Balancing with the VIBXPERT® II

Presented By Colin Pickett

Condition Monitoring & Reliabilit

Content

- Requirements
- Balancing functions and settings in VIBXPERT® II
 - Diagnostic measurements
 - Balancing in 1 & 2 planes
 - Sensor arrangement
 - Measurement setup
 - Machine setup
- Additional useful information
 - ► Balancing reports VIBXPERT® II & OMNITREND®
 - Recovery file
 - 1-plane balancing with control plane
 - Influencing coefficient

Requirements

- Balancing hardware
 - ▶ VIB 5.386-HW
 - ▶ VIB 5.388-HW

▶ VIB 5.316-BAL

'1st Harmonic'

Balancing in 1 & 2 planes

Balancing			X 💷
Diagnosis	1 plane	2 planes	
1 p	lane overhu	ung	1 plane intermediate
Task:	1 plane int	ermediate	
Channel A:	VIB 6.142		
Channel B:			
1010000000000000			

Sensor arrangement

Trigger angle Transducer

Trigger angle: Angle between transducer and trigger is calculated counter to the direction of rotation of the rotor

Angle convention: the angular reference mark lies at 0° ; The fixing angle ϕ for the balancing weight is counted against the direction of shaft rotation.

TIP: Number the fan blades corresponding to the counting direction of the fixing angle.

www.VCMR.training ©2021

Blade no. 1 is taken as the 0° position.

6

- Measurement setup
 - Filter 0.5 / 1 / 2 / 10 Hz
 - ▶ No of measurements (AVERAGING).
 - 1 20 the number of averages is automatically increased to the maximum value if the indicator shows strongly varying unbalance.
 - Time sync. Averages:
 - 'Auto': Time synchronous number of averages is a function of the rpm.
 - 'Manual': Time synchronous number of averages can be entered (max. 254).
 - Infinite': Each individual measurement is averaged with the preceding individual measurement. The longer the measurement takes, the more stabile the final result. → useful if "beating" is present
 - ORDER: 1 5;
 - order filters enable the balancing at RPM harmonics of a higher order; these special cases can occur in special machine configurations.
 - Measurement range

Setup Manager: Measurer Aeasurement setup	nent 🔀	66%
user balancing		
<i>l</i> leas. quantity	Velocity	
ower frequency	10.00 Hz	
lo. of measurements		5
imesync. averages	Auto	
Irder	1	
leasurement range	Auto	
		λ / V
		/

Time-synchronous average

- ▶ Parameter in the measurement setup
 - Auto: RPM-dependent (1Hz => 3 averages, 2 Hz => 4 averages,
 - Manual: Max. 254 averages
 - Infinite: Measurement stopped by user
- Motivation: suppression of beating

Velocity

10.00 Hz

Auto Auto

Manual

Infinite

T

V

5

Beating

Superposition of two vibration components with similar frequencies (e.g., induction motor with identical speed but different slip)

Overall value $v_{\rm rms}$ varies with slip frequency, depending on phase difference of the two components

Location 8

user balancing

Meas, quantity

Lower frequency

Order

No. of measurements

Timesvnc, averages

Measurement range

Machine setup

Planes: 1 or 2

- CORRECTION MODE:
 - ► Free / fixed location / fixed weight / meas. Tape
- TRIAL/TRIM MASSES*:
 - add / remove
- BALANCE QUALITY:
 - 0 4000; according to DIN ISO 1940
- ► USE DIFFERENT RADII:
 - Yes / No
- RADIUS:
 - Balancing radius; distance of the balancing weight from the rotational axis
- ROTOR MASS:
 - The mass of the rotor is taken into consideration in the calculation of the trial weight.
- ► AUTO TRIAL WEIGHT:
 - Yes / No; VIBXPERT calculates a trial weight from the machine data and recommends this in the trial run. If this option is deactivated, the trial weight attached to the rotor must be entered in the data screen of the trial run.
- TRIGGER ANGLE:
 - Angle between transducer and trigger

Machine setup			
fan1			
Planes		1	
Correction mode A	fixed location	V	
No. of locationsA		8	
Trial/Trim weights	add	V	
Balance quality	6.3	V	
Use different radii	No		. λ
Radius A		6.55 inch	
Rotor mass		25.00 lb	$\langle \rangle$
Auto trial weight	Yes	V	
Trigger angle A		0 °	
Speed (bal. quality)	Disabled		
Check speed	Yes	V	$\lambda \mid $
Control 2nd plane	Yes	V	
Min. error in 2nd plane	Yes		
Auto average	Yes		
Check stable	Yes	V v	l l
Check bad influence	Yes	T	
Recalc coefficient	No	V	
Free-run	No	V	

