = 18.9 deg Actual depth of sensor measured = 51.8m 07/04/2011: Site visited - Upon arrival Water Level = 42.94m EC = 140u/S Temp = 19.0 deg Instrument changed OUT: Diver S/N 60246 IN: Solinst S/N 66752. 01/06/2011: Site visited - Water level = 42.90m EC = 142U/m Temp = 18.7Deg 02/08/2011: Site visited - Upon arrival Water Level = 42.883m EC = 145u/S Temp = 18.7 deg 20/09/2011: Site visited - Upon arrival Water Level = 42.418m EC = 141u/S Temp = 18.9 deg 29/11/2011: Site visited - Upon arrival Water Level = 42.528m EC = 146u/S Temp = 19.1 deg 24/01/2012: Site visited - Upon arrival Water Level = 42.437m EC = 143u/S Temp = 18.7 deg 02/05/2012: Site visited - Upon arrival Water Level = 41.317m EC = 153u/S Temp = 18.7 deg 26/06/2012: Logger lost - cable broken logger fell into bore. No logger replacement available. 14/08/2012: Site visited - Upon arrival Water Level = 41.377m EC = 233u/S Temp = 18.7 deg New logger installed - Solinst Serial No. = 1022337 26/09/2012: Primary Client changed from GWSE to GWA on 26/09/2012. 24/10/2012: Site visited - Upon arrival Water Level = 41.745m EC = 229u/S Temp = 18.7 deg Solinst logger removed S/No. = 22337 Troll logger installed S/No. = 320538 12/12/2012: Routine Site visit - Upon arrival Water Level = 42.003m EC = 162u/s Temp = 18.7 deg 14/03/2013: Routine Site visit - Upon arrival Water Level = 41.959m EC = 162u/s Temp = 18.7 deg 23/04/2013: Routine Site visit - Upon arrival Water Level = 41.988m EC = 155u/s Temp = 18.7 deg 06/08/2013: Routine Site visit - Upon arrival Water Level = 42.195m EC = 140u/s Temp = 18.7 deg Last logger level = 41.996m, Last logged Temp = 18.4 deg 09/10/2013: Routine Site visit - Upon arrival Water Level = 45.527m EC = 128u/s Temp = 18.7 deg Last logger level = 42.122m, Last logged Temp = 18.4 deg 20/03/2014: Routine Site visit: SWL = 43.318 m EC = 126u/s Temp = 18.7 deg Last logger level = 42.424m, Last logged Temp = 18.4 deg 15/05/2014: Routine Site visit: SWL = 42.737 m EC = 123 u/s Temp = 18.7 deg Last logger level = 43.292 m, Last logged Temp = 18.4 deg 27/05/2014: Routine Site visit: SWL = 42.575 m EC = 132 u/s Temp = 18.8 deg Last logger level = N/A m, Last logged Temp = N/A deg Cable extended 4m to approx 46m 22/07/2014: Routine Site visit: SWL = 42.535 m EC = 96 u/s Temp = 18.6 deg Last logger level = 42.446 m, Last logged Temp = 18.3 deg 09/10/2014: Regular site visit: SWL = 42.345 m Measured EC = 133 us/cm Measured Temp = 18.7 deg Last logged level= 42.361 m Last logged temp = 18.4 deg. Logger time 1 hour fast. Adjusted in editing. 04/02/2015: Regular site visit: SWL = 42.447 m Measured EC = 166 us/cm Measured Temp = 18.7 deg Last logged level= 42.498 m Last logged temp = 18.4 deg. Logger time 1 hour behind. Adjusted in editing. 20/08/2015: Regular site visit: SWL = 41.845 m Measured EC = 192 us/cm Measured Temp = 18.6 deg


*** End of GW075004 ***


Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.


APPENDIX C

HYDRAULIC TESTING RESULTS

