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We advocate that in critical spin chains, and possibly in a larger class of 1D critical models, a
gap in the momentum-space entanglement spectrum separates the universal part of the spectrum,
which is determined by the associated conformal field theory, from the non-universal part, which is
specific to the model. To this end, we provide affirmative evidence from multicritical spin chains
with low energy sectors described by the SU(2)2 or the SU(3)1 Wess-Zumino-Witten model.

Introduction.—Quantum entanglement has become a
key concept in contemporary condensed matter physics.
This is due in part to its ability to probe intrinsic topo-
logical order [1–3]. Consider a density matrix, ρ, repre-
sented by the projector onto a many-body ground state.
If the associated Hilbert space is partitioned into two
non-overlapping regions A and B, the entanglement be-
tween the regions A and B can be quantified either
through the entanglement entropy (EE) or the entangle-
ment spectrum (ES) obtained by the reduced density ma-
trix ρA = TrBρ. The EE is given by SA = −Tr(ρAlnρA),
and the ES is defined as the spectrum of the entanglement
Hamiltonian HE = −lnρA [4]. By definition, EE and ES
depend on the chosen basis to partition (cut) the many-
body Hilbert space. To resolve bulk and edge features of
topological order, some form of spatial cut [4–8] (along
with a particle cut [9, 10]) is the predominantly used
choice. This works well in systems with a bulk energy
gap and hence an associated length scale. Upon parti-
tioning, the ES then mimics the spectral features located
along the cut of an edge termination [7]. In particular, a
set of universal entanglement modes related to the edge
can be identified as distinct from generic entanglement
weight through the entanglement gap (EG), which can
be employed to define topological adiabaticity in the en-
tanglement spectral flow [5]. The spatial EG evolves in a
way similar to the physical bulk gap of the topologically
ordered phase, even though bulk gap closures occur at
points of parameter space different from EG closures due
to the unit fictitious temperature in HE [11].

In order to understand the universal properties of en-
tanglement in critical systems, a spatial cut is not always
a preferable choice [12–14]. Due to the absence of an en-
ergy gap, there will not be an appreciable concentration
of entanglement weight localized along the cut. Further-
more, for geometries where a spatial cut induces multiple
edges, such as a ring or torus, the entanglement modes
couple between the edges, and complicate the resolution
of individual modes. Instead, a momentum basis appears
promising to detect universal critical entanglement pro-

files. The momentum-space ES was first introduced for
spin-1/2 chains [15]. There, the notion of momentum re-
lates to the Fourier transform of individual spin flip op-
erators, and the total spin flip momentum, MA, of spin
flips in momentum region A provides an approximate
quantum number of ρA. The spin fluid phase around
the Heisenberg spin chain was found to exhibit a large
EG and a U(1) counting of entanglement levels. The
momentum-space ES has been subsequently explored in
the XXZ spin-1/2 chain [16], spin-ladders [17, 18], and
disordered systems [19, 20]. As an overarching principle,
the momentum EG, along with the universal entangle-
ment weight below it, require an interpretation different
from the spatial cut. In a finite spin chain with no length
scale, except for the UV lattice cutoff 1/a and IR chain
length cutoff 1/L, the EG cannot be directly related to
a microscopic scale. As a central conjecture emerging
from previous work, the EG separates the non-universal
part of the ES above it from the universal part below
it, which is determined by the associated conformal field
theory. We refer to this assumption as the universal bulk
entanglement conjecture (UBEC).

In this Letter, we elevate this conjecture to a gen-
eral principle, as we confirm it for several critical spin
chains with different, intricate field theories. In par-
ticular, we analyze the momentum-space ES of several
critical spin-1 chains, including the Takhtajan-Babujian
(TB) point [21, 22] and the Uimin-Lai-Sutherland (ULS)
point [23–25] associated with an SU(2)2 and an SU(3)1
Wess-Zumino-Witten (WZW) field theory, respectively.
Both are critical points in the bilinear-biquadratic spin-
1 model. (For a detailed complementary study of the
real-space ES see Ref. 14.) We pursue our analysis in
two steps. First, we identify fine-tuned models related
to SU(2)2 and SU(3)1 WZWs, which exhibit an infinite
EG, relating to an extensive multiplicity of the eigenvalue
zero in ρA. For SU(3)1 WZW, this is the SU(3) symmet-
ric generalization of the Haldane-Shastry model [26–28].
For SU(2)2 WZW, this is the Pfaffian spin chain [29, 30].
Second, we turn to the TB and ULS point, where we find
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a finite EG along with a precise matching of energy lev-
els for the universal entanglement content as compared
to their associated infinite-EG models.