- SPEED (bal. quality):
 - Balancing RPM; should be as close as possible to the operating RPM, but if not, here you can set machine full speed
- CHECK SPEED:
 - Yes / No
- CONTROL 2ND PLANE:
 - Yes / No; when balancing in a plane, the vibration in a second plane can be recorded and displayed as well
- AUTO AVERAGE:
 - Yes / No;
- CHECK STABLE:
 - Yes / No;
- CHECK BAD INFLUENCE:
 - Yes / No
- RECALCULATING COEFFICIENT:
 - Yes / No
 - If set to No, coefficient of trial run will be calculated
 - If set to YES, coefficient will be newly calculated for every balancing run.
- ► FREE-RUN:
 - Yes / No; for balancing experts only

www.VCMR.training ©2021

		IK
Setup Manager: Machine	‡ 1(65%)	
Machine setup		
fan1	T	
Planes	1 1	
Correction mode A	fixed location	
No. of locationsA	8	
Frial/Trim weights	add	
3alance quality	6.3	
Jse different radii	No	Λ
Radius A	6.55 inch	/ \
Rotor mass	25.00 lb	
Auto trial weight	Yes	
Frigger angle A	0 *	
Speed (bal. quality)	Disabled	
Check speed	Yes	
Control 2nd plane	Yes	
Min. error in 2nd plane	Yes	¥ /
Auto average	Yes	
Check stable	Yes 🗸	Y
Check bad influence	Yes 🔽	
Recalc coefficient	No	/
Free-run	No 🗸 🗸	
	/	

1 Plane Balance Procedure

11

Calculation of trial weight

$$\frac{TM = M_R \times S}{r}$$

Where;

TM = Trial Mass M_R = Rotor Weight S = Displacement amplitude of vibration R = Correction radius

VIBXPERT® Can do this for you.

- Stop the machine
- Lock off / Isolate, make safe the machine
- Obtain access to the rotor
- Add Trial Weight
- Secure access to the rotor
- Re-energize the machine / remove lock
- Run the machine to the <u>same</u> speed as the original run.

▶ 1. Trial run

user

- Stop the machine
- Lock off / Isolate, make safe the machine
- Obtain access to the rotor
- Are you removing Trial Weight?
- Add Correction Weight to correct position/angle
 - Did you place the weight in the correct direction?
- Secure access to the rotor
- Re-energize the machine / remove lock
- Run the machine to the <u>same</u> speed as the previous run.

2. run

All Good?

- Yes Great!
- No Trim run Required
- Stop the machine
- Lock off / Isolate the machine
- Add Correction/Trim Weight
- Re-energize the machine / remove lock
- Run the machine to the <u>same</u> speed as the original run.

▶ 3. run

Balancing Reports

► VIBXPERT® II pdf

Printer		
PDF		
Reports		
Auswucht-Report	2	T
Common settings	Measure info	
Company	PRUFTECHNIK CM	
🕫 Logo	pruftechnik	۲
Customer		۲
lnspector		
F Asset		
P Result filename		
F Report event		
P Setup info	Detailed	T

▶ 1 plane balancing with control plane

VCMR

21

1-plane balancing with control plane (in case 2 plane is not possible)

- Dynamic imbalance
- ▶ Measure the influence of the balancing mass in the second plane
- ► Correct the balancing mass for a minimum error in the control plane

is not possible)			
Setup Manager: Machine		× (55%)	
Machine setup			
user		V	
Planes		1	1
Correction mode	free		\setminus
Trial/Trim weights	add	V	
Balance quality	2.5	V	
Foundation	flexible	▼	
Use different radii	No	V	
Radius A		75.0 mm	
Rotor mass		8.00 kg	
Trigger angle A		90 °	
RPM		1500 rpm	
Check speed	Yes	▼	
Control 2nd plane	No		
Auto average	Yes		
Check stable	Yes	▼_	
Check bad influence	Yes	V	
Recalc coefficient	No	V .	
			/

VCMR

Parameters in the machine setup

2 Plane Balance Procedure

www.VCMR.training ©2021

2 planes overhung (belt-driven)

0 0

Plane A

Plane B

Channel A

Channel B

0 0 0 = 70%

Calculation of trial weight

$$\frac{TM = M_R \times S}{r}$$

Where;

TM = Trial Mass M_R = Rotor Weight S = Displacement amplitude of vibration R = Correction radius

VIBXPERT® Can do this for you.