SU(3)1 WZW theory.—Starting from the spin-1/2 fluid
phase where the universal behavior we advocate was first
observed for an SU(2)1 WZW theory, one way of gen-
eralization is the enlargement of the internal symmetry
group. The low energy sector of the ULS model is de-
scribed by SU(3)1 WZW theory with central charge c =
2. Equivalently, SU(3)1 WZW can be thought of as two
gapless free bosonic field theories, each with unit central
charge [31]. In terms of S = 1 spin operators, the Hamil-

tonian is given by HULS =
N∑
α=1

SαSα+1 +
N∑
α=1

(SαSα+1)2.

Periodic boundary conditions (PBCs) are implemented
by placing the sites on a unit circle embedded into the
complex plane, with site coordinates ηα = exp(i2πα/N),
α ∈ {1, . . . , N}. Due to its enlarged symmetry, the ULS
model can be recast (up to a constant) in terms of SU(3)
spin vectors [14],

HULS =

N∑
α=1

Jα · Jα+1, (1)

where Jα = 1
2

∑
στ c
†
ασλστ cατ denotes the SU(3) spin

vector on site α consisting of the eight Gell-Mann matri-
ces, and τ, σ ∈ {r, g,b}. We contrast model (1) with the
SU(3) Haldane-Shastry model

H
SU(3)
HS =

2π2

N2

N∑
α6=β

Jα · Jβ
|ηα − ηβ |2

, (2)

where |ηα − ηβ | is the chord distance along the ring.

In order to perform a momentum cut for the finite
size ground state of (1) and (2), we first need to specify
the operators which span the Hilbert space of the spin
chain. In analogy to the spin flip operators, S+

α , S−α ,
which are formed by the adjoint representation of SU(2),
we have the color flip operators eστα = c†ασcατ for SU(3).
Assuming N = 0 mod 3, the ground states of (1) and (2)
will be SU(3) singlets due to a generalized interpretation
of the Marshall theorem [32]. We write

|ψ0〉 =
∑
{z;w}

ψ0[z;w]ebgz1 . . . e
bg
zN/3

ergw1
. . . ergwN/3

|0g〉 , (3)

where the sum extends over all possible ways of distribut-
ing the positions [z] ≡ z1, . . . zN/3 of the blue (and [w] ≡
w1, . . . wN/3 of the red) particles. |0g〉 =

∏N
α=1 c

†
αg |0〉

is a reference state consisting only of green particles, on
which we act with the color flip operators ebgα and ergα .
We define the momentum space operators ẽbgp and ẽrgq

ebgα =
1√
N

N∑
p=1

η̄ pα ẽ
bg
p , ergβ =

1√
N

N∑
q=1

η̄ qβ ẽ
rg
q , (4)

where p, q ∈ {1, . . . , N} are integer spaced momentum
indices. Substitution of (4) into (3) yields

|ψ0〉 =
∑
{p;q}

ψ̃0[p; q] ẽbgp1 . . . ẽ
bg
pN/3

ẽrgq1 . . . ẽ
rg
qN/3
|0g〉 , (5)

ψ̃0[p; q] =
∑
{z;w}

ψ0[z;w] z̄p11 . . . z̄
pN/3

N/3 w̄
q1
1 . . . w̄

qN/3

N/3 . (6)

Note that while there trivially is a hard-core constraint
for the color flip operators in real space, there is no
such condition in momentum space. This significantly
enlarges the number of basis states. For our purposes, it
is best to write the ground state in a momentum space
occupation number basis,

|ψ0〉 =
∑
{n;m}

φ̃0[n;m] |n1, . . . , nN ;m1, . . . ,mN 〉 , (7)

where np (mq) is the number of times momentum index
p (q) for color flips from green to blue (red) appears in
(5). The ket in (7) is hence given by

|n1 . . . ;m1, . . .〉 =

N∏
p=1

(ẽbgp )np√
np!

N∏
q=1

(ẽrgq )mq√
mq!

|0g〉 . (8)

We arrive at Eq. (7) after obtaining the real space ground
state via exact diagonalization. Due to the exponential
numerical cost of the many-particle Fourier transform,
the maximal size we are able to reach is N = 15.

We are now prepared to calculate the momentum ES
for (1) and (2). Assuming N odd, we partition momen-
tum into regimes A = {p | p ≤ N+1

2 } ⊗ {q | q ≤
N+1
2 }

and B = {p | p > N+1
2 } ⊗ {q | q > N+1

2 }. Region A
and B are decomposed in terms of total momentum,
M = MA + MB, and particle number, N = NA + NB,
which are given by MA/B =

∑
p∈A/B npp+

∑
q∈A/Bmqq

and NA/B =
∑
p∈A/B np +

∑
q∈A/Bmq. The crystal mo-

mentum is given by M c
A/B = MA/B modN , and is always

an exact quantum number of ρA/B. In general, however,
even MA/B is a good approximate quantum number. For
an N = 12 ground state of (1), more than 99% of the to-

tal amplitude resides in the M = N2

3 sector and less than
1% in all other sectors. It is a central observation that M
(and MA/B) is a good approximate quantum number as
long as the internal spin symmetry is unbroken or only
weakly broken [15, 16].

The ground state of (2) retains MA/B as an exact quan-
tum number. Fig. 1a displays its (N,NA) = (15, 6),
NA,r = NA,b = 3 sector of HE with spectral levels de-
noted by ξ. We observe a large degeneracy of entan-
glement levels at infinity, corresponding to eigenvalues
zero of ρA. The counting 1, 2, 5 of the ES levels from
left to right matches the state counting of two gapless
U(1) bosons until we reach a finite size limit. All prop-
erties above are understood on analytic footing: For (2),
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(a) SU(3) Haldane-Shastry Model
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(b) Uimin-Lai-Sutherland Point

FIG. 1. (color online) (a) ES of Eq. (2) and (b) ES of the ULS point for (N,NA) = (15, 6), 3 red and 3 blue particles. At the
ULS point, generic entanglement levels (blue) are separated by a finite EG from the universal entanglement levels (red). The
eigenvalues, ξ, are plotted versus the total momentum of region A. Throughout this work, ρA is normalized such that Tr ρA = 1
for each NA. The universal entanglement in (a) and (b) matches the counting of SU(3)1 WZW theory, supporting the UBEC.

ψHS
0 [z;w] is given by [33]

ψHS
0 [z;w] =

N/3∏
i<j

(zi − zj)2(wi − wj)2

·
N/3∏
i,j=1

(zi − wj)
N/3∏
i=1

ziwi. (9)

Note that one can write the ground state in terms of
color flip operators for any pair of colors (up to a mi-
nus sign) [34]. By virtue of a momentum-conserving
orbital squeezing relation between Fock states of non-
zero weight, Eq. (9) has all of its weight in the sector
M = N2/3. To understand this, note that (9), in its
polynomial form, is equivalent to the spin-singlet bosonic
Halperin-(221) fractional quantum Hall (FQH) state [35]
with filling fraction ν = 2

3 . Vice versa, the bosonic
Halperin-(221) state exhibits SU(3) symmetry [36]. As
the Halperin-(221) state obeys certain squeezing proper-
ties [37, 38], so does (9). In terms of critical theories, (2)
is special in the sense that the finite size ground state
does not contain corrections as compared to the thermo-
dynamic field theoretical content of entanglement.

Turning to the ES at the ULS point (1) in Fig. 1b, we
observe an EG present for all MA, which separates the
non-universal components at higher ξ from universal lev-
els which match with the entanglement levels of (2). As
one increases the system size, the relative importance of
non-universal entanglement levels would decrease while
the universal entanglement weight becomes successively
dominant and stays separated from non-universal levels
through the EG. It implies that the UBEC also holds for
critical spin chains described by SU(3)1 WZW theory.
SU(2)k=2 WZW theory.—Another way to explore the

reach of the UBEC is the extension to higher level
k > 1 Wess-Zumino terms in the field theory descrip-
tion of critical spin chains. Higher k links to multi-
critical points which in general do not represent gapless
spin fluid phases, but rather phase transition points [39].

For SU(2)2 WZW theory, several model instances have
been found for spin-1 chains such as the TB spin chain

HTB =
N∑
α=1

SαSα+1 −
N∑
α=1

(SαSα+1)2. An analytic lat-

tice realisation of SU(2)2 WZW theory has been found
for the Pfaffian spin chain [29, 40],

HPf =
2π2

N2

[
N∑
α 6=β

SαSβ
|ηα − ηβ |2

(10)

− 1

20

N∑
α,β,γ
α 6=β,γ

(SαSβ)(SαSγ) + (SαSγ)(SαSβ)

(η̄α − η̄β)(ηα − ηγ)

]
.

The low-energy theory is described by a massless bosonic
and Majorana field consistent with c = 1 + 0.5 [30]. Nu-
merical evidence for SU(2)2 critical behaviour has been
idependently found for a truncated version of (10),

HJ1-J3 =

[
N∑
α=1

SαSα+1 (11)

+
J3
J1

[
(Sα−1Sα)(SαSα+1) + h.c.