- Stop the machine
- Lock off / Isolate, make safe the machine
- Obtain access to the rotor
- Add Trial Weight to Plane A
- Secure access to the rotor
- Re-energize the machine / remove lock
- Run the machine to the <u>same</u> speed as the original run.

▶ 1. Trial run Plane A

user			1	¢ 🗧 (70%)
_ 1A. T	rial —			1
ĺ.				2
	Mount	balancing w	eight in plane A	
9	A 0	.021 oz	270 °	
	ous			Next 🕨
Data				
No.	Weight [oz]	Angle [°]	Vibration 0-P [mm/s]	Angle [°]
0 A	—	—	5.304	133
0 B	3 .	-	3.568	297
Balance o Residual	quality: force:	_		

- Stop the machine
- Lock off / Isolate, make safe the machine
- Obtain access to the rotor
- Are you removing Trial Weight?
- Add Trial Weight to Plane B
- Secure access to the rotor
- Re-energize the machine / remove lock
- Run the machine to the <u>same</u> speed as the previous run.

▶ 1. Trial run Plane B

			1	J = 1 <mark>70</mark>
1B.1	frial ——			
)
	Mount I	balancing w	eight in plane B	
	B 0.0	021 oz	180 °	
🗲 Prev	rious			Next 🕽
◀ Prev - Data	rious			Next 🕽
✓ Prev → Data No.	ious Weight [oz]	Angle [*]	Vibration 0-P [mm/s]	Next
Prev Data No. 0 A	vious Weight [oz] —	Angle [*]	Vibration 0-P [mm/s] 5.304	Next
Prev Data No. 0 A 0 B	vious Weight [oz] —	Angle [*] 	Vibration 0-P [mm/s] 5.304 3.568	Next Angle [*] 133 297
Prev Data No. 0 A 0 B 1 AA	ious Weight [oz] — — 0.021	Angle [*] — 270	Vibration 0-P [mm/s] 5.304 3.568 2.073	Next Angle [*] 133 297 224
 Prev Data No. 0 A 0 B 1 AA 1 AB 	Weight [oz] 0.021 	Angle [*] 270 	Vibration 0-P [mm/s] 5.304 3.568 2.073 3.105	Next Angle [*] 133 297 224 6
 Prev Data No. 0 A 0 B 1 AA 1 AB Balance 	weight [oz] 0.021 quality:	Angle [*] — 270 —	Vibration 0-P [mm/s] 5.304 3.568 2.073 3.105	Next Angle [*] 133 297 224 6

- Stop the machine
- Lock off / Isolate, make safe the machine
- Obtain access to the rotor
- Are you removing Trial Weight?
- Add Correction Weights for Plane A & B to correct position/angle
 - Did you place the weight in the correct direction?
- Secure access to the rotor
- Re-energize the machine /remove lock
- Run the machine to the <u>same</u> speed as the previous run.

2. run

All Good?

- Yes Great!
- No Trim run Required
- Stop the machine
- Lock off / Isolate the machine
- Add Correction/Trim Weight
- Re-energize the machine / remove lock
- Run the machine to the <u>same</u> speed as the original run.

▶ 3. run

Recovery File

Emergency storage

If the balancing procedure is stopped prematurely (e.g. battery discharged), the data are stored in a recovery file. When the device is switched on again, the balancing procedure can be continued with the aid of this recovery file.

Opening the recovery file

- · Switch on the measuring device.
- · In the start screen, click on the 'Balance' symbol.

- · Open the tab in which the interrupted balancing procedure was started (e.g. '1 plane').
- The recovery file is labeled with a warning symbol.
- · Click on the recovery file to open the recovery dialog box. It shows information on when the emergency storage took place and the number of balancing steps (see below).
- · Click on 'Restore' to open the file and continue the balancing procedure, or to save the data properly.

Click on 'Discard' to clear the data in the recovery file and start a new measurement.

Use 'Exit' to leave the recovery dialog box without deleting the recovery file.

VCMR -Degenes 1 place 2 places Measurement was alternighted. Do you want to release it are 23 06 2010 00.41.34 Number of balancing nem Depart. Lot 1 plane overhend Nachine (mornathing adupt) 34

date it correctly?

Restars.

Chemini A. W5 6:144

Date

Tena

Tank

Chairmid St.

Influencing Coefficient

Influencing coefficient

- Save the influencing coefficient
- ► Load the influencing coefficient for repeat measurements => No test run necessary
 - Load from file
 - Take over from previous balancing measurements
 - Enter manually
- Same machine, same machine setup, same senor arrangement is required

VCMR

Vibration Condition Monitoring & Reliability

Thank You