]]
,

at J3/J1 ≈ 0.11, with a central charge c = 1.5 [41].
The singlet ground state of any spin-1 chain of length

N (N even) reads

|ψS=1
0 〉 =

∑
{z}

ψ0(z1, . . . , zN ) S̃+
z1 . . . S̃

+
zN | − 1〉N , (12)

where the sum extends over all possible configurations of
N spin-flip operators (allowing for at most two spin flips
on the same site), | − 1〉N = ⊗Ni=1|1,−1〉 is the vacuum

with all spins in the sz = −1 state, and S̃+
α = 1

2 (Szα +
1)S+

α is a renormalized spin flip operator [42]. They are
the natural choice to unify a Pfaffian polynomial of spin
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(a) Pfaffian Spin Chain
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(b) Takhtajan-Babujian Point
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(c) J1 − J3 Model

FIG. 2. (color online) (a) ES of Eq. (10), (b) ES of the TB point, and (c) ES of the J1 −J3 model for (N,NA) = (12, 6). In (b)
and (c), the universal (red) and non-universal (blue) entanglement levels are separated by a finite EG. For (a)-(c), the counting
of the universal levels matches the counting of SU(2)2 WZW theory, consistent with the UBEC.

flip coordinates with the singlet property of the resulting
wave function, such that the ground state of (10) yields

ψPf
0 (z1, . . . , zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)
N∏
i=1

zi, (13)

where Pf(1/zi − zj) = A[(1/(z1 − z2) . . . 1/(zN−1 − zN )].
An alternative construction of (13) is given by the
symmetrization over two S=1/2 Haldane-Shastry chain
states [42, 43]. We Fourier transform the spin-flip oper-
ators as

S+
α =

1√
N

N∑
q=1

η̄qα S̃
+
q , S̃+

q =
1√
N

N∑
α=1

ηqα S
+
α . (14)

Substituting (14) into (12), we find

|ψS=1
0 〉 =

∑
{q}

ψ̃0(q1, . . . , qN ) S̃+
q1 . . . S̃

+
qN |−1〉N , (15)

ψ̃0(q1, . . . , qN ) =
∑
{z}

ψ0(z1, . . . , zN ) z̄ q11 . . . z̄ qNN . (16)

From the Fourier transformed ground state, we obtain
the momentum-space ES. We partition our system in two
regions, A and B, by dividing the momentum-space oc-
cupation basis as A = {q | q < N

2 } and B = {q | q > N
2 }.

Each region is decomposed in terms of number of par-

ticles N = NA + NB =
∑N
q=1 nq and total momentum

M = MA + MB =
∑N
q=1 nqq, where nq denotes the oc-

cupation number of a given momentum q. As previously
seen for the SU(3) case, M c = M mod N is an exact
quantum number, while M in general is not. By virtue
of being a squeezing state, however, (13) has all of its
weight in the sector M = N2/2. Similarly, it turns out
that M = N2/2 is the strongly preferred sector for the
TB model and the J1−J3 model as well, rendering MA a
good approximate quantum number. (For instance, the
N = 10 TB ground state has 94% of its total weight in
the M = 50 sector.)

Fig. 2a depicts the (N,NA) = (12, 6) ES of (13) in com-
parison to the ES of the TB and J1-J3 ground state in
Fig. 2b and Fig. 2c, respectively. For all ES, we observe a
matching of universal levels which corresponds to count-
ing 1, 1, 3, . . . of the low-lying entanglement levels from
left to right. This corresponds to the energy levels of a
boson and a Majorana fermion with anti-periodic bound-
ary conditions [44]. For NA = 7 not shown, the observed
counting is 1, 2, 4, . . . , and as such also consistent with
the previous finding [45]. While Fig. 2a shows no non-
universal entanglement weight beyond the universal lev-
els, i.e., an extensive number of zero modes in ρA. This
is due to the monomial equivalence between (13) and the
bosonic Moore-Read state [46]. Fig. 2b and Fig. 2c ex-
hibit different non-universal entanglement weight, which
is again separated from the universal weight by an EG, in
agreement with the UBEC. Note that in analytically un-
resolved cases such as the model J3/J1 ≈ 0.11 in HJ1−J3 ,
the momentum entanglement fingerprint provides a par-
ticularly elegant tool to identify the critical theory.
Conclusions.—At the example of critical spin-1 chains,

we have provided evidence that the universal bulk en-
tanglement conjecture for critical spin chains generically
holds for SU(N)k Wess-Zumino-Witten theories. From a
broader perspective, our work highlights that entangle-
ment spectra do not only provide universal fingerprints
for topological phases, but also for critical systems.
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